
ECE 445

SENIOR DESIGN LABORATORY

Design Document

Autonomous WiFi Mapping Car

Autonomous Car to Map WiFi Signal Strength in a Room

Team No. 2

JOSH POWERS
(jtp6@illinois.edu)

BEN MAYDAN
(bmaydan2@illinois.edu)

AVI WINICK
(awinick2@illinois.edu)

TA: Jason Jung
Professor: Arne Fliflet

October 13, 2025

1

mailto:jtp6@illinois.edu
mailto:bmaydan2@illinois.edu
mailto:awinick2@illinois.edu

Abstract

This document provides a detailed description of our project, Autonomous WiFi
Mapping Car, and the designs currently being implemented and tested. In this
document, we breakdown the physical and circuit design, the estimated cost and
timeline, as well as the ethics and safety of our project.

2

Contents
1 Introduction...4

1.1 Problem... 4
1.2 Solution..4
1.3 Visual Aid...5
1.4 High-Level Requirements.. 6

2 Design..7
2.1 Block Diagram... 7
2.2 Physical Design... 7
2.3 Functional Overview and Requirements..8

2.3.1 Base Subsystem...8
2.3.1 Control Subsystem..9
2.3.1 Sensing Subsystem.. 11
2.3.1 Drivetrain & Power Subsystem... 13

2.4 Software Design.. 16
2.4.1 Bluetooth Communication...16
2.4.2 Signal Control... 16

2.5 Tolerance Analysis...17
3 Cost and Schedule... 20

3.1 Cost Analysis... 20
3.2 Schedule..21

4 Ethics & Safety..22
4.1 Ethics... 22
4.2 Risk Analysis... 24

References... 25

3

1 Introduction
The following sections provide an overview of the problem we are focusing on, as well as our
solution to said problem.

1.1 Problem

The proliferation of wireless local area networks is fundamental to the operation of modern
homes, offices, and industrial environments, supporting everything from personal
communication to a vast ecosystem of IoT devices. However, the performance of these
networks is highly susceptible to the physical environment, with signal strength often varying
dramatically due to architectural features, furniture, and interference. The process of identifying
and mitigating areas of poor coverage, or "dead zones," is crucial for network optimization but
typically relies on a manual survey [3]. This method involves an individual walking through a
space with a signal-measuring device, which is a process that is not only time-consuming and
laborious but also yields inconsistent, low-resolution data. This leaves the placement of routers
and access points to guesswork rather than analysis [1].

This project directly addresses the inefficiencies and inaccuracies of manual WiFi mapping by
developing an autonomous mobile robot capable of generating a signal strength map of an
indoor environment. By integrating a LIDAR sensor with a SLAM algorithm, the system can build
an accurate 2D representation of an area and then navigate it autonomously along a calculated
path. As the robot traverses the space, it continuously records the WiFi Received Signal
Strength Indicator with an ESP32 module and correlates it with its precise location data. The
final dataset enables the creation of a detailed heat map, providing a clear visualization of the
WiFi coverage. This automated approach eliminates the manual labor and inconsistency of
traditional methods, offering a powerful tool for users to diagnose connectivity issues and
effectively optimize wireless infrastructure [2].

1.2 Solution

Our solution is an RC car designed to systematically map the WiFi signal strength within an
indoor environment and generate a visual heat map. The system is built on a custom RC car
platform featuring omnidirectional wheels, which allow for movement in any direction. The car is
equipped with a LIDAR sensor for spatial awareness, an ESP32 microcontroller to serve as the
low-level hardware controller, and a Raspberry Pi single-board computer to act as the "brain" for
SLAM and the path planning algorithm. All onboard electronics, including power distribution
from a LiPo battery and signal routing, will be integrated via a custom designed PCB. The
system's operation is divided into two distinct phases: a short initial manual-control phase to
allow the Raspberry Pi to build a 2D map of the environment, followed by a very long methodical
autonomous phase to collect WiFi signal data across the entire room [3].

4

The implementation hinges on a clear and robust communication hierarchy. During the initial
mapping phase, a user will control the vehicle from a custom GUI on a host computer, sending
command packets via Bluetooth to the ESP32 which will interface with a four-channel motor
controller. Simultaneously, the ESP32 will continuously process the raw data stream from the
LIDAR sensor and relay parsed distance and angle information to the Raspberry Pi over a
UART connection. The Raspberry Pi will then use a well-established SLAM algorithm to
construct the 2D map in real-time.

Once the user engages the autonomous mode via the GUI, the Raspberry Pi finalizes the map
and utilizes a path-planning algorithm, such as calculating the most efficient trajectory to cover
the entire known area. It then begins sending a sequence of simple directional commands to the
ESP32. As the ESP32 executes these movement commands, its onboard WiFi module is
tasked with continuously scanning for the network's Received Signal Strength Indicator
simultaneously correlating it with a (x, x) coordinate given by SLAM. After the planned path is
complete, the ESP32 transmits the collection of coordinate and RSSI data points back to the
host computer, which then renders the final heat map visualization for the user.

1.3 Visual Aid

5

1.4 High-Level Requirements

●​ A user must be able to manually drive the car from the host computer using Bluetooth,
with the car responding to all four directional commands within 500 milliseconds latency
from a distance of at most 5 meters.

●​ The car must drive a planned route of at least 5 meters and generate a 2D map that
visually identifies the primary boundaries of the testing area as well as the obstacles
around it subject to the physical constraints of the LIDAR sensor accuracy.

●​ The car must measure WiFi signal strength at a minimum of 5 distinct locations to
generate a heat map that visualizes the varying signal intensities using at least 3
different colors, correctly showing a lower signal strength at locations farther from the
WiFi router.

6

2 Design

2.1 Block Diagram

2.2 Physical Design

Gemini generated image of expected physical design (includes batteries, PCB, and lidar with
manufactured third layer on top) [3].

7

2.3 Functional Overview and Requirements

2.3.1 Base Subsystem
This subsystem hosts the user interface on the host computer and is responsible for starting the
system, teleoperating the vehicle during the manual-mapping phase, and displaying the final
Wi-Fi heat map. Functionally, it sends manual drive commands and a start signal from the GUI
over Bluetooth to the ESP32 in the Control Subsystem. It also acts as the receiver for the Wi-Fi
map data the ESP32 transmits back over Bluetooth once a run is complete. In short: Base ↔
Control is a Bluetooth control/telemetry link; Base does not directly touch sensors or motors, but
it initiates operation and consumes the final dataset for visualization.

Requirements Verifications

1. Must provide a graphical user interface
(GUI) for manual control of the RC car.

- Launch the GUI on the host computer.
- Press the on-screen controls for forward,
backward, and lateral movements.
- Confirm the RC car responds appropriately
to each command.

2. Must be able to establish and maintain a
stable Bluetooth connection with the ESP32

- From the GUI, initiate a Bluetooth pairing
sequence with the car's ESP32.
- Confirm that a stable connection is
established and acknowledged in the GUI.
- Maintain the connection without dropouts for
a continuous 5-minute period while sending
manual control commands.

3. Must be able to send a distinct command
to initiate the autonomous mapping phase.

- After establishing a connection, click the
"Begin Autonomous Mapping" button in the
GUI.
- Verify that the car stops responding to
manual control inputs.
- Confirm that the car begins to execute its
autonomous path-planning algorithm.

4. Must be able to receive and parse the final
(x, y, RSSI) data structure from the car.

- After the car completes its autonomous run,
it will transmit the collected data.
- Monitor the host computer to confirm the
receipt of a data packet.
- Verify that the received data structure can
be correctly parsed into a list of coordinates
and their corresponding signal strength
values.

5. Must render the received data as a visual
heat map of the mapped area

- Upon successful parsing of the (x, y, RSSI)
data, observe the GUI.
- Confirm that a 2D plot is generated.

8

- Verify that the plot is color-coded to
represent WiFi signal strength at different
locations, forming a complete heat map.

2.3.1 Control Subsystem
This subsystem contains the ESP32 microcontroller and the Raspberry Pi. The ESP32’s
functions are to (1) maintain the Bluetooth link with the Base Subsystem, receive manual
commands/start signals, and send Wi-Fi map data; (2) generate PWM drive signals to the dual
H-bridge motor driver in the Drivetrain & Power Subsystem; (3) parse incoming LIDAR
distance/angle data (UART) from the Sensing Subsystem and forward parsed data to the
Raspberry Pi; and (4) indicate when the final Wi-Fi map data is ready for the Base Subsystem.
The Raspberry Pi runs navigation: it ingests serial LIDAR data from the ESP32, performs
mapping/localization/path planning, and returns serial navigation commands to the ESP32 for
execution. Power-wise, the ESP32 receives 3.3 V and the Raspberry Pi 5 V from the Drivetrain
& Power Subsystem’s regulators. Thus, Control is the hub: Bluetooth to Base, UART to
Sensing, PWM to Drivetrain, and regulated power in from Drivetrain & Power [3].

ESP32 and IO pin connections

9

Raspberry Pi Header and Shutdown Button

Requirements Verification

1. The ESP32 must establish a Bluetooth
connection with the host computer to receive
manual control commands and transmit
collected WiFi map data.

- Write a test script on the host computer to
send a specific command string (e.g.,
"FORWARD").
- Use a serial monitor connected to the
ESP32 to confirm the exact string is received.
- Hardcode a sample data array of (x, y,
RSSI) tuples on the ESP32 and program it to
transmit this data upon receiving a "SEND"
command.
- Verify that the host computer successfully
receives the complete and unmodified data
array.

2. The Raspberry Pi must process incoming
LIDAR data and successfully execute a
SLAM algorithm to generate an accurate 2D
map of its environment.

- Place the vehicle in a room with known
dimensions (e.g., 4m x 5m).
- Manually drive the vehicle around the
perimeter of the room.
- Confirm that the generated map is
topologically correct subject to the constraints
of the LIDAR sensor (i.e. we cannot detect
obstacles that absorb light rays).

3. The ESP32 must translate high-level
directional commands into the appropriate
PWM signals for the motor driver to achieve
forward, backward, and lateral movements.

- Place the vehicle on a stand, allowing the
wheels to spin freely.
- Send a "forward" command from the host
GUI and visually confirm that all four wheels
spin in the correct direction for forward
motion.

10

- Repeat the test for "backward," "strafe left,"
and "strafe right" commands, verifying correct
wheel behavior for each.
- Probe the PWM output pins of the ESP32
with an oscilloscope to confirm that signals
are present and their duty cycles change in
response to different commands.

4. The subsystem must accurately sample
the WiFi RSSI and associate each
measurement with the vehicle's (x, y)
coordinates provided by the SLAM algorithm.

- Manually position the vehicle at a known
starting coordinate (e.g., (0,0)) in the mapped
area.
- Trigger a single data capture. Log the
resulting data point (x, y, RSSI) to the serial
monitor.
- Verify that the logged x and y coordinates
are within a reasonable tolerance (e.g., +/-
50cm) of the known position.
- Verify that the logged RSSI is a valid integer
(e.g., between -90 and -30 dBm).

2.3.1 Sensing Subsystem
This subsystem is the LIDAR sensor, powered at 5 V from the Drivetrain & Power Subsystem’s
regulators. When the RC car is started, the Control Subsystem initializes the LIDAR, after which
the sensor continuously streams UART distance/angle data to the ESP32 within the Control
Subsystem. The LIDAR has no direct connection to the Base Subsystem or the motor driver; its
single logical link is UART → ESP32, enabling the Raspberry Pi (via the ESP32) to build the
map and produce navigation commands.

11

LIDAR Header

Requirements Verification

1. The subsystem must be supplied with a
stable 5.0V +/- 0.1V.

- Ensure the LIDAR is connected to the 5.0V
output from the Drivetrain & Power
Subsystem's voltage regulator.
- Probe the LIDAR's VCC, VM, and GND pins
with a multimeter.
- Confirm the measured voltage is stable and
within the 4.9V to 5.1V range during
operation.

2. The LIDAR sensor must provide a
continuous 360-degree, 2D scan of its
environment.

- Power on the sensor and interface with it
from a host computer.
- Using visualization software, place a distinct
object at known angles (e.g., 0°, 90°, 180°,
270°) relative to the sensor.
- Confirm that the visualization displays the
object at the correct angular positions and
that the data stream covers the full
360-degree range without gaps.

3. The sensor's measurement range must be
at least 8 meters with reasonable accuracy.

- In a long hallway, place a flat object (e.g., a
large box) at a distance of 8 meters from the

12

sensor, measured with a tape measure.
- Check the sensor's output data to confirm it
registers the object's presence at the correct
distance.
- Verify that the reported distance is within the
accuracy tolerance specified by the
manufacturer's datasheet (e.g., ±5 cm).

4. The sensor must provide data at a rate
sufficient for the SLAM algorithm to perform
real-time tracking (minimum 2.5 Hz).

- Write a test script on the Raspberry Pi to
read and timestamp incoming data packets
from the LIDAR over the UART connection.
- Calculate the frequency of complete
360-degree scans over a 10-second interval.
- Confirm that the average scan rate is
consistently at or above 2.5 Hz.

2.3.1 Drivetrain & Power Subsystem
A LiPo battery feeds two paths: (1) high-current motor power directly to the dual H-bridge motor
driver, and (2) the voltage regulators that generate the logic rails. The motor driver receives
PWM inputs from the ESP32 (Control Subsystem) and outputs the corresponding drive currents
to the DC motors on the omnidirectional wheels. The regulators supply 5 V logic to the motor
driver, 5 V to the Raspberry Pi, and 3.3 V to both the ESP32 and the LIDAR sensor. The system
“start” action enables these regulators so all downstream electronics power up in order. In
summary, Drivetrain & Power provides the power rails for Control and Sensing, accepts PWM
control from Control, and converts that into mechanical motion at the wheels.

Motor Driver Inputs

13

Battery Protection and Voltage Regulators

Separate Battery Protection and Voltage Regulators for Motor Power

Requirements Verification

1. The LiPo battery must provide a nominal
voltage between 7.4V and 11.1V (2S or 3S)
and have sufficient capacity to power the
entire system (Raspberry Pi 4, ESP32-S3,
two TB6612FNG drivers, four TT motors, and
LIDAR sensor) for at least 15 minutes of
continuous operation.

- Fully charge the LiPo battery and connect it
to the system.
- Run the robot in a continuous operational
mode, including driving the motors and
running all processing units.
- Time the duration from the start of the test
until the battery's voltage drops to its safe
cutoff level (e.g., ~3.3V per cell).
- Confirm the operational time meets or
exceeds 15 minutes.

14

2. The 5V voltage regulator must supply a
stable 5V (±0.2V) to the Raspberry Pi 4 and
the logic inputs of the two TB6612FNG motor
controllers, even under motor load.

- With the system fully powered on, probe the
5V and GND test points corresponding to the
regulator's output with a multimeter.
- Confirm the measured voltage is in the 5.0V
(±0.1V) range.
- Connect an oscilloscope to the 5V rail to
observe voltage stability and ripple while
starting and stopping all four motors
simultaneously.

3. The 3.3V voltage regulator must supply a
stable 3.3V (±0.1V) to the ESP32-S3
microcontroller and the LIDAR sensor.

- With the system powered on, probe the
3.3V and GND test points corresponding to
the regulator's output with a multimeter.
- Confirm the measured voltage is in the 3.3V
(±0.1V) range.
- Connect an oscilloscope to the 3.3V rail to
ensure there is no significant voltage drop or
noise when other components are active.

4. The two TB6612FNG motor controllers
must correctly interpret PWM signals from the
ESP32-S3 and supply sufficient current (up to
1.2A continuous per channel) to drive four TT
motors simultaneously.

- Write a test firmware for the ESP32-S3 to
generate PWM signals of varying duty cycles
(e.g., 25%, 50%, 100%).
- Probe the output channels of the motor
controllers with an oscilloscope to verify that
the output matches the commanded PWM
signal.
- Connect an ammeter in series with one of
the motors and command it to run at full
speed. Confirm the current draw is below
1.2A.
- Use an infrared thermometer to measure
the temperature of the TB6612FNG ICs after
5 minutes of continuous motor operation to
ensure they are not overheating.

5. The drivetrain, consisting of four TT motors
and omnidirectional wheels, must be capable
of executing forward, backward, lateral
(strafe), and rotational movements in
response to commands.

- Develop a simple test program that allows
for sending specific movement commands to
the robot.
- Command the robot to move forward 1
meter and verify it moves in a straight line.
- Command the robot to move backward 1
meter and verify it moves in a straight line.
- Command the robot to strafe left for 1 meter
and verify it moves laterally with minimal
rotation.

15

2.4 Software Design

2.4.1 Bluetooth Communication
The ESP32 microcontroller's integrated Bluetooth Low Energy (BLE) capabilities are leveraged
for wireless communication between the RC car and the host computer's GUI. BLE is selected
for its power efficiency, which is critical for a battery-operated device, and its robust range,
ensuring a stable connection within a typical indoor environment. The Arduino IDE's core
ESP32 libraries, including BLEDevice.h and BLEServer.h, will provide the framework for this
communication link. These libraries facilitate the setup of the ESP32 as a BLE server, allowing it
to define services and characteristics that the host computer client can interact with.

To establish the communication protocol, the ESP32 is configured as a BLE server with a
custom service. This service exposes two primary characteristics, each with a unique UUID, to
handle the bidirectional flow of information:

1.​ A write characteristic is defined for the host computer to send commands to the RC car.
This allows the user to control the car's operation from the GUI. The commands are sent
as short strings and include manual driving instructions (e.g., "FWD", "ROT_L") and
high-level state changes (e.g., "START_AUTO", "E_STOP").

2.​ A notify characteristic is defined for the RC car to transmit the collected Wi-Fi signal data
back to the host computer. After the autonomous mapping is complete, the ESP32
compiles the list of (x, y, RSSI) data points into a single data structure, likely a JSON
formatted string. It then sends this data payload to the subscribed host computer using
notifications. This method is efficient for transmitting the complete dataset once it's ready
for visualization.

The operational flow begins with the ESP32 initializing its BLE server and advertising its custom
service. The user then initiates a connection from the GUI on the host computer. Once
connected, the GUI can send commands via the write characteristic. During the initial manual
phase, this allows for real-time teleoperation to map the room's boundaries. When the user
initiates the autonomous phase, the ESP32 switches modes and begins its programmed path.
Upon completion, it transmits the final heat map data back to the GUI via the notify
characteristic, which then parses the data and renders the final visualization [3] [7].

2.4.2 Signal Control
The project's signal processing is managed by a two-tiered system, with the Raspberry Pi
handling high-level computation and the ESP32 managing real-time hardware control. The
Raspberry Pi processes complex LIDAR data to execute the SLAM algorithm and perform path
planning, while the ESP32 interfaces directly with the motor driver, sensors, and the Bluetooth
module. This division of labor ensures that time-sensitive tasks like motor control and data
collection are not delayed by heavy computational loads.

Motor and Drivetrain Control: The ESP32 is responsible for translating both manual and
autonomous commands into precise electrical signals for the drivetrain.

16

●​ Manual Mode: When a command like "STRAFE_R" is received over Bluetooth, the

ESP32 generates four unique Pulse-Width Modulation (PWM) signals. These signals are
sent to the dual H-bridge motor driver, which in turn powers the four omnidirectional
wheel motors with the correct speed and direction to achieve the desired lateral
movement.

●​ Autonomous Mode: The Raspberry Pi sends simple directional commands (e.g., "F",
"B", "L") over a UART serial connection to the ESP32. The ESP32 receives these
commands and generates the corresponding PWM signals in the same manner as in
manual mode, executing the path calculated by the Raspberry Pi.

LIDAR and SLAM Data Flow: The system's spatial awareness is achieved through a
continuous flow of data between the sensing and control subsystems.

●​ The LIDAR sensor continuously rotates and streams raw distance and angle data to the
ESP32 via a UART connection.

●​ The ESP32 parses this data stream into a clean format and immediately relays it to the
Raspberry Pi over a second, dedicated UART connection.

●​ The Raspberry Pi ingests this steady stream of spatial data, using it as the input for its
SLAM algorithm to build the 2D map and continuously update the car's (x, y) coordinates
in real-time.

Wi-Fi and Coordinate Synchronization: During the autonomous phase, the ESP32 collects
Wi-Fi signal strength data and correlates it with location data from the Raspberry Pi. As the
Raspberry Pi executes its path-planning algorithm, it continuously sends the car's current (x, y)
coordinate, as determined by the SLAM algorithm, to the ESP32. Concurrently, the ESP32's
Wi-Fi module samples the Received Signal Strength Indicator of the target network at a fixed
interval. Each time an RSSI measurement is taken, the ESP32 pairs it with the most recently
received (x, y) coordinate and stores the (x, y, RSSI) triplet in an array in its memory, eventually
sending the full array over bluetooth back to the host computer to be visualized [3] [8].

2.5 Tolerance Analysis

The biggest obstacle we are facing is making sure each component gets enough current to
function correctly, making sure that when all motors and chips are drawing their maximum, the
system can handle it, and avoiding brownouts which is when instantaneous voltage drops below
a tolerance during expected spikes like stalling or starting up. We will be using a 2-battery
system, where the chips will be separated from the motors as a way to make sure that the chips
can always get the current they need, regardless of motor draw.

17

The table below shows the components, path, and worst case current draw.

Additionally from datasheet verification, we made sure each of the chips, capacitors, resistors,
diodes, etc can all handle the voltage of the path it's on safely, as shown below on the table

Path Parts Max current
allowed

Peak
expect
ed

Batteries ->
V_bat

Connector->fuse->
Pmos

>10 A (Pmos) 9A

V_bat-> 5V
path 1

5V buck-> Pi 3A 3A

V_bat-> 5V
path 2

5V buck->motor
controllers + Lidar

10A peak 8.5

5V->3V .6A .6A .6

USB D+ and
D-

USB-C->diodes-22
ohm resistor->
ESP32

n/a n/a

Using worst case scenario for both current paths, our first one is

18

Component Voltage Expected current draws

ESP32 3.3V .5 A

TB6612FNG logic (motor
controllers) [9]

3.3V path 1 .05A

TB6612FNG logic (motor
controllers) [9]

5V path 2 4A (This is the 8 amps total
from the motor divided by 2
for two motor controllers)

Raspberry Pi[10] 5V path 1 3A

RPLidar 5V path 2

.5 A (From experimental
data)

4x Motors 5V path 2

8A

Path 1, Chips:

Iesp + IPi + 2* ITB6612FNG = Itotal1

Path 2, Motors:
 ILiDAR+ 4* Imotor = Itotal2

With the Esp using .5 amps, both motor controllers using a combined .1 amps, the Raspberry Pi
needing 3 amps, LiDAR needing at most .5 amps, and total expected motor current being 8.5
amps, plugging those into the formula above:

Path 1 maximum current is 0.5A + 3A + 0.1A = 3.6 amps

Path 2 maximum current is 0.5A + 8A = 8.5 amps

The current path for the chips, combining the 3.3V components (0.6A) and the 5V Raspberry Pi
(3A), must sustain a peak draw of 3.6A. The separate higher current path is the most
current-hungry, needing to supply a peak of 8.5A for the car motors and LiDAR motor.

The next thing we need are batteries that can provide the current and voltage we need.
Following the formula above, we are currently looking at Lipo batteries as the car can hold a
maximum weight of 1.5 Kg including the LiDAR, PCB, batteries, and plates that came with the
car.
We are leaning towards 2 sets of 2 cell LiPo with 8.4 V when fully charged, with a capacity of
5000mAh due to our weight constraints, with an ability to discharge >20 amps continuously,
which gives us a lot of wiggle room.

Since the car isn't enclosed, we are expecting that heat won't be much of a problem, but will
require testing later as we put the car together with the components.

19

3 Cost and Schedule

3.1 Cost Analysis

The following table goes through the estimated cost of both labor and parts for the Autonomous
WiFi Mapping Car. We assume a yearly salary for new graduates from computer engineering to
be $118,752 [4] and new graduates from electrical engineering to be $88,321 [5], as those are
the average salaries posted by the college of engineering. This comes out to hourly rates of $42
and $57 per hour respectively. We estimate an average of 10 hours of work per week per
member for 14 weeks. We also estimate the cost of using the machine shop to be $504 of labor
for the semester [6]. Considering each team member and the machine shop, the total estimated
cost of labor is $20,244. After our first PCB order, the parts listed in the table are what we have
purchased for testing and creation of the car. We have totaled it out to be $290.82. When
combining both labor and component costs, our total for production of the car is $20,534.82.

20

3.2 Schedule

The following is our schedule of the work we have already completed and plan for further
completion of the project in the coming weeks.

21

4 Ethics & Safety

4.1 Ethics
Our Commitment

Our team is committed to upholding the highest standards of ethical conduct and ensuring the
safety of all individuals and property throughout the development and operation of this project.
We will be guided by the principles outlined in the IEEE and ACM Codes of Ethics and will
adhere to all relevant safety regulations and standards.
Ethical Considerations

This project, while academic in nature, involves the collection and processing of environmental
data, which necessitates a careful ethical review.

Data Privacy and Security: The primary ethical concern is the project's data collection
capability. The LIDAR sensor builds a detailed 2D map of a physical space, while the ESP32
logs wireless network information. In the wrong context, this could infringe on an individual's
reasonable expectation of privacy. Intentional misuse could turn the device into a tool for
surreptitious mapping of private spaces. This directly invokes the ACM Code of Ethics 1.6
("Respect privacy") and the IEEE Code of Ethics, Principle 1 (Integrity), which includes the
commitment to protect the privacy of others.
Mitigation Strategy: To prevent ethical breaches, this project will be conducted exclusively in
controlled, non-sensitive university lab environments with the full consent of all persons present.
The data collected (maps and RSSI values) will be used solely for academic purposes, will not
be associated with any personal information, and will be securely deleted from all systems upon
project completion. Data transfer from the car to the host computer will be handled responsibly
to minimize the risk of interception [3].

Potential for Malicious Use: The hardware platform could be modified for malicious purposes.
For example, the WiFi-enabled ESP32 could be reprogrammed from a passive signal-strength
measurement tool into an active network snooping or attack tool. This possibility requires us to
consider our responsibilities under ACM Code of Ethics 1.2 ("Avoid harm") and IEEE Code of
Ethics, Clause IX: “to avoid injuring others, their property, reputation, or employment by
false or malicious action.”
Mitigation Strategy: Our team will ensure that the developed software is strictly limited to the
project's stated goals of navigation and RSSI mapping. We will not develop or distribute any
software functionalities that could facilitate network intrusion or privacy violations. The project's
documentation will explicitly state its intended academic purpose and highlight the ethical
considerations of its hardware capabilities.

Intellectual Honesty: The project will leverage existing open-source software (e.g., SLAM on
the Raspberry Pi). We will honor licenses and properly credit upstream contributors, aligning
with ACM Code of Ethics 1.5 (“Respect the work required to produce new ideas, inventions,

22

creative works, and computing artifacts”) and the IEEE Code of Ethics, Clause VII (“…to credit
properly the contributions of others”).
Mitigation Strategy: Our team will diligently track the use of all third-party libraries and code.
We will provide clear and accurate attribution for all open-source software used in our project
reports, documentation, and presentations.

Safety Analysis

A thorough safety analysis has been conducted to identify and mitigate potential hazards
associated with the project's hardware and operation.
Electrical Safety: The primary electrical hazard stems from the use of a Lithium Polymer (LiPo)
battery to power the device. LiPo batteries can pose a significant fire risk if they are punctured,
short-circuited, or improperly charged. The custom PCB, which handles power distribution and
signal routing, must be designed to prevent short circuits.

●​ Standards and Regulations: We will ensure all electronic components are CE/UL
certified where applicable. The wireless transmitters (ESP32, Raspberry Pi) are subject to
FCC Part 15 regulations, and we will use pre-certified modules to ensure compliance.

●​ Mitigation Strategy: A dedicated LiPo battery charger with cell-balancing and
overcharge protection will be used at all times. The battery will be physically secured
within the RC car's chassis to protect it from impact. The custom PCB design will include
short-circuit protection (fuses) and will be thoroughly reviewed for proper component
spacing and trace routing before fabrication.

Mechanical Safety: The project is a mobile autonomous robot. Although small, it has the
potential to collide with people or fragile objects, posing a minor physical hazard and a risk of
property damage.

●​ Mitigation Strategy: The car's autonomous operational speed will be deliberately limited
in software to a slow walking pace. All testing and operation will occur in a designated,
controlled lab area, cleared of obstacles and unnecessary personnel. The system will
include a clear and accessible emergency stop mechanism, likely implemented through
the Bluetooth control interface on the host computer.

Laser Safety: The LIDAR sensor uses a laser to map its surroundings. Direct exposure to a
high-power laser can cause severe eye damage.

●​ Standards and Regulations: Laser safety is governed by the international standard IEC
60825-1.

●​ Mitigation Strategy: We will ensure the selected LIDAR unit is a Class 1 laser product,
which is eye-safe under all normal conditions of use. We will verify this classification on
the component's official datasheet before integration and operation.

Campus Policy Compliance: As this is a university project, we are bound by the safety
protocols of the University of Illinois at Urbana-Champaign and the Electrical and Computer
Engineering department.

●​ Mitigation Strategy: All project work will be conducted in authorized lab spaces and in
full compliance with university and departmental safety guidelines. We will consult with
our faculty advisor and lab technicians to ensure all procedures, particularly those related
to battery charging and autonomous vehicle testing, are approved and follow established

23

protocols.

4.2 Risk Analysis
While the autonomous Wi-Fi mapping car is a low-voltage system, a thorough risk analysis is
essential to ensure safe development and operation.

Electrical Hazards
The primary electrical risk comes from the Lithium Polymer battery used to power the car. LiPo
batteries can present a significant fire hazard if they are punctured, short-circuited, or charged
improperly. This risk is mitigated by using a dedicated LiPo charger with overcharge protection
and physically securing the battery within the car's chassis to prevent impact damage.
Additionally, the custom-designed PCB will incorporate short-circuit protection, such as fuses, to
prevent component damage and potential fire.

Mechanical Hazards
As a mobile autonomous robot, the car presents a potential mechanical hazard. It could collide
with people or fragile objects, leading to minor injury or property damage. To manage this risk,
the car's autonomous speed will be limited in the software to a slow walking pace. All testing will
be conducted in controlled lab environments cleared of obstacles, and a remote emergency
stop will be implemented through the host computer's GUI to halt the vehicle instantly if needed.

Laser Safety
The LIDAR sensor, which is critical for mapping, uses a laser to measure distances. Direct
exposure to certain classes of lasers can cause serious eye damage. This hazard will be
mitigated by ensuring the selected LIDAR unit is a Class 1 laser product. Class 1 lasers are
considered eye-safe under all normal operating conditions, eliminating the risk of injury.

24

References
The authors acknowledge that Google's Gemini and OpenAI's ChatGPT were used for
inspiration and to help flesh out initial ideas for this project.

[1] Haptic Networks. (n.d.). Common Mistakes In WiFi Network Design (And How To Avoid
Them). Haptic Networks. Retrieved September 13, 2025, from
https://haptic-networks.com/wifi/common-mistakes-in-wifi-network-design-and-how-to-avoid-the
m/

[2] Cisco Systems, “Understand Site Survey Guidelines for WLAN Deployment,” Cisco Support
Documentation, updated Nov. 14, 2023.
https://www.cisco.com/c/en/us/support/docs/wireless/5500-series-wireless-controllers/116057-sit
e-survey-guidelines-wlan-00.html

[3] Google, Gemini. [Online]. Available: https://gemini.google.com. Accessed: Sept. 19, 2025.

[4] The Grainger College of Engineering. (n.d.). Computer Engineering. University of Illinois at
Urbana-Champaign. Retrieved October 13, 2025.​

[5] The Grainger College of Engineering. (n.d.). Electrical Engineering. University of Illinois at
Urbana-Champaign. Retrieved October 13, 2025.

[6] University of Illinois at Urbana-Champaign. (n.d.). Service Rates. Retrieved October 13,
2025.

[7] Santos, Rui, and Sara Santos. “ESP32 Bluetooth Low Energy (BLE) on Arduino IDE.”
Random Nerd Tutorials, 11 Aug. 2024,
randomnerdtutorials.com/esp32-bluetooth-low-energy-ble-arduino-ide/. Accessed 12 Oct. 2025.

[8] Santos, Rui, and Sara Santos. “ESP32 UART Communication (Serial): Set Pins, Interfaces,
Send and Receive Data (Arduino IDE).” Random Nerd Tutorials, 5 Aug. 2024,
randomnerdtutorials.com/esp32-uart-communication-serial-arduino/. Accessed 12 Oct. 2025.

[9] Toshiba. (n.d.). TB6612FNG Dual Motor Driver Carrier Datasheet. SparkFun. Retrieved
October 12, 2025, from https://cdn.sparkfun.com/datasheets/Robotics/TB6612FNG.pdf

[10] Pi 4 maximum power consumption. (n.d.). Raspberry Pi Stack Exchange. Retrieved
October 12, 2025, from
https://raspberrypi.stackexchange.com/questions/114239/pi-4-maximum-power-consumption

25

https://haptic-networks.com/wifi/common-mistakes-in-wifi-network-design-and-how-to-avoid-them/
https://haptic-networks.com/wifi/common-mistakes-in-wifi-network-design-and-how-to-avoid-them/
https://www.cisco.com/c/en/us/support/docs/wireless/5500-series-wireless-controllers/116057-site-survey-guidelines-wlan-00.html
https://www.cisco.com/c/en/us/support/docs/wireless/5500-series-wireless-controllers/116057-site-survey-guidelines-wlan-00.html
https://gemini.google.com
http://randomnerdtutorials.com/esp32-bluetooth-low-energy-ble-arduino-ide/
http://randomnerdtutorials.com/esp32-uart-communication-serial-arduino/
https://cdn.sparkfun.com/datasheets/Robotics/TB6612FNG.pdf
https://raspberrypi.stackexchange.com/questions/114239/pi-4-maximum-power-consumption

	
	1 Introduction
	1.1 Problem
	1.2 Solution
	1.3 Visual Aid
	1.4 High-Level Requirements

	2 Design
	2.1 Block Diagram
	2.2 Physical Design
	2.3 Functional Overview and Requirements
	2.3.1 Base Subsystem
	2.3.1 Control Subsystem
	2.3.1 Sensing Subsystem
	2.3.1 Drivetrain & Power Subsystem

	2.4 Software Design
	2.4.1 Bluetooth Communication
	2.4.2 Signal Control

	2.5 Tolerance Analysis

	3 Cost and Schedule
	3.1 Cost Analysis
	3.2 Schedule

	4 Ethics & Safety
	4.1 Ethics
	4.2 Risk Analysis

	References

