

Suction Sense Project

ECE 445 Design Document- Fall 2025

Project #19

Jeremy Lee, Suleymaan Ahmad, Hugh Palin

Professor: Arne Fiflet

TA: Lukas Dumasius

1

Contents

Introduction………………………………………………………………………...3

Problem…………………………………………………………………………………………………….3

Solution…………………………………………………………………………………………………….3

 Visual Aid………………………………………………………………………………………………….4

Subsystem Overview………………………………………………………………6

Sensors Subsystem:…………………………………………………………………………………..6

Power Subsystem……………………………………………………………………………………….8

 BMS Subsystem……………………………………………………………………………….……….11

MCU Subsystem…………………………………………………………………………………….….12

Raspberry Pi + LCD Display, and Software Subsystem……………………………………….14

Tolerance and Cost Analysis……………………………………………………...18

Tolerance Analysis……………………………………………………………………………………...18

Cost Analysis………………………………………………………………………………………….....19

Schedule…………………………………………………………………………...20

Schedule……………………………………………………………………………………………….....20

Ethics and Considerations………………………………………………………...21

Ethics and Safety…………………………………………………………………………………….....21

References…………………………………………………………………………………………….....22

2

Introduction:

1.​ Problem​

Currently, suction systems in hospital operating rooms are left running unnecessarily for nearly
35% of their total runtime, including periods such as overnight when no surgeries are taking
place. This results in wasted energy, wear overtime on expensive vacuum equipment, and higher
maintenance demands. Without any system to detect or alert staff when suction is left on,
hospitals face unnecessary electricity consumption and shortened equipment lifespan. This
creates a huge inefficiency that scales across entire healthcare systems.

The financial and environmental impact of this waste is significant. Leaving suction on overnight
alone contributes to approximately 8 billion kilograms of CO₂ emissions globally every year.
This efficiency can cause hospitals to incur significant additional costs including: replacement
vacuum systems that range from $100,000 to $750,000, filters that cost $2,500 to $10,000, and
annual oil changes that add another $8,000. On top of that, hospitals spend an estimated $30,835
each year just on electricity for their vacuum systems. Together, these demonstrate the urgent
need for a solution that minimizes unnecessary suction runtime, reduces costs, and lessens
environmental impact.

2.​ Solution

To tackle this problem, we propose a combined hardware and software solution designed to
monitor and reduce unnecessary suction usage in operating rooms. At a high level, the system
consists of two parts: pressure sensors installed on vacuum systems in each operating room and a
software interface that collects real-time suction data and compares it with the operating room
schedule.

To implement this system, we will design a custom PCB that integrates a microcontroller and
supporting components to capture suction pressure data and transmit it over Wi-Fi. A flow sensor
coupled with a BMS will accomplish this. A Raspberry Pi module will receive and store the
incoming data, serving as the central hub for processing. This module will also host the software
component, which connects to the hospital’s internal network, via Epic, to access operating room
schedules. By cross-referencing suction activity with scheduled procedures, the software can
automatically identify where there is unnecessary suction use. A user interface displayed on a
raspberry pi touch screen will then present this information in a visual format, displaying the
status of each operating room and highlighting rooms with unnecessary suction in red. The
display will be placed in a central location, ensuring that medical staff can easily monitor system
status and respond promptly.

3

3.​ Visual Aid

Figure 1 Addendum: This figure is from the Suction Sense class presentation [2]. Note we have
moved to using a flow sensor, not a pressure transducer.

4.​High-level requirements

●​ The system must be able to handle input from at least 8 operating rooms simultaneously
without data loss or low performance

●​ The user interface must refresh visual indicators (e.g., red highlighting, OR status) within
10 seconds of identifying unnecessary suction usage

●​ The hardware sensors and transmission module must support continuous operation for 24
hours without data transmission failures.​

4

Design:

Figure 2: System Block Diagram

5

Figure 3: Suction Sense Schematic

Subsystem Overview:

Sensors Subsystem:
​ Our first subsystem is responsible for measuring the pressure of the vacuum which will
be used to monitor real-time suction. It works by converting vacuum flow rate into an electrical
signal readable. We will be using the AAFS ADJ Air Flow Paddle Switch for its compatibility
with medical suction ranges, compact design for easy integration, and reliability in
continuous-use environments. The sensor’s analog output provides a simple and accurate way to
track suction status with minimal additional circuitry. The output of our flow rate sensor will
then be stepped down to a safe operating voltage and imputed into our MCU. Another sensor we
will be including is an Adafruit MINI PIR MOT motion sensor to monitor if anyone is in the
room during OR operation. This is necessary in case we do not gain access to Operating Room
data due to HIPAA or data compliance issues, so we can still determine if an operation is being
conducted. We chose the Adafruit motion sensor as it has the output voltages for our MCU as
well as the input voltage as our MCU.

6

The AAFS air flow paddle switch functions as a simple on/off indicator of air movement within
the vacuum line[2]. As shown in the diagram, when sufficient air flow is present, the switch
makes continuity between terminals 1 and 2. When no air flow is detected, continuity shifts to
terminals 1 and 3. By monitoring which terminals are connected, our system can determine
whether suction is active or lost. This binary signal can then be read by the MCU to verify
real-time vacuum operation and trigger alerts if air flow drops below the required threshold. By
supplying a standard 3.3 V signal to terminal 1, the presence of air flow can be detected by
monitoring terminal 2 to our data pin. When the data pin reads a high voltage it indicates that air
flow is present.

Figure 4: AAFS Manual Switch Diagram

To use the Adafruit MINI PIR motion sensor, the three pins are connected to power, ground, and
a digital input on the MCU[1]. The sensor outputs a logic HIGH of 3.3 V when motion is
detected. The onboard jumper allows switching between retriggering modes, while small
potentiometers can adjust sensitivity and timeout, helping reduce false triggers and tune
detection range. This will help us tune the motion sensor.

Requirements Verification

The flow rate sensor must return the correct
state of flow with 99% accuracy.

When producing a vacuum on our testing
stand, connect a DMM between terminal 2
(output) and terminal 1 (ground) of the AAFS
paddle switch to measure its logic state.
Compare the measured output voltage to the
known on/off state of the vacuum pump over
repeated cycles, recording results in a data
table. Verification is achieved if the switch
output matches the pump state in at least 99%
of trials.

7

The flow rate sensor requires a 3.3 V supply,
so we will supply it with a stable 3.3 V rail
while conditioning its output for the MCU.

We will use our DMM to measure input
voltage being a stable 3.3 V from our rail.
Then measure the output voltage of our
switch on the data terminal, ensuring it is still
a stable 3.3 V when the flow rate is changing.
We will change flow rate from none to
maximum hospital suction.

The motion sensor shall be supplied with 5 V
and will present a 3.0 V output signal
compatible with the MCU input.

Check the power rail the motion sensor is
supplied with is 5 V, and its output pin shall
be monitored with a DMM connected
between signal and ground. The measured
output voltage will be compared to observed
room motion (person entering/leaving) over
repeated trials, and results will be recorded in
a data table. Verification is achieved if the
output consistently switches to ~3.0 V during
motion.

Power Subsystem:

The power subsystem is responsible for delivering continuous and reliable power to our board so
that our electronic components such as our MCU and sensors can operate as intended. To
enhance the reliability of this system, we decided to create a power system that made use of two
power inputs, A 3.7v signal from a rechargeable 2032 Lithium Ion as well as 5v input form a DC
barrel jack connector that will connect to a wall outlet. In order to make use of both inputs, we
connect them to a Power Mux, allowing us to effectively operate in all of 3 different scenarios.

Scenario 1: the 5v barrel jack is connected and the 3.7v coin cell is discharged, where the output
is 5v.

Scenario 2: The 3.7v coin cell is charged and the barrel jack is not connected where the output is
the 3.7v signal.

Scenario 3: both the barrel jack is connected and the 3.7v coin cell is charged, where the output
is the 5v signal since it is a higher voltage.

The only scenario where our Subsystem has no power is when the coin cell is discharged and the
barrel jack is not connected.

8

To ensure seamless operation, we choose our Power Mux with the following requirement: at
most a 10us switching time to avoid a transient that would brownout our MCU. This is why we
choose the TPS2121[10], which is a Power Mux that is manufactured by Texas Instruments that
makes use of an Ideal Diode O-ring mechanism to seamlessly transition between two power
sources. Figure 5 below contains the specification information from the datasheet of this device,
demonstrating that it more than fits our requirements.

Figure 5: Power Mux Voltage Specifications[10]

In order to operate our MCU and Sensors we require a 3.3v signal, the signal that our Power
Mux emits is 5V, which does not currently meet our needs. To resolve this we will make use of a
regulator that can step our voltage down to a safe operable voltage. To do this we have decided to
use an AP62150 synchronous buck converter that will take the inputted signal from the Power
Mux and step it down using this device by configuring the Vout using the correct component
values according to the table below.

Figure 6: Buck Converter Voltage Specifications

Requirements Verification

9

●​ The 3.3 V rail must remain within
±5% regulation to ensure stable MCU
operation.

Operate board in standard operation with each
power source and verify with waveform from
data sheet

●​ The power subsystem must seamlessly
switch to battery power via the BMS
when the external 5 V supply is
removed, with no loss of operation.

Operate board with single power source and
then disconnect power source to force power
mux. Probe signals for Vin to Buck converter
and Vout, and compare with datasheet to
observe the transient by zooming in really
close on time scale. Ensure operation is as
expected per datasheet

●​ Buck converter must be able to step
down 5 to 3.3v with load current
<200ma

Measure current through Vout using a
rogowski coil or current probe or through
shunt resistor. Should be similar to iL in this
graph from datasheet:

10

11

BMS Subsystem:

One of our two power sources is a 3.7 V lithium-ion battery, which serves as a compact and
energy-dense backup supply. To ensure safe and reliable operation under all conditions, a
dedicated Battery Management System (BMS) has been integrated to monitor and protect the
battery against unsafe states such as overcharging, over-discharging, and excessive temperature.

The BMS consists of three primary components: the MCP73831-2-OT Li-ion charging circuit, a
10 kΩ NTC thermistor, and a voltage sensing circuit. The MCP73831-2-OT manages the
charging process when the 5 V barrel jack is connected, using a
constant-current/constant-voltage (CC/CV) profile to safely charge the cell while providing
built-in thermal regulation and charge termination. To ensure thermal safety, a 10 kΩ NTC
thermistor is placed near the battery holder and connected to an MCU analog input, allowing
continuous temperature monitoring and enabling the system to halt charging or discharging if the
temperature falls outside safe limits. Additionally, a voltage divider circuit connected to the
battery terminals feeds into another MCU ADC input to measure the battery voltage and estimate
its state of charge, ensuring that the system can make intelligent power management decisions
such as switching sources, issuing low-battery warnings, or preventing deep discharge. Together,
these components provide a comprehensive and reliable BMS solution that ensures the
lithium-ion battery operates safely, efficiently, and within optimal performance parameters.

Figure 7: NTC Thermistor Voltage Characteristics[11]

12

Requirements Verifications

The thermistor must be NTC 10 kohm to
reduce power draw, but accurately provide
temperature values.

Probe thermistor voltage on an oscilloscope
and do a verification test where we artificially
heat up the board and see if the voltage across
is reflected.

Charging circuit should be able to accurately
charge 3.7v li-ion battery.

Probe battery as it is in the charging state, and
verify with expected charge profile form
datasheet shown below.

Voltage Divider should be able to be stepped
down to voltage that can safely read by MCU
and data can be streamed with less than 5%
error.

Probe output of voltage divider to ensure
voltage is within acceptable threshold to be
read by GPIO pin.

MCU Subsystem:

The MCU subsystem provides system control and wireless connectivity for communication with
the external software subsystem. It reads output data from the BMS to manage power switching
between wall and battery sources for optimal energy efficiency, while monitoring sensor signals
through its GPIO pins. We selected the ESP32-WROOM-32E-N4 for its powerful
microcontroller core with integrated Wi-Fi, compact form factor, low cost, and proven reliability.
Its built-in Wi-Fi enables direct communication with the Raspberry Pi and hospital networks
without the need for an external BLE module, simplifying both hardware design and system
integration[5].

13

Figure 8: ESP32-WROOM-32E Pin Layout [5]

The first function of the MCU subsystem is to monitor and record key values from the Battery
Management System and power system. The MCU will read inputs from the thermistor and
voltage divider connected to the BMS to ensure the battery is operating within safe limits for
temperature and charge. In addition, the MCU will track which power source is currently active
by monitoring the output of the power mux, allowing it to log transitions between wall power
and the battery supply for reliability and energy efficiency.

The MCU also monitors the AAFS flow sensor and the Adafruit motion sensor to detect
instances of unnecessary suction within an operating room. While continuously polling and
collecting this data, it streams the readings over Wi-Fi to the external software subsystem hosted
on a Raspberry Pi, where the results are visualized through a custom user interface. To support
this communication, an MQTT client will be implemented on the ESP32 to serve as a local
message bus, enabling the MCU to periodically publish telemetry data that can be received and
processed by the Raspberry Pi module.

14

Requirements Verification

The MCU’s wifi streaming must ensure that
≥99.9% of 1 Hz telemetry messages reach the
Raspberry Pi over a 24-hour period. This
ensures system reliability and minimal data
loss during continuous operation.

Create a custom Python MQTT subscriber
with timestamps and run the MQTT client for
24 hrs; count total vs. received messages on
the Pi. Verify ≤86 missed of 86,400 total.

The MCU must be capable of sampling the
flow rate sensor output with a correct reading
within a +-1-2% margin of error.

Provide suction to the flow rate sensor and
have the MCU sample the output and
compare the recorded readings to the known
state. Verification is achieved if the MCU’s
readings stay within ±2% of the known flow
state in repeated trials.

The MCU must reconnect automatically if the
WiFi link to the Raspberry Pi is lost.

Disable the WiFi link between the MCU and
Raspberry Pi, then restore it. Verify that the
MCU automatically reconnects without user
input and resumes data transmission.
Verification is achieved if reconnection occurs
reliably in repeated trials of various times
such as, 1 second, 5 seconds, and 10 seconds.

Raspberry Pi + LCD Display, and Software Subsystem:

The Raspberry Pi 4 Model B paired with the Raspberry Pi 7″ Touchscreen Display will serve as
the central monitoring and alert system. The Raspberry Pi was chosen for its quad-core
processing power, I/O support, and strong software ecosystem, which will allow us to easily
integrate with the Epic scheduling system[6]. The 7″ touchscreen will allow the module to be
mounted in the hallway, providing an interface that allows staff to quickly view operating room
suction status, with clear color-coded indicators and alerts. This combination also enables both
visual and audio notifications when suction is unnecessarily left on, ensuring staff can respond
promptly.

The application will run on the Raspberry Pi and serve as the central hub for data processing and
visualization. It will collect suction pressure readings from the ESP32 via its WiFi transceiver
and compare this data against the hospital’s operating room schedule retrieved through the Epic
system. If integration with the Epic system is not available, the operating room schedules will be
entered manually. A color-coded interface on the Raspberry Pi touchscreen will clearly show

15

which operating rooms are in use, whether suction is active, and show where suction has been
unnecessarily left on.

To accurately receive and process data being streamed out from the ESP32, we will first run an
MQTT broker service on the Pi to collect sensor telemetry data[3]. The ESP32 firmware will
connect directly to the broker, sending flow and motion sensor data for processing. Next, the data
will be inserted into a locally hosted SQLite database, that will additionally store operating room
schedule data.

A lightweight Crow web application written in C++ serves as the interface between the SQLite
database and the user interface[4]. It periodically queries the database and exposes an HTTP
endpoint that returns each operating room’s latest suction status in JSON format, while hosting a
static dashboard on the Raspberry Pi’s 7″ touchscreen. The dashboard polls this endpoint every
few seconds and displays color-coded tiles(green for normal use, red for unnecessary suction,
and gray for no suction) allowing staff to quickly identify rooms with suction left on. This setup
provides an automated, real-time monitoring system that updates continuously with no manual
input required.

Figure 9: Raspberry Pi Description and Capabilities from Datasheet

16

Figure 10 : Chart displaying the software application flow from our Suction Sense Module to
Raspberry Pi

Requirements Verification

●​ The Suction Sense UI should update
room tiles every ≤ 2 s. This will
ensure our system provides clinically
useful “near-real-time” feedback.

●​ Publish via a change for an operating
room to turn suction on from an off
state.

●​ Start stopwatch.
●​ Observe tile color/text change from

gray to green on the kiosk
●​ Must update ≤ 2 s

●​ The system should continue to serve
the UI even if the MQTT broker is
down. This ensures that the UI won’t
crash even if one of the telemetry
systems is down

●​ Stop the MQTT service
●​ Ensure that the software application

still returns last known statuses (HTTP
200)

17

Requirements Verification

●​ Audible alert from Pi plays on
transition to red and can be
acknowledged

●​ Trigger red
●​ System plays alert sound once
●​ Tap “Acknowledge” (or button) to

silence the alert for the configured
window.

Cost and Analysis:

Tolerance Analysis

The most critical part of any system is what powers it, especially in this system with its intended
applications in life saving environments. We believe the most susceptible part of design is the
power system switch (power mux) that controls where we source the power for the entire board
from. The intended purpose of this is to provide a dynamic response to when our primary power
source (the 12v Lithium-ion battery) fails. The biggest issue that could arise from this is the
potential transient voltage drop that would be seen across our power module as the LTC4412
switches from the battery to the power source, which could brown out our MCU.

The battery we are using is a 4000mAh 18650 lithium ion DC 12.6V this will feed into the
LTC4412. When we enable the GPIO pin connected to the LTC4412 the primary FET will switch
off, this will take approximately 13-22us, during this interval of switching the load will be
supplied by Bulk capacitors the ESP32-wroom which operates at voltage 3.0-3.6, will brownout
at voltages 2.9v-3.0v, to avoid this we will use 470uf Capacitances at the output(per data sheet
recommendations) of the LTC4412 and the input of the Buck Converter(TPS629210), the
TPS629210 is rated at a maximum load output of 1A, this means that during the switching time
(22us worst case) we should not see an inrush current greater than this from the 470uf cap to
account for our load this would cause a voltage drop across output of the buck converter. The
buck converter operates at 85% efficiency (per the data sheet) so ideally input current to the
MCU is 0.5A (Esp32 max load) x 3.3v(buck converter output)/(12v*0.85), which is equal to
0.15A. 0.15A < 1A. In addition, using the capacitor differential model C (dv/dt) = I we can solve
for the voltage dip across the output of the buck converter since C =470uf, dt(worst) = 22us, and
I = 0.15. Rearranging our equation gives us dv = I*dt / C, so dv = 27mv, which is within
tolerance because 3.3v - 27mv = 3.2v will not put us in the 2.9v -3.0v range on our MCU to
brownout.

18

Cost Analysis
According to the UIUC ECE Department statistics, the average EE graduate makes close to
$90,000 annually, which comes out to about $43.27/hour. Assuming that each of us works 6
hours a week to complete this project, we can estimate the cost of labor to be $43.27/hr x 2.5 x
6hrs/week x 14 weeks, which comes out to $9086.7 per group member or $27260.10 total. For
the cost of materials, we estimate it will come out to $264.03 to build our entire system. Thus,
combining both the cost of labor and cost for parts, the grand total for our project will be
$27,525.13.

Parts List:

Description Manufacturer Part Number Quantity Unit Cost Total Cost

Boost Converter Texas
Instruments

TPS61222 1 $1.22 $1.22

LCD Display Raspberry Pi SC1635 1 $81.25 $81.25

Raspberry Pi Raspberry Pi Raspberry Pi 4 Model B 2019 1 $63.88 $63.88

Airflow Sensor Dwyer AAFS 1 $106.05 $106.05

Motion Sensor Adafruit HC-SR312 1 $3.95 $3.95

MCU Espressif ESP32-WROOM-32E-N4 1 $4.84 $4.84

Thermistor Murata NCP21XV103J03RA 1 $0.16 $0.16

Buck Converter Diodes Inc. AP62150Z6-7 1 $0.31 $0.31

Power Mux Texas
Instruments

TPS2121RUXR 1 $2.37 $2.37

 Grand Total:
$264.03

Figure 11: The Parts List and Cost for Suction Sense

19

https://www.digikey.com/en/products/base-product/texas-instruments/296/TPS61222/68201
https://www.newark.com/raspberry-pi/sc1635/touchscreen-display-7-size-rpi/dp/16AM2468
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B07TC2BK1X?th=1
https://www.dwyeromega.com/en-us/adjustable-air-flow-paddle-switch-for-hvac-stainless-steel-vane/Model-AAFS/p/AAFS?GUID=018W000000X514QAC&utm_source=google&utm_medium=organic&utm_campaign=organicshopping&srsltid=AfmBOoqbp-PAey7KgTLCgEPHqXdfg-dM9DdNlmu0Hh8IJiQavr-jrOEfpyY
https://www.adafruit.com/product/4871?srsltid=AfmBOooQe2znGeaLRa1VJpDAMKgUp_qu3ncbZa7RJS4vFtzkTh1IYP0O
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32E-N4/11613148
https://www.digikey.com/en/products/detail/murata-electronics/NCP21XV103J03RA/588477
https://www.digikey.com/en/products/detail/diodes-incorporated/AP62150Z6-7/13161383
https://www.digikey.com/en/products/detail/texas-instruments/TPS2121RUXR/9859001

Schedule

Week Task Person

October 12th-18th Order parts for prototyping Jeremy

Software Planning &
Environment Setup, Basic
App

Jeremy, Everyone

PCB Revision Suley

Machine Shop Hugh

October 19th-25th Power Subsystem bring-up
and testing

Suley

BMS Subsystem bring-up
and testing

Suley

MCU Subsystem & Firmware Jeremy

Sensor & Peripheral
Subsystem

Hugh

Test Wifi Message from
ESP32 -> Pi

Jeremy, Hugh

October 26th-November 1st Assemble PCB Everyone

2nd Breadboard Demo Everyone

Design and implement
SQLite DB

Jeremy, Hugh

PCB Testing Suley

Design Enclosure for PCB Hugh

20

November 2nd-8th 3rd PCB Order Everyone

PCB Revisions Suley

Design UI for display,
connect to Crow app

Jeremy, Hugh

Connect backend Crow app
to DB

Jeremy, Hugh

November 9th-15th 4th PCB Order Everyone

PCB Revisions Suley

Software Integration testing Jeremy

3D Print Encloser Hugh

November 16th-22nd Integration Testing Everyone

Final Software Testing Everyone

November 23rd-29th Fix Minor Bugs Everyone

Fall Break Everyone

November 30th-December
6th

Final Demos Everyone

Figure 12: Schedule for Suction Sense Group Members

Ethics and Safety:

Our project raises both ethical and safety considerations that we must address responsibly.
Following the IEEE and ACM Codes of Ethics, we will avoid harm, be honest about our
system’s limitations, and protect privacy[8]. The system is not meant to be a real-time controller,
meaning it will not be in charge of turning off the suction. Its purpose is purely advisory, and we
will make sure users understand this through clear labeling and timestamp updates on the UI. We
will also minimize privacy risks by only using room numbers and schedules, not any personal
health information. Because our system connects to hospital scheduling software, we will also
treat the project as subject to HIPAA rules. That means we will limit access to the minimum
necessary information, only displaying the operating room numbers and type operation without
any individual patient information in order to maintain privacy. We will also secure our
connections with either encryption or an authorization layer to ensure only authorized staff can
view or interact with the data.

21

On the safety side, we must ensure our hardware does not interfere with existing medical gas
systems, so we will design it to attach non-invasively and comply with hospital facility rules. We
will also follow basic lab safety practices during development, such as using PPE while
soldering and keeping prototypes separate from live medical systems until properly reviewed. By
keeping these ethical and safety principles outlined by IEEE and ACM in mind, we can deliver a
system that helps hospitals save energy and reduce emissions without creating new risks for
patients or staff.

References

[1] PIR Motion Sensor Created by Lady Ada, ADA Fruit,
cdn-learn.adafruit.com/downloads/pdf/pir-passive-infrared-proximity-motion-sensor.pdf.
Accessed 13 Oct. 2025.

[2] Inc., Alpha Controls & Instrumentation. “AAFS - Adjustable Air Flow Paddle Switch.”
Alpha Controls & Instrumentation Inc., Dwyer Instruments,
www.alphacontrols.com/AAFS-Adjustable-Air-Flow-Paddle-Switch/model/7411. Accessed 12
Oct. 2025.

[3] “1 Introduction.” MQTT Version 5.0, docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.
Accessed 12 Oct. 2025.

[4] “Crowcpp.” Crow, crowcpp.org/master/. Accessed 12 Oct. 2025.

[5] ESP32-WROOM-32E ESP32-WROOM-32UE Datasheet Version 1.9,
www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_dat
asheet_en.pdf. Accessed 13 Oct. 2025.

[6] Raspberry Pi 4 Model B Published February 2025 Raspberry Pi Ltd,
datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf. Accessed 13 Oct. 2025.

[7] MCP14628 Data Sheet,
ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheet
s/MCP14628-Family-Data-Sheet-DS20002083.pdf. Accessed 13 Oct. 2025.

[8] IEEE, "IEEE Policies - Section 7-8 - IEEE Code of Ethics," [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 18-Sep-2025].

[9] Chao, Sharon. “Suction Sense Lecture Proposal.” Carle Illinois College of Medicine,
courses.grainger.illinois.edu/ece445/lectures/Fall_2025_Lectures/Lecture2/lecture_2_suction.pdf

22

[10] TPS212x Data Sheet
https://www.ti.com/lit/ds/symlink/tps2120.pdf?ts=1760390503520

[11] NCP21XV103J03RA Data Sheet
https://pim.murata.com/en-us/pim/details/?partNum=NCP21XV103J03RA

23

https://pim.murata.com/en-us/pim/details/?partNum=NCP21XV103J03RA

	1.​Problem​
	2.​Solution
	3.​Visual Aid
	Sensors Subsystem:
	Power Subsystem:
	BMS Subsystem:
	One of our two power sources is a 3.7 V lithium-ion battery, which serves as a compact and energy-dense backup supply. To ensure safe and reliable operation under all conditions, a dedicated Battery Management System (BMS) has been integrated to monitor and protect the battery against unsafe states such as overcharging, over-discharging, and excessive temperature.
	The BMS consists of three primary components: the MCP73831-2-OT Li-ion charging circuit, a 10 kΩ NTC thermistor, and a voltage sensing circuit. The MCP73831-2-OT manages the charging process when the 5 V barrel jack is connected, using a constant-current/constant-voltage (CC/CV) profile to safely charge the cell while providing built-in thermal regulation and charge termination. To ensure thermal safety, a 10 kΩ NTC thermistor is placed near the battery holder and connected to an MCU analog input, allowing continuous temperature monitoring and enabling the system to halt charging or discharging if the temperature falls outside safe limits. Additionally, a voltage divider circuit connected to the battery terminals feeds into another MCU ADC input to measure the battery voltage and estimate its state of charge, ensuring that the system can make intelligent power management decisions such as switching sources, issuing low-battery warnings, or preventing deep discharge. Together, these components provide a comprehensive
	MCU Subsystem:
	
	Raspberry Pi + LCD Display, and Software Subsystem:
	Cost and Analysis:
	Tolerance Analysis
	Cost Analysis
	
	
	
	Schedule
	Ethics and Safety:
	References

