9/24/2025

Goal to have AB amplifier components determined by EOD 10/01, most likely will use standard AB amplifier topology, goal for PCB demo is to have amplifier powered by bench supply driving output coil oscillating a guitar string with signal from either microcontroller or signal generator.

9/25/2025

9/28/2025

PMOD I2S Board

This board will be connected to the nucleo board for initial DSP development. Currently this is the only thing that we can work on before we have multiple MCUs to test other protocols such as I2C with.

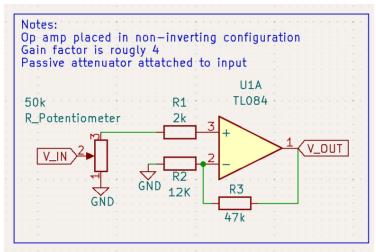
The ECE supply center contains 2 optocouplers; MIDI circuit prototyping could occur now as well.

9/29/2025

Op Amp buffer will be used to amplify and decouple the pickup signal. Circuit should have the following features:

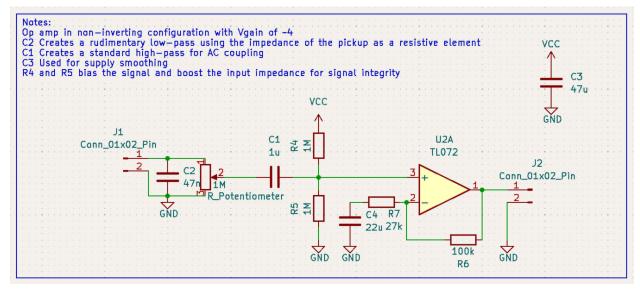
Variable input attenuation

Non-inverting configuration


Negative feedback network for high frequencies (low pass filter for D/A)

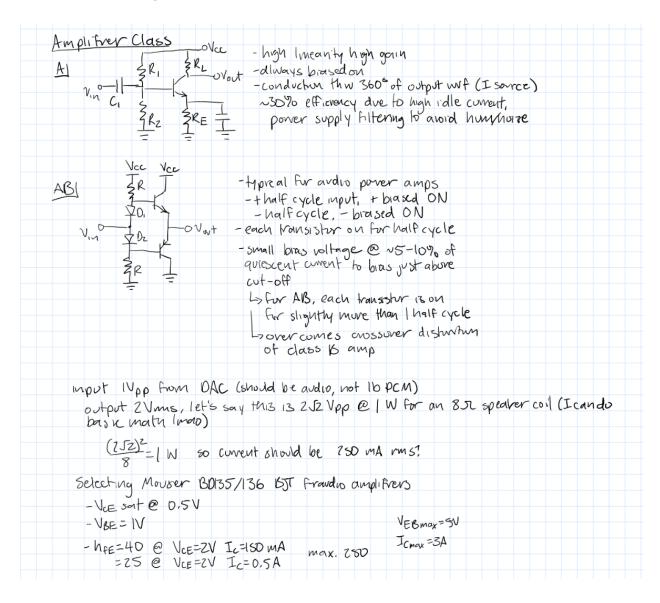
Voltage gain of ~4

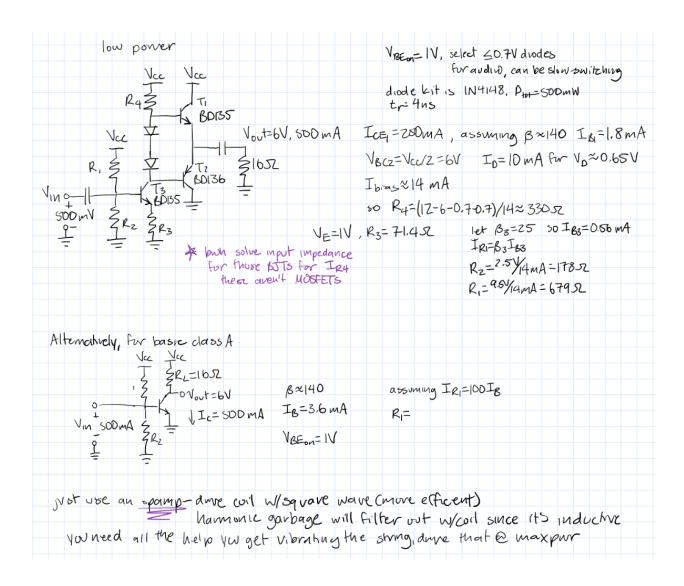
High slew rate (TL082, found in supply shop)

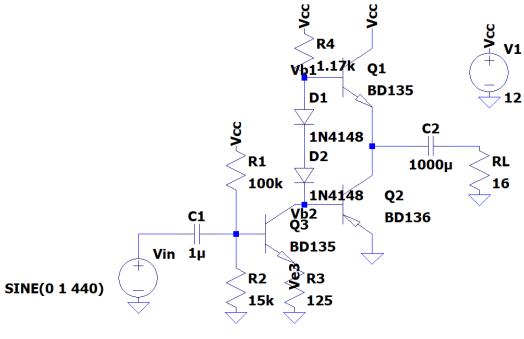

Example Circuit

Current Design:

This will be tested in the upcoming week as all parts are sourceable from the ECE supply center Testing can be conducted with a guitar and an oscilloscope, ensuring the correct relationship between v_out and v_in from the signal of a guitar pickup.

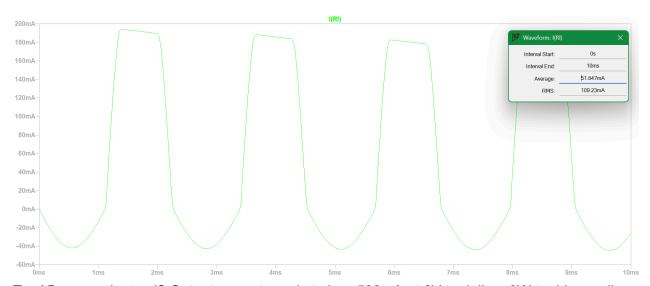

10/2/2025 Finalized buffer circuit shown below:

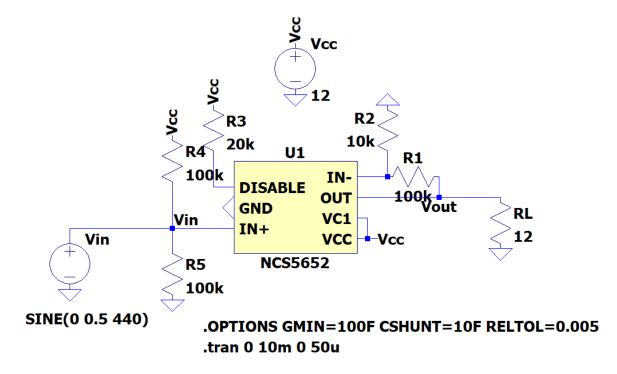



Parts needed from EShop:

Name	Quantity	Description	Cabinet	Drawer	
TL072	2	Low-Noise JFET Amplifier IC	9	16	
500k	2	Potentiometer 5		14	
1M ohms 1/4W	3	Resistor 1/4 Watt 4		6	
110K ohms 1/4W	2	Resistor 1/4 Watt 4		5	
27K ohms 1/4W	2	Resistor 1/4 Watt	4	5	
22µF	3	Electrolytic Capacitor	6	7	
1 μF (105)	2	Capacitor 6		6	
4700pF	2	Ceramic Disk Capacitor	6	5	

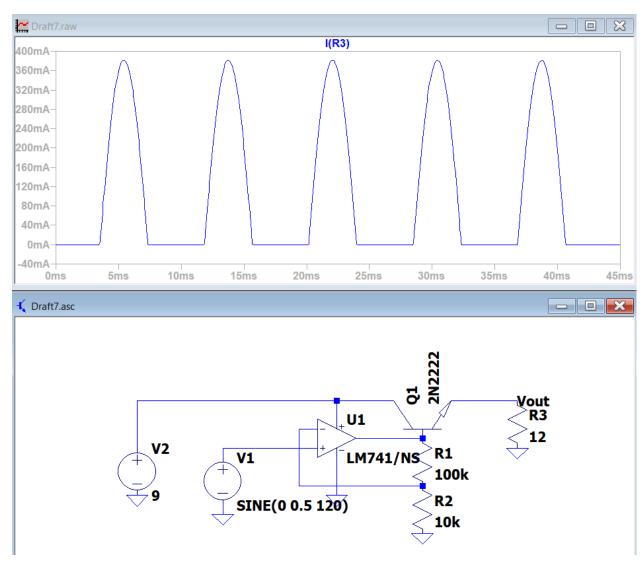
10/4/2025 Ash Huang






.tran 0 10m 0 1u

LTspice model


Try AB opamp instead? Output current needs to be ~500mA at 6V to deliver 3W to driver coil

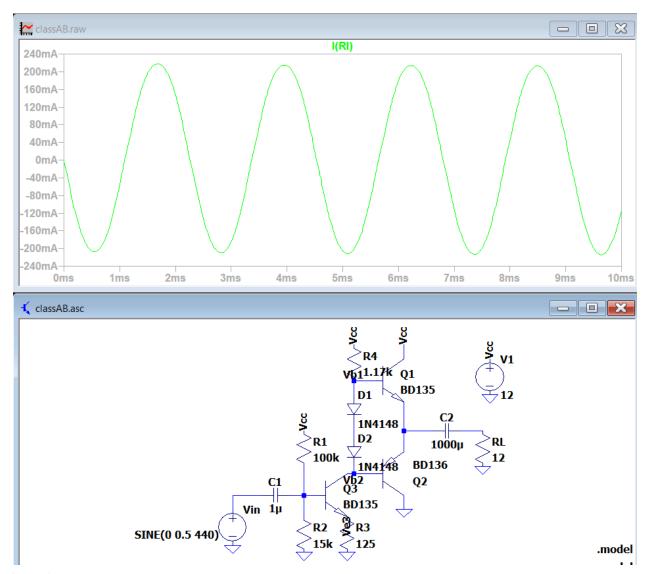
Due to high sim time, ran simulation on both halves of waveform.

10/26/2025

Power amplifier design using BJT at output to drive higher current- should use a complementary pnp to pull some current as well on negative half cycle

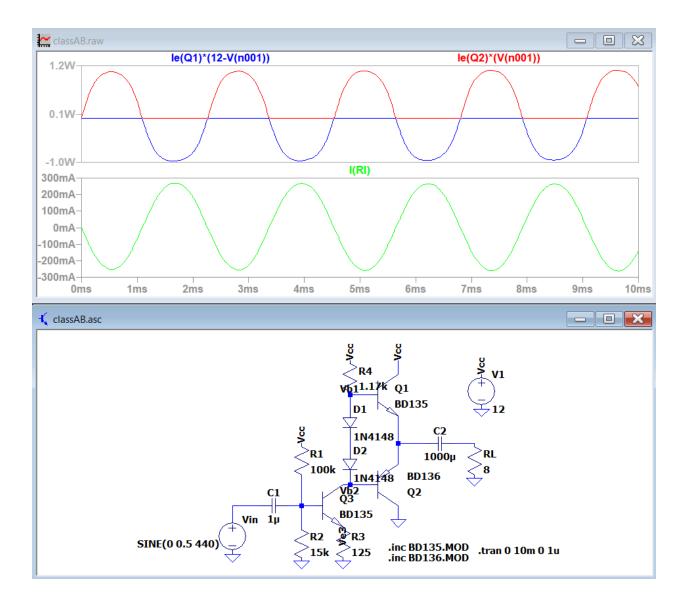
10/27/2025

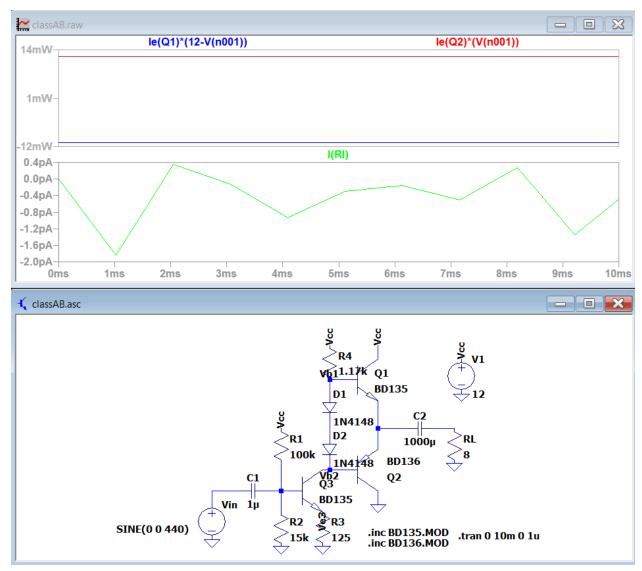
LTspice keeps crashing


Works fine with a 500mV DC offset on sine; accomplished with voltage divider from power supply and DC blocking cap on input sine wave

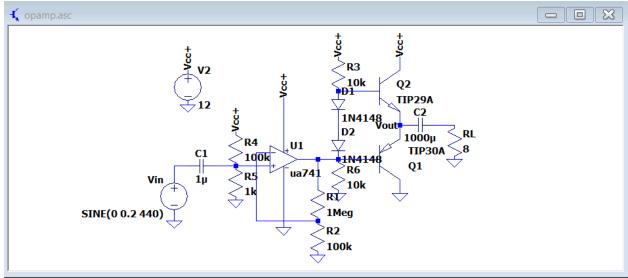
Has some clipping on scope

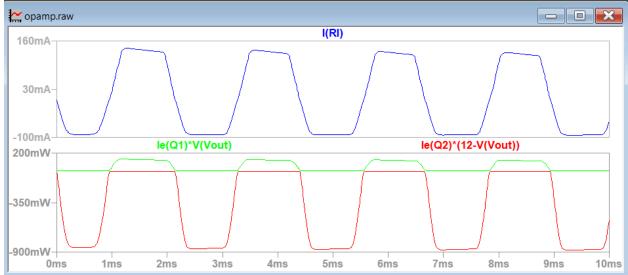
10/29/2025

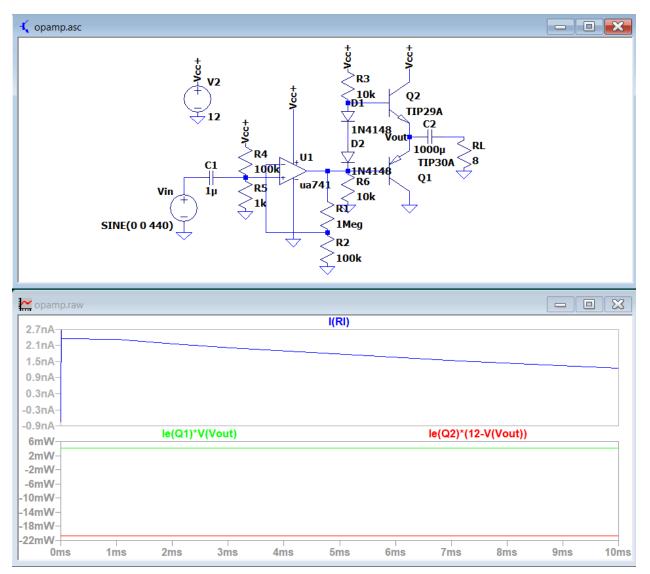

Class A amplifier produces too much heat on the npn and causes some runaway currents that pull the supply voltage way down if on for too long - should use AB topology to reduce power losses to heat and use larger BJTs that allow for more power dissipation and have space for heatsinking on PCB


Also the AB amplifier from 10/6 works fine I just didn't flip the emitter and collector on the pnp

Im going to cry


Comparing power losses to BJTs for different topologies:





Max loss at $\sim 350 \text{mW}$ for both BJTs, this shouldn't be too much heat, when both off power consumption is < 20 mW

Opamp ckt max power loss at ~400mW

DC power consumption at 22mW

10/31/2025

Testing class AB amplifier and LM386 amplifier in lab and measuring waveforms, output heat Class AB amplifier pulls more quiescent current than expected at about 500mA - may need to use LM386 instead

11/2/2025

Testing class AB amplifier and LM386 amplifier with guitar and coil - both work, but LM386 has lower quiescent current at ~14mA vs 500mA. While the class AB amplifier works, the LM386 should consume less power and output less heat while the string is off, so we will use the LM386.

Hardware for mechanical assembly:

Tuning Machines

Will need two sets

M5 Wood Inserts

Need a total of 36 Drilled into top face

M5 35mm Screws

Need a total of 36

Fasten to Inserts, will protrude about an inch (25mm)

Countersunk Magnets

#4 screw, slightly oversized hole

Audio Jack

MIDI DIN Jack

https://www.steppeschool.com/pages/blog/stm32-dac

Additional part numbers in master schematic: 74438356022 3386S-1-105LF TL071HIDCKR PJ-063AH

Master board BOM:

Description	Quantity	Dist	PN	Cost	Total Cost
2.2uH	1	Mouser	74438356022	\$1.93	
1M Trim Pot	1	Mouser	3386S-1-105LF	\$1.86	
TL071 OpAmp	15	Mouser	TL071HIDCKR	\$0.173	
DC Barrel Jack	1	Mouser	PJ-063AH	\$1.40	
STM32	15	Mouser	STM32L431CBT 6	\$3.02	
DC/DC	2	Mouser	TPS62913RPUR	\$2.40	
<u>Optocoupler</u>	2	Mouser	4N25	\$0.67	
2.2nF 0402	3	Mouser	GRM155R71H22 2JA01J	\$0.10	
10nF 0805	1 * 15 = 15	Replace with eShop	C0805Y104K1RA CAUTO	\$0.20	0
100nF 0805	4 * 15 = 60	Replace with eShop	C0805Y104K1RA CAUTO	\$0.20	0
470nF 0402	3	Mouser	04023D474KAT2 A	\$0.31	
1uF 0805	2 * 15 = 30	Replace with eShop	VJ0805Y105KXQ TW1BC	\$0.084	0
4.7uF 0805	1 * 15 = 15	Replace with eShop	VJ0805G475KX QTW1BC	\$0.21	0
10uF 0805	2 * 15 = 30	Replace with eShop	KAM21AR71A10 6MU	\$0.28	0
22uF 0805	7 * 15 = 105	Replace with eShop	CC0805MFX5R5 BB226	\$0.122	0
220Ω 0805	3	Mouser	RG2012P-221-B- T5	\$0.10	
-	•	•	•		

<u>2kΩ 0805</u>	3	Mouser	TNPW08052K00 FEEA	\$0.12	
<u>4.87kΩ 0402</u>	3	Mouser	MCS04020C487 1FE000	\$0.16	
<u>15.4kΩ 0402</u>	3	Mouser	TNPW040215K4 BEED	\$0.23	
<u>22kΩ 0805</u>	1 * 15 + 2 = 32	Mouser	CR0805-JW-223 ELF	\$0.019	
<u>100kΩ 0805</u>	1 * 15 + 2 = 32	Replace with eShop	CHV0805-JW-10 4ELF	\$0.146	0
<u>180kΩ 0805</u>	1 * 15 = 15	Mouser	CR0805-JW-184 ELF	\$0.015	
<u>500kΩ 0805</u>	2 * 15 = 30	Replace with eShop - 1M	RNCF0805BTE5 00K	\$0.077	0
Ferrite Bead	3	Mouser	MPZ1005S100C T000	\$0.10	
<u>Diode</u>	3	Mouser	SD0805S020S1R 0	\$0.34	