

Glove Controlled Drone

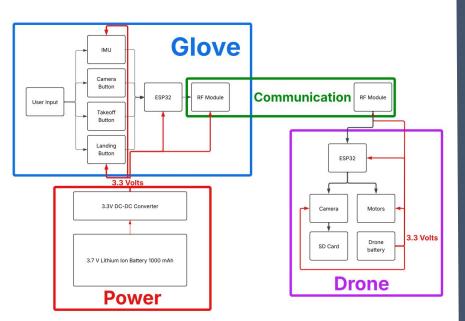
Electrical & Computer Engineering

Zachary Greening, Atsi Gupta, Aneesh Nagalkar

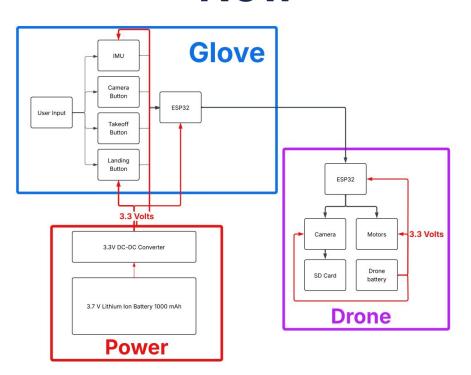
ECE 445 Group 11

Problem

Our Solution:


High Level Requirements

- The drone responds in real time to glove commands with minimal delay.
- The buttons make the drone hover or land within 15 milliseconds of being pressed.
- 3. Directional commands (forward, back, left, right) work 80% of the time over 20 trials.
- 4. If the camera is integrated, the system should be able to store low-resolution images to the sd card.



Old

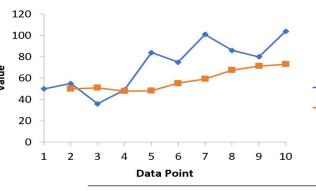
New

ELECTRICAL & COMPUTER ENGINEERING GRAINGER ENGINEERING GRAINGER ENGINEERING

- Send commands to drone
 - Directional Commands
 - Takeoff/Land/Picture

ELECTRICAL & COMPUTER ENGINEERING — GRAINGER ENGINEERING — GRAINGER ENGINEERING

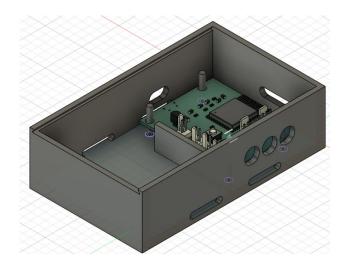
MPU 6050


- 6 DOF IMU
- ±2g accelerometer accuracy
- Efficient (~3.8mA max current draw)

Actual

Forecast

Calibration: 500 samples to determine relative origin


Exponential Smoothing

$$\hat{y}_{t+1} = lpha y_t + (1-lpha)\hat{y}_t$$

Enclosure

- Wearable
- Houses PCB and battery
- User buttons

Future Design Iteration:

Buy smaller battery

3.7 Volt

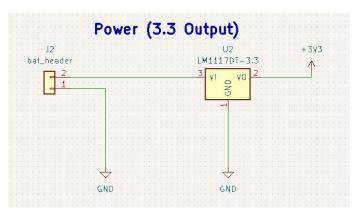
ELECTRICAL & COMPUTER ENGINEERING — GRAINGER ENGINEERING — GRAINGER ENGINEERING

Power Subsystem

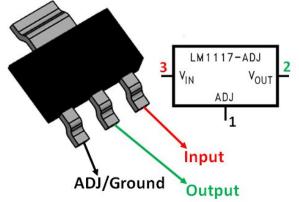
Power Subsystem

All components uses 3.3V

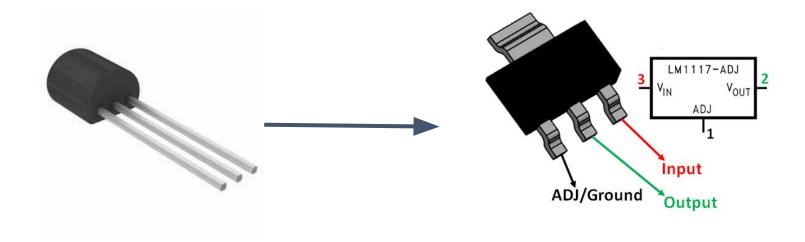
ESP32: active = 0.200 A (datasheet), peak 0.300 A


IMU: 0.004 A

Buttons: 0.001 A.


Typical total current: 0.200 + 0.004 + 0.001 = 0.205 A.

Worst continuous estimate (ESP32 peak): 0.300 + 0.004 + 0.001 = 0.305 A.



- Design Changes
 - Changed from LP2950 to LM1117
 - ESP32 Antenna current spikes

ELECTRICAL & COMPUTER ENGINEERING — GRAINGER ENGINEERING — GRAINGER ENGINEERING

Future Improvements

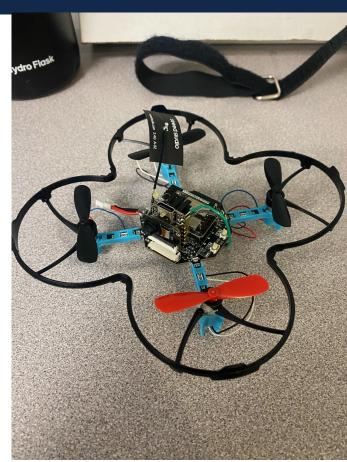
Fortify Power Subsystem

Fuse

Buck Converter

Drone Camera Subsystem

Drone + Camera Subsystem



01Studio Pydrone

- ESP32-controlled drone
- Pre-installed firmware
- Emits LAN
- 7-10 minute flight time

Xiao ESP32-S3 Camera Module

- Receives commands from glove
- Captures low-res photo
- Saves jpg to SD card

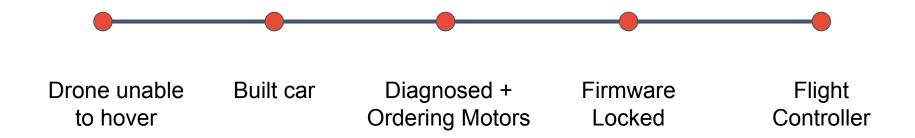
MicroPython

- Lightweight Python meant for microcontrollers
- Drone's API written in micropython
- Limitations
 - Native packages
 - A lot of overhead

```
from drone import DRONE

#构建四轴对象
d = DRONE(flightmode = 0) #无头模式

#使用方法


#起飞
d.takeoff()

#降落
d.landing()

#四轴飞行器姿态控制
d.control(rol = 0, pit = 0, yaw = 0, thr = 0)
```


Drone Defect Journey

Result: Hover requirement could not be fully verified due to hardware defect

ELECTRICAL & COMPUTER ENGINEERING

Future Improvements

Buy a different drone

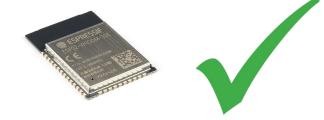
ELECTRICAL & COMPUTER ENGINEERING — GRAINGER ENGINEERING — GRAINGER ENGINEERING

RC Car

- Proof of concept
- Demonstrates glove functionality
- Maps controls to XY plane

ELECTRICAL & COMPUTER ENGINEERING GRAINGER ENGINEERING GRAINGER ENGINEERING

Communication



Communication Subsystem

Use ESP32 antenna instead of RF module

50 meters indoors
200 meters outdoors
ELECTRICAL & COMPUTER ENGINEERING

UDP Advantages Low latency Handles packet drops

Glove sends 8-byte packet to drone

```
pkt = bytearray(8)
pkt[0] = 0
pkt[1] = control_to_byte(0)  # roll
pkt[2] = control_to_byte(0)  # pitch
pkt[3] = control_to_byte(0)  # yaw
pkt[4] = control_to_byte(0)  # throttle
pkt[5] = btn  # button state
pkt[6] = 0
pkt[7] = 0
```


High Level Requirements

- The drone responds in real time to glove commands with minimal delay.
- 2. The buttons make the drone hover or land within 15 milliseconds of being pressed.
- 3. Directional commands (forward, back, left, right) work 80% of the time over 20 trials.
- If the camera is integrated, the system should be able to store low-resolution images to the sd card.

ELECTRICAL & COMPUTER ENGINEERING

Conclusion

Electrical & Computer Engineering