Sound Asleep ECE 445 Design Document - Fall 2025

Project #1

Ambika Mohapatra, Adam Tsouchlos, Shub Pereira

Professor: Rakesh Kumar, Arne Fiflet

TA: Yan Weiman

Contents

1.	Intro	duction	3
	1.1	Problem	3
	1.2	Solution	3
	1.3	Visual Aid	4
	1.4	High-Level Requirements.	5
2.	Desig	y n	6
	2.1	Block Diagram	6
	2.2	Subsystem 1: EEG Module.	7
	2.3	Subsystem 2: Wireless Transmission and Power Management Board	10
	2.4	Subsystem 3: Sleep Stage Classification and Signal Processing	14
	2.5	Subsystem 4: Auditory Stimulation Interface.	16
3.	Tolera	nce Analysis	19
4.	Cost A	Analysis	21
5.	Sched	ule	23
6.	Ethics	and Safety	25
7.	Citatio	ons	27

1. Introduction

1.1 Problem

Sleep is one of the most vital components of human health, yet millions of people experience inadequate or poor-quality sleep. Insufficient slow-wave sleep (SWS) has been directly associated with reduced memory consolidation, weakened immune function, and increased risk of chronic illnesses such as diabetes and depression. Despite the availability of wearable sleep trackers, most commercial devices only monitor sleep rather than improving it. EEG-based devices that can detect sleep stages often suffer from discomfort during overnight use or lack the active intervention needed to enhance sleep quality.

Recent research demonstrates that auditory closed-loop stimulation which is the delivery of sound pulses precisely timed with brain slow waves. This can extend and amplify SWS leading to measurable improvements in cognitive performance and overall restfulness. However, existing prototypes are bulky and consumer options remain limited which often require proprietary hardware and offer limited flexibility for user comfort.

1.2 Solution

Sound Asleep addresses these limitations by introducing a comfortable, wireless, and real-time system designed to both detect and enhance slow-wave sleep. Our device consists of a lightweight EEG headband that records brain activity and transmits it via Bluetooth to a smartphone application. The mobile app analyzes EEG signals in real-time to detect SWS and delivers auditory stimuli i.e. pink noise bursts through the user's chosen audio device at precise moments in the sleep cycle. Unlike traditional wearables, Sound Asleep prioritizes comfort and

accessibility by allowing users to use their own headphones or speakers. By integrating closed-loop stimulation into a user-friendly system, this project bridges the gap between academic research and practical, consumer-ready sleep enhancement.

1.3 Visual Aid

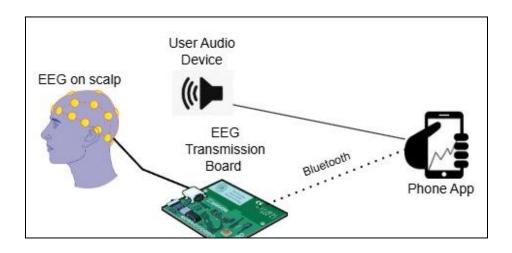


Figure 1. Visual representation of the Sound Asleep system.

Figure 2. OpenBCI EEG headband on user. Source: https://shop.openbci.com/products/openbci-eeg-headband-kit

EEG signals are captured through scalp electrodes integrated into a comfortable headband and transmitted via Bluetooth to a mobile phone app. The app processes these signals in real-time to detect slow-wave activity and triggers auditory stimulation through the user's chosen audio device (e.g., Bluetooth earbuds or speakers). This closed-loop design ensures synchronization between the brain's oscillations and sound delivery which enhances the depth and quality of slow-wave sleep.

1.4 High-Level Requirements

To ensure that Sound Asleep effectively detects and enhances slow-wave sleep, the following high-level requirements must be met:

- The wearable EEG headband must continuously record and transmit EEG signals overnight with sufficient signal fidelity to distinguish sleep stages, especially slow-wave sleep.
- The system must detect slow-wave oscillations in real-time with a maximum end-to-end latency of **200 ms** to properly synchronize auditory stimulation with brain activity.
- The mobile app must deliver auditory stimuli through a Bluetooth audio device with a timing accuracy of ±50 ms relative to the detected slow-wave peak.
- The system must operate comfortably and safely for at least **8 hours** on a single charge, ensuring suitability for overnight use.

2. Design

2.1 Block Diagram

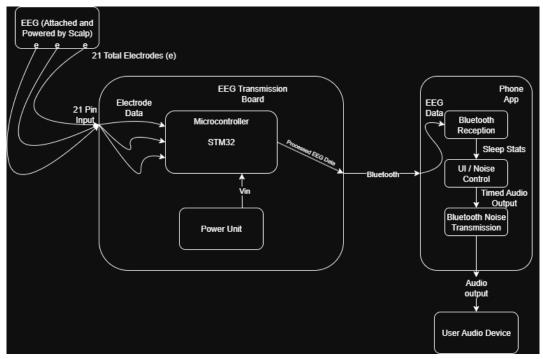


Figure 3. Block Diagram of Sound Asleep

The block diagram above illustrates the modular architecture of the *Sound Asleep* system, which consists of four main subsystems: the **EEG Module**, the **Wireless Transmission** and **Power Management Board**, the **Sleep Stage Processing Module**, and the **Auditory Stimulation**Interface.

The **EEG Acquisition Module** includes multiple scalp-attached electrodes integrated into a lightweight headband that record raw brain signals during sleep. These analog EEG signals are first amplified and filtered to remove noise, then passed into the **ADS1299**, a high-resolution, 24-bit, 8-channel analog-to-digital converter (ADC) specifically designed for biopotential measurements such as EEG. The ADS1299 plays a crucial role by digitizing the low-amplitude

EEG signals with exceptional precision and minimal noise, ensuring that even small variations in brain activity are accurately captured.

These digitized signals are then sent to the **STM32 microcontroller** on the Wireless

Transmission Board, which manages data packaging, Bluetooth Low Energy (BLE)

communication, and power regulation through the onboard battery management system (BMS).

The **Mobile Application Interface** receives this EEG data and processes it in real-time using algorithms such as YASA and CoSleep to detect slow-wave sleep activity. When a slow-wave pattern is identified, the app activates the **Auditory Stimulation Subsystem**, which delivers pink noise bursts via the user's Bluetooth audio device.

This closed-loop interaction—starting from EEG acquisition through ADS1299-based digitization to auditory feedback—ensures that sound stimuli are precisely synchronized with the user's brain oscillations. As a result, Sound Asleep enhances the depth and quality of slow-wave sleep while prioritizing user comfort, safety, and overnight usability.

2.2 Subsystem 1: EEG Module

We adopt the **OpenBCI EEG Headband Kit** as the physical interface for scalp measurement. This kit includes **8 snap-comb Ag/AgCl electrodes** (plus ear clips) and a headband strap to maintain consistent contact. While the kit itself does not include the analog front-end or ADC (these are parts of the OpenBCI boards), in our design we pair it with our analog amplification/filtering stage and the ADS1299 as the core ADC. The electrodes interface via snap leads to the amplification/anti-aliasing stage; after conditioning, signals go into the

ADS1299 for digitization. The headband mechanical design (straps, lead routing, snap connectors) helps reduce motion artifacts and supports strain relief.

This subsystem must deliver low-noise, stable EEG signals during overnight use, maintain electrode contact impedance within acceptable limits, and interface cleanly to the downstream electronics (power, digital, mechanical). It supports the higher-level goals of reliable sleep staging (HLR-1) and long-duration usability (HLR-4).

We must clearly define how electrode contact is ensured, how motion artifacts are mitigated, how lead-off detection works, and what tolerances we accept on signal quality.

Table 1. Requirements and verification of EEG Module.

Requirement	Verification			
R1. Electrode contact impedance.	Equipment: Impedance meter, resistor reference.			
Each electrode must maintain	Procedure: Attach headband on dummy head,			
impedance $\leq 50 \text{ k}\Omega$ (worst case) during	measure impedance per electrode every 30 s over			
stationary sleep and $\leq 100 \text{ k}\Omega$ during	10 min while simulating slight movement. Result:			
mild head motion (±20°) for 10	$\leq 50 \text{ k}\Omega \text{ static}; \leq 100 \text{ k}\Omega \text{ under motion}.$			
minutes.				
R2. Lead-off detection & flagging.	Equipment: Resistor decade box. Procedure:			
The system must detect electrode	Insert series resistor ramp (10 k Ω to 200 k Ω) and			
disconnection or impedance $> 100 \text{ k}\Omega$	time detection by firmware. Result:Flag arises			
within ≤ 2 seconds and flag the channel.	when impedance exceeds threshold ≤ 2 s.			

R3. Noise floor with headband. With	Equipment: Shielded enclosure, shorted				
snap leads connected and no biological	electrodes. Procedure: Short all inputs via				
input, the conditioning + ADC chain	headband wiring and log for 5 min; compute				
(via headband) must exhibit ≤ 1.2	noise. Result: $\leq 1.2 \mu\text{V}_{\text{rms}}$.				
μV_rms noise (0.5–40 Hz).					
R4. Baseline drift & offset. DC offset	Equipment: Long-term recording setup.				
drift (after initial settling) must be ≤ 50	Procedure: Record a no-input channel over 5				
μV over 5 min at 25 °C.	min; compute offset drift. Result: $\leq \pm 50~\mu V$ drift.				
R5. Artifact tolerance. During mild	Equipment: Motion rig, accelerometer,				
head movements (±20° yaw/pitch), the	oscilloscope. Procedure: Apply controlled head				
signal amplitude transient deflections	rotations, measure voltage spikes and return.				
should not exceed $\pm 200~\mu\text{V}$, and	Result: Transients $\leq \pm 200 \mu\text{V}$, stabilization $\leq 1 \text{s}$.				
recovery time to baseline < 1 s.					
R6. Motion artifact dropouts. During	Equipment: Human subject, logging				
normal overnight shifts (turning pillow,	environment. Procedure: Wear headband				
slight tossing), lead-off flags must occur	overnight in controlled environment; log lead-off				
< 1/min total across all channels.	events. Result: < 1 event per minute total.				

2.3 Subsystem 2: Wireless Transmission and Power Management Board

The Wireless Transmission and Power Management Board serves as the central hardware system of Sound Asleep, bridging the EEG Acquisition Module and the Sleep Stage Processing Subsystem. It is responsible for ensuring reliable data acquisition and low-latency wireless communication for processing along with efficient power regulation and system-level synchronization to ensure real-time performance of the closed-loop auditory stimulation process.

At the heart of this subsystem is the STM32U5A5VJT6Q ultra-low-power microcontroller, selected for its integrated DSP instructions, multiple SPI interfaces, and efficient active/sleep power modes optimized for biomedical wearables. This STM32 variant will allow us to handle significant onboard processing of signals while also maintaining power efficiency. The STM32 communicates directly with the ADS1299 EEG analog front end via SPI, collecting 24-bit digitized EEG samples from the 8 channels of the headband at 250 Hz, and applies amplification/filters and real-time slow-wave detection algorithms such as bandpass filtering, envelope extraction and adaptive thresholding. These samples are packetized and transmitted over Bluetooth Low Energy (BLE) using an ESP32 module, which provides low-latency communication compatible with modern smartphones. Additionally, when the STM32 detects an event such as a slow-wave up-phase, it timestamps the event and forwards a compact event packet to the ESP32 over a low-latency interconnect.

Maintaining low end-to-end latency in this subsystem is crucial to meeting the system's 200 ms tolerance window for auditory stimulation synchronization. The STM32 firmware implements a lightweight buffering protocol with real-time timestamping to minimize transmission delay and

jitter. On average, data acquisition and packaging contribute ~50 ms latency, and BLE transmission adds an additional 50–75 ms under standard conditions, resulting in a total subsystem delay well below the 100 ms target. This ensures that slow-wave detection and auditory feedback remain tightly phase-locked within the up-state window of the user's slow-wave sleep.

Power to our system is supplied as a 12V DC source. As part of our initial analysis of the components required, components such as the microcontroller and the ADC require an input limited between 2.7 to 3.3V. As such we are using a 12V to 3.3V high-efficiency low-dropout step-down voltage regulator that supplies the STM32 and ADS1299 a clean, noise-free power rail. The system supports continuous 8-hour operation, with typical current draw of \sim 45 mA during active data transmission and <100 μ A in deep-sleep mode when idle.

The board integrates power monitoring via an I2C fuel gauge to report real-time battery levels to the mobile app and automatically initiates a low-power shutdown when the battery voltage drops below 3.0 V. Combined with proper EMI shielding, these design elements ensure stable performance, long operational life, and minimal interference with EEG signal acquisition.

This subsystem fulfills HLR-1 (high-fidelity EEG transmission), HLR-2 (low-latency, phase-locked operation), and HLR-4 (overnight power stability), providing the foundational link between sensing and stimulation within the closed-loop system.

Table 2. Requirements and verification of Wireless Transmission and Power Management Board

Requirement	Verification

R1. Wireless Throughput	Equipment: Impedance meter, resistor reference.				
The BLE link shall transmit 8 channels of	Procedure: Attach headband on dummy head,				
24-bit EEG data sampled at 250 Hz (≈2	measure impedance per electrode every 30 s over				
kB/s) continuously for 8 hours with <1%	10 min while simulating slight movement. Result:				
packet loss. mild head motion (±20°) for	$\leq 50 \text{ k}\Omega \text{ static}; \leq 100 \text{ k}\Omega \text{ under motion}.$				
10 minutes.					
R2. Transmission Latency (Critical for	Equipment: Resistor decade box. Procedure:				
Closed-Loop Timing) — The total delay	Insert series resistor ramp (10 k Ω to 200 k Ω) and				
from ADC sample acquisition to packet	time detection by firmware. Result:Flag arises				
arrival at the processing subsystem shall	when impedance exceeds threshold ≤ 2 s.				
not exceed 100 ms (mean \leq 75 ms).					
R3. Jitter Stability — Variability in	Equipment: Shielded enclosure, shorted				
transmission latency shall be ≤±10 ms	electrodes. Procedure: Short all inputs via				
over continuous 1-hour streaming.	headband wiring and log for 5 min; compute noise.				
	Result: $\leq 1.2 \ \mu V_rms$.				
R4. Power Efficiency — The subsystem	Equipment: Long-term recording setup.				
shall draw ≤ 50 mA during active	Procedure: Record a no-input channel over 5 min;				
transmission and $\leq 100 \mu A$ in deep-sleep	compute offset drift. Result: $\leq \pm 50 \mu V$ drift.				
mode.					

R5. Battery Life — The system shall	Equipment: Motion rig, accelerometer,			
operate continuously for ≥ 8 hours on a	oscilloscope. Procedure: Apply controlled head			
1000 mAh Li-Ion cell.	rotations, measure voltage spikes and return.			
	Result: Transients $\leq \pm 200 \mu V$, stabilization $\leq 1 s$.			
R6. Power Regulation Stability — 3.3 V	Equipment: Human subject, logging environment.			
regulated output shall remain within ±2%	Procedure: Wear headband overnight in			
of nominal under 0–100 mA load.	controlled environment; log lead-off events.			
	Result: < 1 event per minute total.			
R7. EMI Noise Isolation — Digital	Equipment: LCR meter.			
transmission noise coupled to the analog	Procedure: Measure capacitance from snap-lead			
ground shall be $<5 \mu V_rms$ (0.5–40 Hz).	pair.			
	Result: < 100 pF.			

Table 2. Requirements and Verification of Wireless Transmission and Power Management Board

2.4 Subsystem 3: Sleep Stage Classification and Signal Processing

The **Sleep Stage Processing Subsystem** is a web-based application responsible for classifying EEG data into sleep stages, detecting slow-wave oscillations, and coordinating real-time auditory stimulation. It integrates two major open-source toolkits: **YASA** (**Yet Another Spindle Algorithm**) for automatic sleep staging and slow-wave/spindle detection, and **CoSleep**, which provides closed-loop stimulation capabilities and simulation/testing environments for OpenBCI-based EEG.

The app is implemented in **Python (Flask + YASA + MNE)** for backend data processing, and a **React web interface** for visualization, enabling remote operation via browser. The backend ingests Bluetooth-transmitted EEG data (24-bit, 250 Hz sampling) in EDF+ format, performs preprocessing (bandpass 0.1–40 Hz, artifact rejection, downsampling), and classifies each 30 s epoch into Wake, N1, N2, N3, or REM using YASA's trained feature set (spectral ratios, entropy, spindle density). Detected **slow-wave up-phases** trigger pink-noise playback commands with < 200 ms total latency to the auditory subsystem.

This subsystem directly fulfills high-level requirements HLR-1 (accurate sleep-stage detection), HLR-2 (real-time phase-locked stimulation), and HLR-3 (data logging and user feedback). It defines interfaces to:

- Wireless Transmission Board (input: EDF/BDF stream over BLE/Wi-Fi)
- Auditory Stimulation Interface (output: JSON socket event for noise trigger) and the
 User Interface (REST endpoint for visualization and manual override)

Table 3. Requirements and verification of Sleep Stage Classification and Signal Processing.

Requirements	Verification		
R1. Classification Accuracy — The	Equipment: OpenBCI or PhysioNet dataset		
system shall achieve ≥ 80% epoch-level	with labeled hypnogram. Procedure: Run		
accuracy in automatic sleep staging	YASA classifier; compare predicted vs.		
compared to expert-scored PSG data.			

	labeled epochs using Cohen's κ . Result: $\kappa \ge$			
	0.75 , accuracy $\geq 80\%$.			
R2. Detection Latency — From EEG event	Equipment: Oscilloscope, EEG simulator,			
(slow-wave peak) to audio trigger, total	timestamp logging. Procedure: Inject			
closed-loop latency shall be ≤ 200 ms, with	simulated slow wave, measure delay between			
$mean \le 150 \text{ ms.}$	EEG peak and output trigger. Result: ≤ 200			
	ms.			
R3. Signal Throughput — The web app	Equipment: BLE simulator, logging server.			
shall process and visualize 8 channels	Procedure: Stream dummy EDF data			
sampled at 250 Hz (2 kB/s) continuously for	overnight; monitor dropped packets and			
8 hours without buffer overflow or > 1%	memory usage. Result: Data loss < 1%, no			
data loss.	crash.			
R4. Stimulation Timing Precision —	Equipment: EEG simulator + speaker latency			
Pink-noise burst shall be issued within ±50	logger. Procedure: Inject synthetic			
ms of targeted slow-wave up-phase.	oscillations and trigger stimuli; measure			
	temporal deviation. Result: ±50 ms tolerance			
	met.			

2.5 Subsystem 4: Auditory Stimulation Interface

The Auditory Stimulation Interface serves as the final stage in the closed-loop sleep enhancement system, responsible for delivering precisely timed pink-noise bursts that align with the user's slow-wave sleep cycle. It receives trigger commands from the Sleep Stage Classification and Signal Processing Subsystem and plays short (≈50 ms) pink-noise sounds through a Bluetooth-connected audio device or, by default, the smartphone speaker if no device is paired.

This subsystem is intentionally designed for **maximum flexibility and user comfort**, allowing the user to select any Bluetooth-compatible playback device, such as in-ear headphones, sleep earbuds, or bedside speakers. While in-ear devices are expected to provide the most effective stimulation due to improved acoustic coupling, broader compatibility ensures accessibility and personalization for different sleep environments.

Functionally, the subsystem must ensure **low-latency playback** (< 200 ms total) maintaining the effectiveness of closed-loop stimulation. Playback commands are handled using the smartphone's native audio APIs for deterministic timing, and each playback event returns an acknowledgment to the web-based processing system for synchronization and logging.

Although this subsystem requires no new hardware development, **performance testing across various Bluetooth devices** is critical to verify consistent timing, volume control (55 dB SPL), and reliability over extended use. In essence, the Auditory Stimulation Interface bridges advanced EEG analysis with a user-friendly auditory experience, completing the loop that enables real-time, phase-locked sleep modulation.

Table 4. Requirements and verification of Auditory Stimulation Interface.

Requirements	Verification			
R1. Audio Latency — The system will	Equipment: High Speed Audio Logger,			
playback audio within 200 ms of a pink	Oscilloscope Procedure: Trigger multiple			
noise burst being triggered.	pink noise commands with sending			
	timestamps. Record audio playback time with			
	accurate timestamp. Result: Timestamp			
	difference of less than 200 ms.			
R2. Battery Life — The system will be	Equipment: Long duration playback test			
responsive for at least 8 hours on a single	Procedure: Test a long duration of pink noise			
charge	playback over 10 hours and record when the			
	device lost connection with the app. Result:			
	The device retains its battery over at least 8			
	hours.			
R3. Device Activity — The device will be	Equipment: Inactive Audio Test Procedure:			
ready and active for at least 8 hours of	Pair the device with the phone and begin			
charge. This will require the app to maintain	sleep. See if the device remains active over its			
device activity even when no noise is active.	full battery life period. Result: The device			
	remains active with the same audio latency as			
	R1.			
R4. Acknowledgement Feedback — The	Equipment: Web app audio playback logger			
device sends an acknowledgement that the	Procedure: Play pink noise stimulation to			

pink noise was played within 100 ms of the	audio device and wait for acknowledgement.			
start of playback.	Result: Receive an acknowledgement in less			
	than 100 ms after audio playback is active.			
R5. Audio Intensity — The device outputs	Equipment: Sound Level Meter or in-ear			
audio at a loudness of approximately 55 dB	microphone. Procedure: Play pink noise			
SPL with diminishing intensity if the user	stimulation to audio device continuously			
appears to be exiting slow wave sleep.	while measuring loudness. After a short			
	period, the app will direct the device to			
	decrease in intensity and the loudness will			
	again be measured. Result: Audio playback is			
	measured to be within ±5 dB of 55 dB SPL			
	with decreasing intensity when the app directs			
	it to do so.			

3. Tolerance Analysis

The most important tolerance within our closed loop system is our latency between the sensed EEG signal and the transmitted pink noise signal so that it occurs in phase with the slow wave sleep. Sources say that slow waves occur at a frequency of less than 1 Hz. We then would expect that we have 500 ms of up state slow wave sleep. The study from Hong Viet V. Ngo et al. suggest 50ms bursts of pink noise during this up state. Decreasing our latency allows more bursts within this up state which should increase the sleep enhancement. We must identify our latency between

the up state of slow wave detection and the latency of audio playback from the pink noise trigger.

We require a 200 ms latency between the detection of the up state and the audio playback of our

first 50 ms pink noise burst. Decreasing this latency allows more bursts to be played during that

up state and allows them to be more spaced from one another.

Requirement. End-to-end latency (EEG detection \rightarrow audio onset at the ear) \leq 200 ms; timing

precision \pm 50 ms relative to the SO up-state.

Latency contributors (typical / worst-case):

• ADS1299 group delay + decimation: ~4–8 ms

• STM32 packetization + SPI/BLE enqueue: 5–15 ms

• BLE link & phone receive : 15–35 ms

• App pre-processing (YASA/CoSleep): 10–25 ms

Nominal sum: ~150 ms (meets requirement).

Worst-case sum: ~200–220 ms (requires calibration and buffer tuning).

How latency affects stimulation opportunity:-

Assuming a 500 ms up-state and 50 ms bursts placed back-to-back (best-case), the maximum

number of bursts available is:

 $N(L) = \lfloor \frac{500 \, ms - L}{50 \, ms} \rfloor$, L = first - burst latency.

At 150 ms, N=7 bursts remain; at the 200 ms requirement, N=6

19

Design actions to stay under 200 ms:

- Use BLE 5.0 (2M PHY) and minimal connection interval (≈ 15 –20 ms).
- Timestamp and calibrate audio device latency once; pre-schedule playback with offset.
- Keep app processing in fixed-size chunks (e.g., 128 samples @ $250 \text{ Hz} \approx 512 \text{ ms}$ windows with overlap but compute every 64–128 ms).
- Prefer low-latency audio path (wired or LE Audio when available) during validation.

4. Cost Analysis

The total estimated cost for the Sound Asleep project, as shown in **Figure 18**, accounts for all essential hardware, microcontrollers, sensors, and supporting materials required for a fully functional EEG-based sleep enhancement prototype.

Each team member is expected to contribute approximately **60 hours** of development time at an estimated rate of **\$40/hour**, totaling **\$2,400 per member**. With three team members, the total labor cost amounts to **\$7,200**.

The OpenBCI EEG Headband Kit and ADS1299 analog front-end chip represent the major hardware expenses as they provide research-grade signal quality and real-time data acquisition necessary for closed-loop sleep stimulation. All other important components are the STM32 microcontroller, battery system, amplification/filtering circuits, and 3D-printed enclosure.

These are sourced using university lab inventory or purchased in small quantities to minimize cost.

Table 5. Itemized List of Components and Costs.

Description Manufacturer Quantity Unit Extended Link /						
Description	Manufacturer	Quantity	Price (USD)	Price (USD)	Notes	
STM32U5A5VJT6Q Ultra-Low-Power Microcontroller	STMicroelectronics	1	\$9.32	\$9.32	ST Product Page	
ADS1299-4PAGR 24-bit EEG Analog Front End	Texas Instruments	1	\$32.50	\$32.50	TI ADS1299 Datasheet	
OpenBCI EEG Headband Kit	OpenBCI	1	\$349.99	\$349.99	OpenBCI Store	
Bluetooth Low Energy Module (ESP32-WROOM-32E)	Espressif	1	\$5.00	\$5.00	DigiKey	
Li-Ion Battery (3.7V 1000 mAh)	Adafruit	1	\$9.00	\$9.00	Adafruit	
TP4056 Charger Module with Protection	SparkFun	1	\$4.00	\$4.00	SparkFun	
EEG Lead Wires & Snap Connectors (Ag/AgCl)	OpenBCI	1	\$20.00	\$20.00	Accessory Pack	
Low-Noise Amplifier and Filter PCB (Custom)	In-Lab Fabrication	1	\$25.00	\$25.00	Fabricated at ECE Lab	
PLA Filament for 3D-Printed Housing	Hatchbox	1	\$10.00	\$10.00	Hatchbox	
Misc. Hardware (wires, adhesives, connectors, heat-shrink)	_	_	_	\$15.00	Estimated	
USB-C Interface + Cables	SparkFun	1	\$8.00	\$8.00	SparkFun	

Breadboard & Prototyping Components	UIUC ECE Inventory	_	_	\$0.00	Provided by lab
Software Dependencies (YASA, CoSleep, Flask)	_	_	_	\$0.00	Open-sour ce
Labour costs	Team members	3	\$2400	\$7200	
Total Project Cost				\$7687.81	
Funding Source	UIUC Carle Illinois School of Medicine			\$50,000.00	Academic Research Grant

5. Schedule

Table 6. Timeline of the project.

Week	Task	Person(s)
September 29 – October 6	Finalize project architecture (EEG, STM32, ADS1299, BLE, mobile app). Order all components. Begin schematic design and component footprint mapping.	Everyone
October 6 - October 13	Complete first version of PCB schematic in KiCad/Altium. Breadboard test ADS1299 communication with STM32. Begin PCB layout.	Ambika & Shub
October 13 - October 20	Pass internal PCB audit and submit first revision by Second Round PCBWay Order deadline (Oct 17). Finalize 3D printed housing for headband and STM32 board.	Ambika & Adam
October 20 - October 27	Continue breadboard prototyping for power system and Bluetooth module. Implement basic data transmission via BLE. Develop Python-based signal processing prototype using YASA.	Shub & Ambika

October 27 - November 3	Breadboard Demo 2: demonstrate working EEG acquisition and streaming to app. Begin firmware integration (ADC sampling, BLE data packets).	Everyone
November 3 – November 10	Test real-time EEG filtering and slow-wave event detection. Integrate auditory stimulation logic using CoSleep algorithm.	Shub & Adam
November 10 – November 17	Conduct pilot tests using OpenBCI EEG headband. Validate latency (<100 ms) and synchronization with auditory output.	Ambika & Shub
November 17 – November 24	Mock Demo: present partial closed-loop functionality to TAs. Collect feedback on signal accuracy and timing performance.	Everyone
November 24 – December 1	Thanksgiving Break — no scheduled work.	_
December 1 – December 8	Final Demo: present fully integrated closed-loop system with real-time EEG feedback and auditory stimulation. Evaluate power, latency, and comfort metrics.	Everyone
December 8 – December 15	Final Presentation & Report Submission: compile documentation, cost analysis, and experimental results.	Everyone

6. Ethics and Safety

Our project aims to improve sleep quality and neurological research accessibility by designing a non-invasive EEG-based wearable system that monitors and enhances slow-wave sleep through precisely timed auditory stimulation. This design directly aligns with IEEE's Code of Ethics Section I.1, which emphasizes the duty "to hold paramount the safety, health, and welfare of the public."

Because the Sound Asleep device operates in close contact with the user's head during sleep, safety and comfort are our foremost priorities. The system uses low-voltage circuits (<3.7 V) to ensure electrical isolation from the body. EEG electrodes are silver–chloride (Ag/AgCl) and medical-grade adhesive gel is used to minimize skin irritation. All analog front-end electronics, including the ADS1299 amplifier, are fully isolated from any external power supply via an onboard protection circuit.

We also acknowledge potential concerns regarding signal privacy and data integrity. Brainwave recordings may contain sensitive biometric information. Therefore, we commit to ensuring user privacy by performing all EEG processing locally on the embedded microcontroller or user's mobile device without cloud transmission. Any data logs are anonymized and encrypted in accordance with IEEE's Code of Ethics Section I.9, which promotes respect for privacy and protection of intellectual property.

In line with Section I.5 which calls for honesty and realism in stating claims based on available data, we will clearly communicate the intended functionality and limitations of the Sound Asleep system. While slow-wave stimulation has been shown in peer-reviewed studies to improve memory consolidation, our implementation is not a medical treatment and should not be marketed as such. All performance claims will be supported by quantitative test results, including latency measurements, synchronization accuracy, and EEG signal fidelity.

By adhering to these standards, this project upholds the ethical principles of transparency, user safety, and societal benefit as outlined in IEEE's Code of Ethics Section I.2, which emphasizes the responsibility "to improve the understanding by individuals and society of the capabilities and societal implications of conventional and emerging technologies, including intelligent systems."

7. Citations

- Texas Instruments, ADS1299: Low-Noise, 8-Channel, 24-Bit Analog-to-Digital Converter for EEG and Biopotential Measurements, Rev. E, 2015. [Online]. Available: https://www.ti.com/product/ADS1299
- 2. STMicroelectronics, STM32U5A5VJT6Q Ultra-Low-Power Arm Cortex-M33 Microcontroller with TrustZone Security and 4MB Flash, Rev. 6, 2024. [Online]. Available:

https://www.st.com/en/microcontrollers-microprocessors/stm32u5a5vjt6q.html

- 3. OpenBCI Inc., OpenBCI EEG Headband Kit, 2024. [Online]. Available: https://shop.openbci.com/products/openbci-eeg-headband-kit
- 4. [4] R. Vallat and M. Walker, "An open-source, high-performance tool for automated sleep staging," eLife, vol. 10, 2021. [Online]. Available: https://doi.org/10.7554/eLife.70092
- [5] CoSleep Project, Closed- and Open-Loop Sleep Stimulation Software for OpenBCI Devices, GitHub Repository, 2023. [Online]. Available: https://github.com/UrSleep/CoSleep

6. [6] Analog Devices, Li-Ion Battery Charger with Integrated Power Path Management (LTC4054), 2018. [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/4054fc.pdf

- 7. [7] IEEE, IEEE Code of Ethics, IEEE, 2020. [Online]. Available: https://www.ieee.org/about/corporate/governance/p7-8.html
- 8. [8] National Institutes of Health (NIH), Guidelines for Human Subject Research Ethics and Informed Consent, 2023. [Online]. Available: https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/index.html