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Abstract 

This document provides a detailed description of our project, Autonomous WiFi 
Mapping Car, and the designs currently being implemented and tested. In this 
document, we breakdown the physical and circuit design, the estimated cost and 
timeline, as well as the ethics and safety of our project.  
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1 Introduction 
The following sections provide an overview of the problem we are focusing on, as well as our 
solution to said problem. 
 

1.1 Problem 
 
The proliferation of wireless local area networks is fundamental to the operation of modern 
homes, offices, and industrial environments, supporting everything from personal 
communication to a vast ecosystem of IoT devices. However, the performance of these 
networks is highly susceptible to the physical environment, with signal strength often varying 
dramatically due to architectural features, furniture, and interference. The process of identifying 
and mitigating areas of poor coverage, or "dead zones," is crucial for network optimization but 
typically relies on a manual survey [3]. This method involves an individual walking through a 
space with a signal-measuring device, which is a process that is not only time-consuming and 
laborious but also yields inconsistent, low-resolution data. This leaves the placement of routers 
and access points to guesswork rather than analysis [1].  
 
This project directly addresses the inefficiencies and inaccuracies of manual WiFi mapping by 
developing an autonomous mobile robot capable of generating a signal strength map of an 
indoor environment. By integrating a LIDAR sensor with a SLAM algorithm, the system can build 
an accurate 2D representation of an area and then navigate it autonomously along a calculated 
path. As the robot traverses the space, it continuously records the WiFi Received Signal 
Strength Indicator with an ESP32 module and correlates it with its precise location data. The 
final dataset enables the creation of a detailed heat map, providing a clear visualization of the 
WiFi coverage. This automated approach eliminates the manual labor and inconsistency of 
traditional methods, offering a powerful tool for users to diagnose connectivity issues and 
effectively optimize wireless infrastructure [2]. 
 

1.2 Solution 
 
Our solution is an RC car designed to systematically map the WiFi signal strength within an 
indoor environment and generate a visual heat map. The system is built on a custom RC car 
platform featuring omnidirectional wheels, which allow for movement in any direction. The car is 
equipped with a LIDAR sensor for spatial awareness, an ESP32 microcontroller to serve as the 
low-level hardware controller, and a Raspberry Pi single-board computer to act as the "brain" for 
SLAM and the path planning algorithm. All onboard electronics, including power distribution 
from a LiPo battery and signal routing, will be integrated via a custom designed PCB. The 
system's operation is divided into two distinct phases: a short initial manual-control phase to 
allow the Raspberry Pi to build a 2D map of the environment, followed by a very long methodical 
autonomous phase to collect WiFi signal data across the entire room [3]. 

4 



 
The implementation hinges on a clear and robust communication hierarchy. During the initial 
mapping phase, a user will control the vehicle from a custom GUI on a host computer, sending 
command packets via Bluetooth to the ESP32 which will interface with a four-channel motor 
controller. Simultaneously, the ESP32 will continuously process the raw data stream from the 
LIDAR sensor and relay parsed distance and angle information to the Raspberry Pi over a 
UART connection. The Raspberry Pi will then use a well-established SLAM algorithm to 
construct the 2D map in real-time. 
 
Once the user engages the autonomous mode via the GUI, the Raspberry Pi finalizes the map 
and utilizes a path-planning algorithm, such as calculating the most efficient trajectory to cover 
the entire known area. It then begins sending a sequence of simple directional commands to the 
ESP32. As the ESP32 executes these movement commands, its onboard WiFi module is 
tasked with continuously scanning for the network's Received Signal Strength Indicator 
simultaneously correlating it with a (x, x) coordinate given by SLAM. After the planned path is 
complete, the ESP32 transmits the collection of coordinate and RSSI data points back to the 
host computer, which then renders the final heat map visualization for the user. 
 

1.3 Visual Aid 
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1.4 High-Level Requirements 
 

●​ A user must be able to manually drive the car from the host computer using Bluetooth, 
with the car responding to all four directional commands within 500 milliseconds latency 
from a distance of at most 5 meters. 

●​ The car must drive a planned route of at least 5 meters and generate a 2D map that 
visually identifies the primary boundaries of the testing area as well as the obstacles 
around it subject to the physical constraints of the LIDAR sensor accuracy. 

●​ The car must measure WiFi signal strength at a minimum of 5 distinct locations to 
generate a heat map that visualizes the varying signal intensities using at least 3 
different colors, correctly showing a lower signal strength at locations farther from the 
WiFi router. 
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2 Design 

2.1 Block Diagram 

 

2.2 Physical Design 

 
Gemini generated image of expected physical design (includes batteries, PCB, and lidar with 
manufactured third layer on top) [3]. 
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2.3 Functional Overview and Requirements 

2.3.1 Base Subsystem 
This subsystem hosts the user interface on the host computer and is responsible for starting the 
system, teleoperating the vehicle during the manual-mapping phase, and displaying the final 
Wi-Fi heat map. Functionally, it sends manual drive commands and a start signal from the GUI 
over Bluetooth to the ESP32 in the Control Subsystem. It also acts as the receiver for the Wi-Fi 
map data the ESP32 transmits back over Bluetooth once a run is complete. In short: Base ↔ 
Control is a Bluetooth control/telemetry link; Base does not directly touch sensors or motors, but 
it initiates operation and consumes the final dataset for visualization. 
 
 

Requirements Verifications 

1. Must provide a graphical user interface 
(GUI) for manual control of the RC car. 

- Launch the GUI on the host computer.  
- Press the on-screen controls for forward, 
backward, and lateral movements.  
- Confirm the RC car responds appropriately 
to each command. 

2. Must be able to establish and maintain a 
stable Bluetooth connection with the ESP32 

- From the GUI, initiate a Bluetooth pairing 
sequence with the car's ESP32. 
- Confirm that a stable connection is 
established and acknowledged in the GUI. 
- Maintain the connection without dropouts for 
a continuous 5-minute period while sending 
manual control commands. 

3. Must be able to send a distinct command 
to initiate the autonomous mapping phase. 

- After establishing a connection, click the 
"Begin Autonomous Mapping" button in the 
GUI. 
- Verify that the car stops responding to 
manual control inputs. 
- Confirm that the car begins to execute its 
autonomous path-planning algorithm. 

4. Must be able to receive and parse the final 
(x, y, RSSI) data structure from the car. 

- After the car completes its autonomous run, 
it will transmit the collected data. 
- Monitor the host computer to confirm the 
receipt of a data packet. 
- Verify that the received data structure can 
be correctly parsed into a list of coordinates 
and their corresponding signal strength 
values. 

5. Must render the received data as a visual 
heat map of the mapped area 

- Upon successful parsing of the (x, y, RSSI) 
data, observe the GUI. 
- Confirm that a 2D plot is generated. 
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- Verify that the plot is color-coded to 
represent WiFi signal strength at different 
locations, forming a complete heat map. 

 

2.3.1 Control Subsystem 
This subsystem contains the ESP32 microcontroller and the Raspberry Pi. The ESP32’s 
functions are to (1) maintain the Bluetooth link with the Base Subsystem, receive manual 
commands/start signals, and send Wi-Fi map data; (2) generate PWM drive signals to the dual 
H-bridge motor driver in the Drivetrain & Power Subsystem; (3) parse incoming LIDAR 
distance/angle data (UART) from the Sensing Subsystem and forward parsed data to the 
Raspberry Pi; and (4) indicate when the final Wi-Fi map data is ready for the Base Subsystem. 
The Raspberry Pi runs navigation: it ingests serial LIDAR data from the ESP32, performs 
mapping/localization/path planning, and returns serial navigation commands to the ESP32 for 
execution. Power-wise, the ESP32 receives 3.3 V and the Raspberry Pi 5 V from the Drivetrain 
& Power Subsystem’s regulators. Thus, Control is the hub: Bluetooth to Base, UART to 
Sensing, PWM to Drivetrain, and regulated power in from Drivetrain & Power [3]. 
 

 
ESP32 and IO pin connections 
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Raspberry Pi Header and Shutdown Button 

 

Requirements Verification 

1. The ESP32 must establish a Bluetooth 
connection with the host computer to receive 
manual control commands and transmit 
collected WiFi map data.  

- Write a test script on the host computer to 
send a specific command string (e.g., 
"FORWARD"). 
- Use a serial monitor connected to the 
ESP32 to confirm the exact string is received. 
- Hardcode a sample data array of (x, y, 
RSSI) tuples on the ESP32 and program it to 
transmit this data upon receiving a "SEND" 
command. 
- Verify that the host computer successfully 
receives the complete and unmodified data 
array. 

2. The Raspberry Pi must process incoming 
LIDAR data and successfully execute a 
SLAM algorithm to generate an accurate 2D 
map of its environment. 

- Place the vehicle in a room with known 
dimensions (e.g., 4m x 5m). 
- Manually drive the vehicle around the 
perimeter of the room. 
- Confirm that the generated map is 
topologically correct subject to the constraints 
of the LIDAR sensor (i.e. we cannot detect 
obstacles that absorb light rays). 

3. The ESP32 must translate high-level 
directional commands into the appropriate 
PWM signals for the motor driver to achieve 
forward, backward, and lateral movements. 

- Place the vehicle on a stand, allowing the 
wheels to spin freely. 
- Send a "forward" command from the host 
GUI and visually confirm that all four wheels 
spin in the correct direction for forward 
motion. 
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- Repeat the test for "backward," "strafe left," 
and "strafe right" commands, verifying correct 
wheel behavior for each. 
- Probe the PWM output pins of the ESP32 
with an oscilloscope to confirm that signals 
are present and their duty cycles change in 
response to different commands. 

4. The subsystem must accurately sample 
the WiFi RSSI and associate each 
measurement with the vehicle's (x, y) 
coordinates provided by the SLAM algorithm. 

- Manually position the vehicle at a known 
starting coordinate (e.g., (0,0)) in the mapped 
area. 
- Trigger a single data capture. Log the 
resulting data point (x, y, RSSI) to the serial 
monitor. 
- Verify that the logged x and y coordinates 
are within a reasonable tolerance (e.g., +/- 
50cm) of the known position. 
- Verify that the logged RSSI is a valid integer 
(e.g., between -90 and -30 dBm). 

 

2.3.1 Sensing Subsystem 
This subsystem is the LIDAR sensor, powered at 5 V from the Drivetrain & Power Subsystem’s 
regulators. When the RC car is started, the Control Subsystem initializes the LIDAR, after which 
the sensor continuously streams UART distance/angle data to the ESP32 within the Control 
Subsystem. The LIDAR has no direct connection to the Base Subsystem or the motor driver; its 
single logical link is UART → ESP32, enabling the Raspberry Pi (via the ESP32) to build the 
map and produce navigation commands. 
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LIDAR Header 

 

Requirements Verification 

1. The subsystem must be supplied with a 
stable 5.0V +/- 0.1V. 

- Ensure the LIDAR is connected to the 5.0V 
output from the Drivetrain & Power 
Subsystem's voltage regulator. 
- Probe the LIDAR's VCC, VM, and GND pins 
with a multimeter. 
- Confirm the measured voltage is stable and 
within the 4.9V to 5.1V range during 
operation. 

2. The LIDAR sensor must provide a 
continuous 360-degree, 2D scan of its 
environment. 

- Power on the sensor and interface with it 
from a host computer. 
- Using visualization software, place a distinct 
object at known angles (e.g., 0°, 90°, 180°, 
270°) relative to the sensor. 
- Confirm that the visualization displays the 
object at the correct angular positions and 
that the data stream covers the full 
360-degree range without gaps. 

3. The sensor's measurement range must be 
at least 8 meters with reasonable accuracy. 

- In a long hallway, place a flat object (e.g., a 
large box) at a distance of 8 meters from the 
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sensor, measured with a tape measure. 
- Check the sensor's output data to confirm it 
registers the object's presence at the correct 
distance. 
- Verify that the reported distance is within the 
accuracy tolerance specified by the 
manufacturer's datasheet (e.g., ±5 cm). 

4. The sensor must provide data at a rate 
sufficient for the SLAM algorithm to perform 
real-time tracking (minimum 2.5 Hz). 

- Write a test script on the Raspberry Pi to 
read and timestamp incoming data packets 
from the LIDAR over the UART connection. 
- Calculate the frequency of complete 
360-degree scans over a 10-second interval. 
- Confirm that the average scan rate is 
consistently at or above 2.5 Hz. 

 

2.3.1 Drivetrain & Power Subsystem 
A LiPo battery feeds two paths: (1) high-current motor power directly to the dual H-bridge motor 
driver, and (2) the voltage regulators that generate the logic rails. The motor driver receives 
PWM inputs from the ESP32 (Control Subsystem) and outputs the corresponding drive currents 
to the DC motors on the omnidirectional wheels. The regulators supply 5 V logic to the motor 
driver, 5 V to the Raspberry Pi, and 3.3 V to both the ESP32 and the LIDAR sensor. The system 
“start” action enables these regulators so all downstream electronics power up in order. In 
summary, Drivetrain & Power provides the power rails for Control and Sensing, accepts PWM 
control from Control, and converts that into mechanical motion at the wheels. 
 

 
Motor Driver Inputs 
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Battery Protection and Voltage Regulators 

 
Separate Battery Protection and Voltage Regulators for Motor Power 

 

Requirements Verification 

1. The LiPo battery must provide a nominal 
voltage between 7.4V and 11.1V (2S or 3S) 
and have sufficient capacity to power the 
entire system (Raspberry Pi 4, ESP32-S3, 
two TB6612FNG drivers, four TT motors, and 
LIDAR sensor) for at least 15 minutes of 
continuous operation. 

- Fully charge the LiPo battery and connect it 
to the system. 
- Run the robot in a continuous operational 
mode, including driving the motors and 
running all processing units. 
- Time the duration from the start of the test 
until the battery's voltage drops to its safe 
cutoff level (e.g., ~3.3V per cell). 
- Confirm the operational time meets or 
exceeds 15 minutes. 
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2. The 5V voltage regulator must supply a 
stable 5V (±0.2V) to the Raspberry Pi 4 and 
the logic inputs of the two TB6612FNG motor 
controllers, even under motor load. 

- With the system fully powered on, probe the 
5V and GND test points corresponding to the 
regulator's output with a multimeter. 
- Confirm the measured voltage is in the 5.0V 
(±0.1V) range. 
- Connect an oscilloscope to the 5V rail to 
observe voltage stability and ripple while 
starting and stopping all four motors 
simultaneously. 

3. The 3.3V voltage regulator must supply a 
stable 3.3V (±0.1V) to the ESP32-S3 
microcontroller and the LIDAR sensor. 

- With the system powered on, probe the 
3.3V and GND test points corresponding to 
the regulator's output with a multimeter. 
- Confirm the measured voltage is in the 3.3V 
(±0.1V) range. 
- Connect an oscilloscope to the 3.3V rail to 
ensure there is no significant voltage drop or 
noise when other components are active. 

4. The two TB6612FNG motor controllers 
must correctly interpret PWM signals from the 
ESP32-S3 and supply sufficient current (up to 
1.2A continuous per channel) to drive four TT 
motors simultaneously. 

- Write a test firmware for the ESP32-S3 to 
generate PWM signals of varying duty cycles 
(e.g., 25%, 50%, 100%). 
- Probe the output channels of the motor 
controllers with an oscilloscope to verify that 
the output matches the commanded PWM 
signal. 
- Connect an ammeter in series with one of 
the motors and command it to run at full 
speed. Confirm the current draw is below 
1.2A. 
- Use an infrared thermometer to measure 
the temperature of the TB6612FNG ICs after 
5 minutes of continuous motor operation to 
ensure they are not overheating. 

5. The drivetrain, consisting of four TT motors 
and omnidirectional wheels, must be capable 
of executing forward, backward, lateral 
(strafe), and rotational movements in 
response to commands. 

- Develop a simple test program that allows 
for sending specific movement commands to 
the robot. 
- Command the robot to move forward 1 
meter and verify it moves in a straight line. 
- Command the robot to move backward 1 
meter and verify it moves in a straight line. 
- Command the robot to strafe left for 1 meter 
and verify it moves laterally with minimal 
rotation. 
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2.4 Software Design 

2.4.1 Bluetooth Communication 
The ESP32 microcontroller's integrated Bluetooth Low Energy (BLE) capabilities are leveraged 
for wireless communication between the RC car and the host computer's GUI. BLE is selected 
for its power efficiency, which is critical for a battery-operated device, and its robust range, 
ensuring a stable connection within a typical indoor environment. The Arduino IDE's core 
ESP32 libraries, including BLEDevice.h and BLEServer.h, will provide the framework for this 
communication link. These libraries facilitate the setup of the ESP32 as a BLE server, allowing it 
to define services and characteristics that the host computer client can interact with. 
 
To establish the communication protocol, the ESP32 is configured as a BLE server with a 
custom service. This service exposes two primary characteristics, each with a unique UUID, to 
handle the bidirectional flow of information: 

1.​ A write characteristic is defined for the host computer to send commands to the RC car. 
This allows the user to control the car's operation from the GUI. The commands are sent 
as short strings and include manual driving instructions (e.g., "FWD", "ROT_L") and 
high-level state changes (e.g., "START_AUTO", "E_STOP"). 

2.​ A notify characteristic is defined for the RC car to transmit the collected Wi-Fi signal data 
back to the host computer. After the autonomous mapping is complete, the ESP32 
compiles the list of (x, y, RSSI) data points into a single data structure, likely a JSON 
formatted string. It then sends this data payload to the subscribed host computer using 
notifications. This method is efficient for transmitting the complete dataset once it's ready 
for visualization. 

The operational flow begins with the ESP32 initializing its BLE server and advertising its custom 
service. The user then initiates a connection from the GUI on the host computer. Once 
connected, the GUI can send commands via the write characteristic. During the initial manual 
phase, this allows for real-time teleoperation to map the room's boundaries. When the user 
initiates the autonomous phase, the ESP32 switches modes and begins its programmed path. 
Upon completion, it transmits the final heat map data back to the GUI via the notify 
characteristic, which then parses the data and renders the final visualization [3] [7]. 
 

2.4.2 Signal Control 
The project's signal processing is managed by a two-tiered system, with the Raspberry Pi 
handling high-level computation and the ESP32 managing real-time hardware control. The 
Raspberry Pi processes complex LIDAR data to execute the SLAM algorithm and perform path 
planning, while the ESP32 interfaces directly with the motor driver, sensors, and the Bluetooth 
module. This division of labor ensures that time-sensitive tasks like motor control and data 
collection are not delayed by heavy computational loads. 
 
Motor and Drivetrain Control: The ESP32 is responsible for translating both manual and 
autonomous commands into precise electrical signals for the drivetrain. 
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●​ Manual Mode: When a command like "STRAFE_R" is received over Bluetooth, the 

ESP32 generates four unique Pulse-Width Modulation (PWM) signals. These signals are 
sent to the dual H-bridge motor driver, which in turn powers the four omnidirectional 
wheel motors with the correct speed and direction to achieve the desired lateral 
movement. 

●​ Autonomous Mode: The Raspberry Pi sends simple directional commands (e.g., "F", 
"B", "L") over a UART serial connection to the ESP32. The ESP32 receives these 
commands and generates the corresponding PWM signals in the same manner as in 
manual mode, executing the path calculated by the Raspberry Pi. 

 
LIDAR and SLAM Data Flow: The system's spatial awareness is achieved through a 
continuous flow of data between the sensing and control subsystems. 
 

●​ The LIDAR sensor continuously rotates and streams raw distance and angle data to the 
ESP32 via a UART connection. 

●​ The ESP32 parses this data stream into a clean format and immediately relays it to the 
Raspberry Pi over a second, dedicated UART connection. 

●​ The Raspberry Pi ingests this steady stream of spatial data, using it as the input for its 
SLAM algorithm to build the 2D map and continuously update the car's (x, y) coordinates 
in real-time. 

 
Wi-Fi and Coordinate Synchronization: During the autonomous phase, the ESP32 collects 
Wi-Fi signal strength data and correlates it with location data from the Raspberry Pi. As the 
Raspberry Pi executes its path-planning algorithm, it continuously sends the car's current (x, y) 
coordinate, as determined by the SLAM algorithm, to the ESP32. Concurrently, the ESP32's 
Wi-Fi module samples the Received Signal Strength Indicator of the target network at a fixed 
interval. Each time an RSSI measurement is taken, the ESP32 pairs it with the most recently 
received (x, y) coordinate and stores the (x, y, RSSI) triplet in an array in its memory, eventually 
sending the full array over bluetooth back to the host computer to be visualized [3] [8]. 

2.5 Tolerance Analysis 
 
The biggest obstacle we are facing is making sure each component gets enough current to 
function correctly, making sure that when all motors and chips are drawing their maximum, the 
system can handle it, and avoiding brownouts which is when instantaneous voltage drops below 
a tolerance during expected spikes like stalling or starting up. We will be using a 2-battery 
system, where the chips will be separated from the motors as a way to make sure that the chips 
can always get the current they need, regardless of motor draw.  
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The table below shows the components, path, and worst case current draw.  
 

 
 
Additionally from datasheet verification, we made sure each of the chips, capacitors, resistors, 
diodes, etc can all handle the voltage of the path it's on safely, as shown below on the table 
 
 

Path Parts Max current 
allowed 

Peak 
expect
ed 

Batteries -> 
V_bat 

Connector->fuse->
Pmos 

>10 A (Pmos) 9A 

V_bat-> 5V 
path 1 

5V buck-> Pi 3A 3A 

V_bat-> 5V 
path 2 

5V buck->motor 
controllers + Lidar 

10A peak 8.5 

5V->3V .6A .6A .6 

USB D+ and 
D- 

USB-C->diodes-22
ohm resistor-> 
ESP32 

n/a n/a 

 
Using worst case scenario for both current paths, our first one is  
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Component  Voltage Expected current draws 

ESP32 3.3V .5 A 

TB6612FNG logic (motor 
controllers) [9] 

3.3V path 1 .05A 

TB6612FNG logic (motor 
controllers) [9] 

5V path 2 4A (This is the 8 amps total 
from the motor divided by 2 
for two motor controllers) 

Raspberry Pi[10] 5V path 1 3A 

RPLidar 5V path 2 
 

.5 A (From experimental 
data) 

4x Motors 5V path 2 
 

8A 



Path 1, Chips: 
 
Iesp + IPi + 2* ITB6612FNG  =  Itotal1 

 
Path 2, Motors: 
 ILiDAR+ 4* Imotor = Itotal2 

 
 
With the Esp using .5 amps, both motor controllers using a combined .1 amps, the Raspberry Pi 
needing 3 amps, LiDAR needing at most .5 amps, and total expected motor current being 8.5 
amps, plugging those into the formula above: 
 
Path 1 maximum current is 0.5A + 3A + 0.1A = 3.6 amps 
 

Path 2 maximum current is 0.5A + 8A = 8.5 amps 
  
The current path for the chips, combining the 3.3V components (0.6A) and the 5V Raspberry Pi 
(3A), must sustain a peak draw of 3.6A. The separate higher current path is the most 
current-hungry, needing to supply a peak of 8.5A for the car motors and LiDAR motor. 
 
The next thing we need are batteries that can provide the current and voltage we need. 
Following the formula above, we are currently looking at Lipo batteries as the car can hold a 
maximum weight of 1.5 Kg including the LiDAR, PCB, batteries, and plates that came with the 
car. 
We are leaning towards 2 sets of 2 cell LiPo with 8.4 V when fully charged, with a capacity of 
5000mAh due to our weight constraints, with an ability to discharge >20 amps continuously, 
which gives us a lot of wiggle room. 
 
Since the car isn't enclosed, we are expecting that heat won't be much of a problem, but will 
require testing later as we put the car together with the components. 
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3 Cost and Schedule 
 

3.1 Cost Analysis 
 
The following table goes through the estimated cost of both labor and parts for the Autonomous 
WiFi Mapping Car. We assume a yearly salary for new graduates from computer engineering to 
be $118,752 [4] and new graduates from electrical engineering to be $88,321 [5], as those are 
the average salaries posted by the college of engineering. This comes out to hourly rates of $42 
and $57 per hour respectively. We estimate an average of 10 hours of work per week per 
member for 14 weeks. We also estimate the cost of using the machine shop to be $504 of labor 
for the semester [6]. Considering each team member and the machine shop, the total estimated 
cost of labor is $20,244. After our first PCB order, the parts listed in the table are what we have 
purchased for testing and creation of the car. We have totaled it out to be $290.82. When 
combining both labor and component costs, our total for production of the car is $20,534.82. 
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3.2 Schedule 
 
The following is our schedule of the work we have already completed and plan for further 
completion of the project in the coming weeks. 
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4 Ethics & Safety 

4.1 Ethics 
Our Commitment 

Our team is committed to upholding the highest standards of ethical conduct and ensuring the 
safety of all individuals and property throughout the development and operation of this project. 
We will be guided by the principles outlined in the IEEE and ACM Codes of Ethics and will 
adhere to all relevant safety regulations and standards. 
Ethical Considerations 

This project, while academic in nature, involves the collection and processing of environmental 
data, which necessitates a careful ethical review. 
 
Data Privacy and Security: The primary ethical concern is the project's data collection 
capability. The LIDAR sensor builds a detailed 2D map of a physical space, while the ESP32 
logs wireless network information. In the wrong context, this could infringe on an individual's 
reasonable expectation of privacy. Intentional misuse could turn the device into a tool for 
surreptitious mapping of private spaces. This directly invokes the ACM Code of Ethics 1.6 
("Respect privacy") and the IEEE Code of Ethics, Principle 1 (Integrity), which includes the 
commitment to protect the privacy of others. 
Mitigation Strategy: To prevent ethical breaches, this project will be conducted exclusively in 
controlled, non-sensitive university lab environments with the full consent of all persons present. 
The data collected (maps and RSSI values) will be used solely for academic purposes, will not 
be associated with any personal information, and will be securely deleted from all systems upon 
project completion. Data transfer from the car to the host computer will be handled responsibly 
to minimize the risk of interception [3]. 
 
Potential for Malicious Use: The hardware platform could be modified for malicious purposes. 
For example, the WiFi-enabled ESP32 could be reprogrammed from a passive signal-strength 
measurement tool into an active network snooping or attack tool. This possibility requires us to 
consider our responsibilities under ACM Code of Ethics 1.2 ("Avoid harm") and IEEE Code of 
Ethics, Clause IX: “to avoid injuring others, their property, reputation, or employment by 
false or malicious action.” 
Mitigation Strategy: Our team will ensure that the developed software is strictly limited to the 
project's stated goals of navigation and RSSI mapping. We will not develop or distribute any 
software functionalities that could facilitate network intrusion or privacy violations. The project's 
documentation will explicitly state its intended academic purpose and highlight the ethical 
considerations of its hardware capabilities. 
 
Intellectual Honesty: The project will leverage existing open-source software (e.g., SLAM on 
the Raspberry Pi). We will honor licenses and properly credit upstream contributors, aligning 
with ACM Code of Ethics 1.5 (“Respect the work required to produce new ideas, inventions, 
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creative works, and computing artifacts”) and the IEEE Code of Ethics, Clause VII (“…to credit 
properly the contributions of others”). 
Mitigation Strategy: Our team will diligently track the use of all third-party libraries and code. 
We will provide clear and accurate attribution for all open-source software used in our project 
reports, documentation, and presentations. 
 
Safety Analysis 

A thorough safety analysis has been conducted to identify and mitigate potential hazards 
associated with the project's hardware and operation. 
Electrical Safety: The primary electrical hazard stems from the use of a Lithium Polymer (LiPo) 
battery to power the device. LiPo batteries can pose a significant fire risk if they are punctured, 
short-circuited, or improperly charged. The custom PCB, which handles power distribution and 
signal routing, must be designed to prevent short circuits. 

●​ Standards and Regulations: We will ensure all electronic components are CE/UL 
certified where applicable. The wireless transmitters (ESP32, Raspberry Pi) are subject to 
FCC Part 15 regulations, and we will use pre-certified modules to ensure compliance. 

●​ Mitigation Strategy: A dedicated LiPo battery charger with cell-balancing and 
overcharge protection will be used at all times. The battery will be physically secured 
within the RC car's chassis to protect it from impact. The custom PCB design will include 
short-circuit protection (fuses) and will be thoroughly reviewed for proper component 
spacing and trace routing before fabrication. 

Mechanical Safety: The project is a mobile autonomous robot. Although small, it has the 
potential to collide with people or fragile objects, posing a minor physical hazard and a risk of 
property damage. 

●​ Mitigation Strategy: The car's autonomous operational speed will be deliberately limited 
in software to a slow walking pace. All testing and operation will occur in a designated, 
controlled lab area, cleared of obstacles and unnecessary personnel. The system will 
include a clear and accessible emergency stop mechanism, likely implemented through 
the Bluetooth control interface on the host computer. 

Laser Safety: The LIDAR sensor uses a laser to map its surroundings. Direct exposure to a 
high-power laser can cause severe eye damage. 

●​ Standards and Regulations: Laser safety is governed by the international standard IEC 
60825-1. 

●​ Mitigation Strategy: We will ensure the selected LIDAR unit is a Class 1 laser product, 
which is eye-safe under all normal conditions of use. We will verify this classification on 
the component's official datasheet before integration and operation. 

Campus Policy Compliance: As this is a university project, we are bound by the safety 
protocols of the University of Illinois at Urbana-Champaign and the Electrical and Computer 
Engineering department. 

●​ Mitigation Strategy: All project work will be conducted in authorized lab spaces and in 
full compliance with university and departmental safety guidelines. We will consult with 
our faculty advisor and lab technicians to ensure all procedures, particularly those related 
to battery charging and autonomous vehicle testing, are approved and follow established 
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protocols. 

4.2 Risk Analysis 
While the autonomous Wi-Fi mapping car is a low-voltage system, a thorough risk analysis is 
essential to ensure safe development and operation. 
 
Electrical Hazards 
The primary electrical risk comes from the Lithium Polymer battery used to power the car. LiPo 
batteries can present a significant fire hazard if they are punctured, short-circuited, or charged 
improperly. This risk is mitigated by using a dedicated LiPo charger with overcharge protection 
and physically securing the battery within the car's chassis to prevent impact damage. 
Additionally, the custom-designed PCB will incorporate short-circuit protection, such as fuses, to 
prevent component damage and potential fire. 
 
Mechanical Hazards 
As a mobile autonomous robot, the car presents a potential mechanical hazard. It could collide 
with people or fragile objects, leading to minor injury or property damage. To manage this risk, 
the car's autonomous speed will be limited in the software to a slow walking pace. All testing will 
be conducted in controlled lab environments cleared of obstacles, and a remote emergency 
stop will be implemented through the host computer's GUI to halt the vehicle instantly if needed. 
 
Laser Safety 
The LIDAR sensor, which is critical for mapping, uses a laser to measure distances. Direct 
exposure to certain classes of lasers can cause serious eye damage. This hazard will be 
mitigated by ensuring the selected LIDAR unit is a Class 1 laser product. Class 1 lasers are 
considered eye-safe under all normal operating conditions, eliminating the risk of injury. 
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