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Introduction: 

1.​ Problem​  

Currently, suction systems in hospital operating rooms are left running unnecessarily for nearly 
35% of their total runtime, including periods such as overnight when no surgeries are taking 
place. This results in wasted energy, wear overtime on expensive vacuum equipment, and higher 
maintenance demands. Without any system to detect or alert staff when suction is left on, 
hospitals face unnecessary electricity consumption and shortened equipment lifespan. This 
creates a huge inefficiency that scales across entire healthcare systems. 

The financial and environmental impact of this waste is significant. Leaving suction on overnight 
alone contributes to approximately 8 billion kilograms of CO₂ emissions globally every year. 
This efficiency can cause hospitals to incur significant additional costs including: replacement 
vacuum systems that range from $100,000 to $750,000, filters that cost $2,500 to $10,000, and 
annual oil changes that add another $8,000. On top of that, hospitals spend an estimated $30,835 
each year just on electricity for their vacuum systems. Together, these demonstrate the urgent 
need for a solution that minimizes unnecessary suction runtime, reduces costs, and lessens 
environmental impact. 

2.​ Solution 

To tackle this problem, we propose a combined hardware and software solution designed to 
monitor and reduce unnecessary suction usage in operating rooms. At a high level, the system 
consists of two parts: pressure sensors installed on vacuum systems in each operating room and a 
software interface that collects real-time suction data and compares it with the operating room 
schedule. 

To implement this system, we will design a custom PCB that integrates a microcontroller and 
supporting components to capture suction pressure data and transmit it over Wi-Fi. A flow sensor 
coupled with a BMS will accomplish this. A Raspberry Pi module will receive and store the 
incoming data, serving as the central hub for processing. This module will also host the software 
component, which connects to the hospital’s internal network, via Epic, to access operating room 
schedules. By cross-referencing suction activity with scheduled procedures, the software can 
automatically identify where there is unnecessary suction use. A user interface displayed on a 
raspberry pi touch screen will then present this information in a visual format, displaying the 
status of each operating room and highlighting rooms with unnecessary suction in red. The 
display will be placed in a central location, ensuring that medical staff can easily monitor system 
status and respond promptly. 
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3.​ Visual Aid 
 

 
Figure 1 Addendum: This figure is from the Suction Sense class presentation [2]. Note we have 
moved to using a flow sensor, not a pressure transducer. 

 

4.​High-level requirements 
 

●​ The system must be able to handle input from at least 8 operating rooms simultaneously 
without data loss or low performance 

●​ The user interface must refresh visual indicators (e.g., red highlighting, OR status) within 
10 seconds of identifying unnecessary suction usage 

●​ The hardware sensors and transmission module must support continuous operation for 24 
hours without data transmission failures.​
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Design: 

 
Figure 2: System Block Diagram 
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Figure 3: Suction Sense Schematic 

 

Subsystem Overview: 

Sensors Subsystem: 
​ Our first subsystem is responsible for measuring the pressure of the vacuum which will 
be used to monitor real-time suction. It works by converting vacuum flow rate into an electrical 
signal readable. We will be using the AAFS ADJ Air Flow Paddle Switch for its compatibility 
with medical suction ranges, compact design for easy integration, and reliability in 
continuous-use environments. The sensor’s analog output provides a simple and accurate way to 
track suction status with minimal additional circuitry. The output of our flow rate sensor will 
then be stepped down to a safe operating voltage and imputed into our MCU. Another sensor we 
will be including is an Adafruit MINI PIR MOT motion sensor to monitor if anyone is in the 
room during OR operation. This is necessary in case we do not gain access to Operating Room 
data due to HIPAA or data compliance issues, so we can still determine if an operation is being 
conducted. We chose the Adafruit motion sensor as it has the output voltages for our MCU as 
well as the input voltage as our MCU.  
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The AAFS air flow paddle switch functions as a simple on/off indicator of air movement within 
the vacuum line[2]. As shown in the diagram, when sufficient air flow is present, the switch 
makes continuity between terminals 1 and 2. When no air flow is detected, continuity shifts to 
terminals 1 and 3. By monitoring which terminals are connected, our system can determine 
whether suction is active or lost. This binary signal can then be read by the MCU to verify 
real-time vacuum operation and trigger alerts if air flow drops below the required threshold. By 
supplying a standard 3.3 V signal to terminal 1, the presence of air flow can be detected by 
monitoring terminal 2 to our data pin. When the data pin reads a high voltage it indicates that air 
flow is present. 

 
Figure 4: AAFS Manual Switch Diagram 

 
To use the Adafruit MINI PIR motion sensor, the three pins are connected to power, ground, and 
a digital input on the MCU[1]. The sensor outputs a logic HIGH of 3.3 V when motion is 
detected. The onboard jumper allows switching between retriggering modes, while small 
potentiometers can adjust sensitivity and timeout, helping reduce false triggers and tune 
detection range. This will help us tune the motion sensor. 
 

Requirements Verification 

The flow rate sensor must return the correct 
state of flow with 99% accuracy. 

When producing a vacuum on our testing 
stand, connect a DMM between terminal 2 
(output) and terminal 1 (ground) of the AAFS 
paddle switch to measure its logic state. 
Compare the measured output voltage to the 
known on/off state of the vacuum pump over 
repeated cycles, recording results in a data 
table. Verification is achieved if the switch 
output matches the pump state in at least 99% 
of trials.  
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The flow rate sensor requires a 3.3 V supply, 
so we will supply it with a stable 3.3 V rail 
while conditioning its output for the MCU.   

We will use our DMM to measure input 
voltage being a stable 3.3 V from our rail. 
Then measure the output voltage of our 
switch on the data terminal, ensuring it is still 
a stable 3.3 V when the flow rate is changing. 
We will change flow rate from none to 
maximum hospital suction. 

The motion sensor shall be supplied with 5 V 
and will present a 3.0 V output signal 
compatible with the MCU input. 

Check the power rail the motion sensor is 
supplied with is 5 V, and its output pin shall 
be monitored with a DMM connected 
between signal and ground. The measured 
output voltage will be compared to observed 
room motion (person entering/leaving) over 
repeated trials, and results will be recorded in 
a data table. Verification is achieved if the 
output consistently switches to ~3.0 V during 
motion. 

 

Power Subsystem: 

 
The power subsystem is responsible for delivering continuous and reliable power to our board so 
that our electronic components such as our MCU and sensors can operate as intended. To 
enhance the reliability of this system, we decided to create a power system that made use of two 
power inputs, A 3.7v signal from a rechargeable 2032 Lithium Ion as well as 5v input form a DC 
barrel jack connector that will connect to a wall outlet. In order to make use of both inputs, we 
connect them to a Power Mux, allowing us to effectively operate in all of 3 different scenarios.  
 
Scenario 1: the 5v barrel jack is connected and the 3.7v coin cell is discharged, where the output 
is 5v.  
 
Scenario 2: The 3.7v coin cell is charged and the barrel jack is not connected where the output is 
the 3.7v signal.  
 
Scenario 3: both the barrel jack is connected and the 3.7v coin cell is charged, where the output 
is the 5v signal since it is a higher voltage.  
 
The only scenario where our Subsystem has no power is when the coin cell is discharged and the 
barrel jack is not connected.  
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To ensure seamless operation, we choose our Power Mux with the following requirement: at 
most a 10us switching time to avoid a transient that would brownout our MCU. This is why we 
choose the TPS2121[10], which is a Power Mux that is manufactured by Texas Instruments that 
makes use of an Ideal Diode O-ring mechanism to seamlessly transition between two power 
sources. Figure 5 below contains the specification information from the datasheet of this device, 
demonstrating that it more than fits our requirements. 

 
Figure 5: Power Mux Voltage Specifications[10] 

 
In order to operate our MCU and Sensors we require a 3.3v signal, the signal that our Power 
Mux emits is 5V, which does not currently meet our needs. To resolve this we will make use of a 
regulator that can step our voltage down to a safe operable voltage. To do this we have decided to 
use an AP62150 synchronous buck converter that will take the inputted signal from the Power 
Mux and step it down using this device by configuring the Vout using the correct component 
values according to the table below. 

 
Figure 6: Buck Converter Voltage Specifications 

 

Requirements Verification 
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●​ The 3.3 V rail must remain within 
±5% regulation to ensure stable MCU 
operation. 

Operate board in standard operation with each 
power source and verify with waveform from 
data sheet 

 

●​ The power subsystem must seamlessly 
switch to battery power via the BMS 
when the external 5 V supply is 
removed, with no loss of operation. 

Operate board with single power source and 
then disconnect power source to force power 
mux. Probe signals for Vin to Buck converter 
and Vout, and compare with datasheet to 
observe the transient by zooming in really 
close on time scale. Ensure operation is as 
expected per datasheet 

 

●​ Buck converter must be able to step 
down 5 to 3.3v with load current 
<200ma 

Measure current through Vout using a 
rogowski coil or current probe or through 
shunt resistor. Should be similar to iL in this 
graph from datasheet: 
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BMS Subsystem: 

One of our two power sources is a 3.7 V lithium-ion battery, which serves as a compact and 
energy-dense backup supply. To ensure safe and reliable operation under all conditions, a 
dedicated Battery Management System (BMS) has been integrated to monitor and protect the 
battery against unsafe states such as overcharging, over-discharging, and excessive temperature.  

The BMS consists of three primary components: the MCP73831-2-OT Li-ion charging circuit, a 
10 kΩ NTC thermistor, and a voltage sensing circuit. The MCP73831-2-OT manages the 
charging process when the 5 V barrel jack is connected, using a 
constant-current/constant-voltage (CC/CV) profile to safely charge the cell while providing 
built-in thermal regulation and charge termination. To ensure thermal safety, a 10 kΩ NTC 
thermistor is placed near the battery holder and connected to an MCU analog input, allowing 
continuous temperature monitoring and enabling the system to halt charging or discharging if the 
temperature falls outside safe limits. Additionally, a voltage divider circuit connected to the 
battery terminals feeds into another MCU ADC input to measure the battery voltage and estimate 
its state of charge, ensuring that the system can make intelligent power management decisions 
such as switching sources, issuing low-battery warnings, or preventing deep discharge. Together, 
these components provide a comprehensive and reliable BMS solution that ensures the 
lithium-ion battery operates safely, efficiently, and within optimal performance parameters. 

 
Figure 7: NTC Thermistor Voltage Characteristics[11] 
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Requirements Verifications 

The thermistor must be NTC 10 kohm to 
reduce power draw, but accurately provide 
temperature values. 
 

Probe thermistor voltage on an oscilloscope 
and do a verification test where we artificially 
heat up the board and see if the voltage across 
is reflected. 

Charging circuit should be able to accurately 
charge 3.7v li-ion battery. 

Probe battery as it is in the charging state, and 
verify with expected charge profile form 
datasheet shown below. 

 

Voltage Divider should be able to be stepped 
down to voltage that can safely read by MCU 
and data can be streamed with less than 5% 
error. 

Probe output of voltage divider to ensure 
voltage is within acceptable threshold to be 
read by GPIO pin.  

 
 

MCU Subsystem: 
 
The MCU subsystem provides system control and wireless connectivity for communication with 
the external software subsystem. It reads output data from the BMS to manage power switching 
between wall and battery sources for optimal energy efficiency, while monitoring sensor signals 
through its GPIO pins. We selected the ESP32-WROOM-32E-N4 for its powerful 
microcontroller core with integrated Wi-Fi, compact form factor, low cost, and proven reliability. 
Its built-in Wi-Fi enables direct communication with the Raspberry Pi and hospital networks 
without the need for an external BLE module, simplifying both hardware design and system 
integration[5]. 
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Figure 8: ESP32-WROOM-32E Pin Layout [5] 

 
The first function of the MCU subsystem is to monitor and record key values from the Battery 
Management System and power system. The MCU will read inputs from the thermistor and 
voltage divider connected to the BMS to ensure the battery is operating within safe limits for 
temperature and charge. In addition, the MCU will track which power source is currently active 
by monitoring the output of the power mux, allowing it to log transitions between wall power 
and the battery supply for reliability and energy efficiency. 
 
The MCU also monitors the AAFS flow sensor and the Adafruit motion sensor to detect 
instances of unnecessary suction within an operating room. While continuously polling and 
collecting this data, it streams the readings over Wi-Fi to the external software subsystem hosted 
on a Raspberry Pi, where the results are visualized through a custom user interface. To support 
this communication, an MQTT client will be implemented on the ESP32 to serve as a local 
message bus, enabling the MCU to periodically publish telemetry data that can be received and 
processed by the Raspberry Pi module. 
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Requirements Verification 

The MCU’s wifi streaming must ensure that 
≥99.9% of 1 Hz telemetry messages reach the 
Raspberry Pi over a 24-hour period. This 
ensures system reliability and minimal data 
loss during continuous operation. 

Create a custom Python MQTT subscriber 
with timestamps and run the MQTT client for 
24 hrs; count total vs. received messages on 
the Pi. Verify ≤86 missed of 86,400 total. 

The MCU must be capable of sampling the 
flow rate sensor output with a correct reading 
within a +-1-2% margin of error. 

Provide suction to the flow rate sensor and 
have the MCU sample the output and 
compare the recorded readings to the known 
state. Verification is achieved if the MCU’s 
readings stay within ±2% of the known flow 
state in repeated trials. 

The MCU must reconnect automatically if the 
WiFi link to the Raspberry Pi is lost. 

Disable the WiFi link between the MCU and 
Raspberry Pi, then restore it. Verify that the 
MCU automatically reconnects without user 
input and resumes data transmission. 
Verification is achieved if reconnection occurs 
reliably in repeated trials of various times 
such as, 1 second, 5 seconds, and 10 seconds. 

 

Raspberry Pi + LCD Display, and Software Subsystem: 

 
The Raspberry Pi 4 Model B paired with the Raspberry Pi 7″ Touchscreen Display will serve as 
the central monitoring and alert system. The Raspberry Pi was chosen for its quad-core 
processing power, I/O support, and strong software ecosystem, which will allow us to easily 
integrate with the Epic scheduling system[6]. The 7″ touchscreen will allow the module to be 
mounted in the hallway, providing an interface that allows staff to quickly view operating room 
suction status, with clear color-coded indicators and alerts. This combination also enables both 
visual and audio notifications when suction is unnecessarily left on, ensuring staff can respond 
promptly.  
 
The application will run on the Raspberry Pi and serve as the central hub for data processing and 
visualization. It will collect suction pressure readings from the ESP32 via its WiFi transceiver 
and compare this data against the hospital’s operating room schedule retrieved through the Epic 
system. If integration with the Epic system is not available, the operating room schedules will be 
entered manually. A color-coded interface on the Raspberry Pi touchscreen will clearly show 
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which operating rooms are in use, whether suction is active, and show where suction has been 
unnecessarily left on. 
 
To accurately receive and process data being streamed out from the ESP32, we will first run an 
MQTT broker service on the Pi to collect sensor telemetry data[3]. The ESP32 firmware will 
connect directly to the broker, sending flow and motion sensor data for processing. Next, the data 
will be inserted into a locally hosted SQLite database, that will additionally store operating room 
schedule data. 
 
A lightweight Crow web application written in C++ serves as the interface between the SQLite 
database and the user interface[4]. It periodically queries the database and exposes an HTTP 
endpoint that returns each operating room’s latest suction status in JSON format, while hosting a 
static dashboard on the Raspberry Pi’s 7″ touchscreen. The dashboard polls this endpoint every 
few seconds and displays color-coded tiles(green for normal use, red for unnecessary suction, 
and gray for no suction) allowing staff to quickly identify rooms with suction left on. This setup 
provides an automated, real-time monitoring system that updates continuously with no manual 
input required. 
 

 
Figure 9: Raspberry Pi Description and Capabilities from Datasheet 
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Figure 10 : Chart displaying the software application flow from our Suction Sense Module to 
Raspberry Pi 

 

Requirements Verification 

●​ The Suction Sense UI should update 
room tiles every ≤ 2 s. This will 
ensure our system provides clinically 
useful “near-real-time” feedback. 

●​ Publish via a change for an operating 
room to turn suction on from an off 
state.  

●​ Start stopwatch. 
●​ Observe tile color/text change from 

gray to green on the kiosk 
●​  Must update ≤ 2 s 

●​ The system should continue to serve 
the UI even if the MQTT broker is 
down. This ensures that the UI won’t 
crash even if one of the telemetry 
systems is down 

●​ Stop the MQTT service  
●​ Ensure that the software application 

still returns last known statuses (HTTP 
200) 
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Requirements Verification 

●​ Audible alert from Pi plays on 
transition to red and can be 
acknowledged  

●​ Trigger red 
●​  System plays alert sound once 
●​  Tap “Acknowledge” (or button) to 

silence the alert for the configured 
window. 

Cost and Analysis: 

Tolerance Analysis 
 
The most critical part of any system is what powers it, especially in this system with its intended 
applications in life saving environments. We believe the most susceptible part of design is the 
power system switch (power mux) that controls where we source the power for the entire board 
from. The intended purpose of this is to provide a dynamic response to when our primary power 
source (the 12v Lithium-ion battery) fails. The biggest issue that could arise from this is the 
potential transient voltage drop that would be seen across our power module as the LTC4412 
switches from the battery to the power source, which could brown out our MCU. 
 
The battery we are using is a 4000mAh 18650 lithium ion DC 12.6V this will feed into the 
LTC4412. When we enable the GPIO pin connected to the LTC4412 the primary FET will switch 
off, this will take approximately 13-22us, during this interval of switching the load will be 
supplied by Bulk capacitors the ESP32-wroom which operates at voltage 3.0-3.6, will brownout 
at voltages 2.9v-3.0v, to avoid this we will use 470uf Capacitances at the output(per data sheet 
recommendations) of the LTC4412 and the input of the Buck Converter(TPS629210), the 
TPS629210 is rated at a maximum load output of 1A, this means that during the switching time 
(22us worst case) we should not see an inrush current greater than this from the 470uf cap to 
account for our load this would cause a voltage drop across output of the buck converter. The 
buck converter operates at 85% efficiency (per the data sheet) so ideally input current to the 
MCU is 0.5A (Esp32 max load) x 3.3v(buck converter output)/(12v*0.85), which is equal to 
0.15A. 0.15A < 1A. In addition, using the capacitor differential model C (dv/dt) = I we can solve 
for the voltage dip across the output of the buck converter since C =470uf, dt(worst) = 22us, and 
I = 0.15. Rearranging our equation gives us dv = I*dt / C, so dv = 27mv, which is within 
tolerance because 3.3v - 27mv = 3.2v will not put us in the 2.9v -3.0v range on our MCU to 
brownout. 
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Cost Analysis 
According to the UIUC ECE Department statistics, the average EE graduate makes close to 
$90,000 annually, which comes out to about $43.27/hour. Assuming that each of us works 6 
hours a week to complete this project, we can estimate the cost of labor to be $43.27/hr x 2.5 x 
6hrs/week x 14 weeks, which comes out to $9086.7 per group member or $27260.10 total. For 
the cost of materials, we estimate it will come out to $264.03 to build our entire system. Thus, 
combining both the cost of labor and cost for parts, the grand total for our project will be 
$27,525.13. 
 
Parts List: 

Description Manufacturer Part Number Quantity Unit Cost Total Cost 

Boost Converter Texas 
Instruments 

TPS61222 1 $1.22 $1.22 

LCD Display Raspberry Pi SC1635 1 $81.25 $81.25 

Raspberry Pi Raspberry Pi Raspberry Pi 4 Model B 2019 1 $63.88 $63.88 

Airflow Sensor Dwyer AAFS 1 $106.05 $106.05 

Motion Sensor Adafruit HC-SR312 1 $3.95 $3.95 

MCU Espressif ESP32-WROOM-32E-N4 1 $4.84 $4.84 

Thermistor Murata NCP21XV103J03RA 1 $0.16 $0.16 

Buck Converter Diodes Inc. AP62150Z6-7 1 $0.31 $0.31 

Power Mux Texas 
Instruments 

TPS2121RUXR 1 $2.37 $2.37 

     Grand Total: 
$264.03 

 
Figure 11: The Parts List and Cost for Suction Sense 
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https://www.digikey.com/en/products/base-product/texas-instruments/296/TPS61222/68201
https://www.newark.com/raspberry-pi/sc1635/touchscreen-display-7-size-rpi/dp/16AM2468
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B07TC2BK1X?th=1
https://www.dwyeromega.com/en-us/adjustable-air-flow-paddle-switch-for-hvac-stainless-steel-vane/Model-AAFS/p/AAFS?GUID=018W000000X514QAC&utm_source=google&utm_medium=organic&utm_campaign=organicshopping&srsltid=AfmBOoqbp-PAey7KgTLCgEPHqXdfg-dM9DdNlmu0Hh8IJiQavr-jrOEfpyY
https://www.adafruit.com/product/4871?srsltid=AfmBOooQe2znGeaLRa1VJpDAMKgUp_qu3ncbZa7RJS4vFtzkTh1IYP0O
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32E-N4/11613148
https://www.digikey.com/en/products/detail/murata-electronics/NCP21XV103J03RA/588477
https://www.digikey.com/en/products/detail/diodes-incorporated/AP62150Z6-7/13161383
https://www.digikey.com/en/products/detail/texas-instruments/TPS2121RUXR/9859001


 

 

 

Schedule 
 

Week Task Person 

October 12th-18th Order parts for prototyping Jeremy 

Software Planning & 
Environment Setup, Basic 
App 

Jeremy, Everyone 

PCB Revision Suley 

Machine Shop Hugh 

October 19th-25th Power Subsystem bring-up 
and testing 

Suley 
 

BMS Subsystem bring-up 
and testing 

Suley 

MCU Subsystem & Firmware Jeremy 

Sensor & Peripheral 
Subsystem 

Hugh 

Test Wifi Message from 
ESP32 -> Pi 

Jeremy, Hugh 

October 26th-November 1st Assemble PCB Everyone 

2nd Breadboard Demo Everyone 

Design and implement 
SQLite DB 

Jeremy, Hugh 

PCB Testing Suley 

Design Enclosure for PCB Hugh 
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November 2nd-8th 3rd PCB Order Everyone 

PCB Revisions Suley 

Design UI for display, 
connect to Crow app 

Jeremy, Hugh 

Connect backend Crow app 
to DB 

Jeremy, Hugh 

November 9th-15th 4th PCB Order Everyone 

PCB Revisions Suley 

Software Integration testing Jeremy 

3D Print Encloser Hugh 

November 16th-22nd Integration Testing Everyone 

Final Software Testing Everyone 

November 23rd-29th Fix Minor Bugs Everyone 

Fall Break Everyone 

November 30th-December 
6th 

Final Demos Everyone 

 
Figure 12: Schedule for Suction Sense Group Members 

Ethics and Safety: 

Our project raises both ethical and safety considerations that we must address responsibly. 
Following the IEEE and ACM Codes of Ethics, we will avoid harm, be honest about our 
system’s limitations, and protect privacy[8]. The system is not meant to be a real-time controller, 
meaning it will not be in charge of turning off the suction. Its purpose is purely advisory, and we 
will make sure users understand this through clear labeling and timestamp updates on the UI. We 
will also minimize privacy risks by only using room numbers and schedules, not any personal 
health information. Because our system connects to hospital scheduling software, we will also 
treat the project as subject to HIPAA rules. That means we will limit access to the minimum 
necessary information, only displaying the operating room numbers and type operation without 
any individual patient information in order to maintain privacy. We will also secure our 
connections with either encryption or an authorization layer to ensure only authorized staff can 
view or interact with the data. 
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On the safety side, we must ensure our hardware does not interfere with existing medical gas 
systems, so we will design it to attach non-invasively and comply with hospital facility rules. We 
will also follow basic lab safety practices during development, such as using PPE while 
soldering and keeping prototypes separate from live medical systems until properly reviewed. By 
keeping these ethical and safety principles outlined by IEEE and ACM in mind, we can deliver a 
system that helps hospitals save energy and reduce emissions without creating new risks for 
patients or staff. 
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