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Abstract

While inventory tracking systems exist, they are mostly developed for large scale industrial uses and are too expensive
for commercial usage. This project is an attempt to create a simple, cheap inventory tracking system more suitable
for personal use. This paper will detail the entire design process for this project, from conception to implementation.
Justifications for design choices are provided, as well as difficulties encountered in constructing the system and
potential workarounds. Results show a general proof of concept for a simple, cheap, inventory tracking system.
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1 Introduction

According to the NTAAA, Americans spent more than $163 billion on alcohol [1]. Indeed, for many college
students, beer is an essential part of the college experience. However, living in an apartment with limited
fridge space can cause confusion as to who bought what, and may result in some unscrupulous individuals
stealing from others. We seek to solve this problem by creating an RFID tagging system so users can keep

track of their inventory.

The goal of this project is to be able to alert users when their beer has been removed from the fridge by
pushing an alert to their phone. We hope to use modern technology to provide users with peace of mind
when using shared space to store their beer. The project will consist of a camera, an RFID reader and tags,
and a microcontroller. The goal of our project is to provide a simple inventory system that can be easily

fitted to most fridges and provide real time tracking of user inventory.

1.1 Objective

Beer is the most popular alcohol in America, commanding 47.7% of all store alcohol purchases in 2012 [2].
The average college student spends around $42 per month on alcohol, and male college students report
averaging 9 drinks per week [3]. When living with roommates, situations may arise when beer is accidentally
or purposely stole from one another. It may be awkward for roommates to confront one another without
solid proof, so we seek to rectify that by providing a system in which users will exactly when their beer has

been removed.

Currently, a company called Terso Solutions, Inc. makes RFID refrigerators, but they are not for commercial
use [4]. Instead, it is more for use in hospitals, research labs, pharmacies, dental offices, and stockrooms
where the RFID tag for specimens is extremely important. For commercial use, we do not need features such
as remote temperature monitoring. Per their website, the main purpose of their refrigerators is to eliminate
paper work and reduce costs through automation and smarter purchasing. We aim to have our product to

not have these expensive features and make it affordable and consumer friendly.
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Figure 1: Block Diagram
Figure 1 shows the block diagram of our project. The RFID Beer Fridge can be broken up into 7 different

components: a power system, RFID system, Weight Sensor System, Status LEDS, Microprocessor, Camera,
and Software. The power system is going to be comprised of an AC/DC converter that is plugged in directly
into the wall that takes in a 120V AC input and outputs a 5V DC output. It will then be attached to a
buck converter that will take in the 5V DC input and output 3.3V DC. The power system will power up
the RFID circuit, microcontroller and the camera. The RFID system will consist of an RFID reader, along
with passive RFID tags that we will place on the beer. The camera will capture an image of a barcode
from the beer labels and then use the built-in Wi-Fi Module in our microcontroller to send the image to our
phone, where the processing will occur.The weight sensor system will be comprised of 2 load sensors and a
load cell amplifier, which will convert the electric signals from the load sensors and convert it into weight.
In addition, the sensors will be sandwiched between two shelves and the total weight will be recorded by
the microcontroller. The system will detect whether beer is removed from the fridge by the microcontroller
detecting a change in weight on the weight sensor. The status LEDS will be used as a confirmation that
the RFID tag was scanned and the beer was placed on the shelf, in which the LEDS will turn green. If
the beer were placed without scanning, the LEDs would turn red. In addition, if the beer were removed
without scanning the RFID, the LEDS would turn red. If the RFID is scanned, however, the LED would
turn green.The microprocessor we use must have an 8-bit parallel interface for the camera, an SPI interface
for the RFID reader, GPIO pins for the weight sensor system, and a built in Wi-FI module able to be
programmed in AP mode into a TCP Server.



Finally, on the software side, our device must be able to receive data from the microprocessor over the WiFi
Module and store the total weight, RFID tag data, and barcode data after processing the barcode image.
That is, the device must be able to take in an image from an outside source and then use a Barcode Scanner
SDK with Android to process that image. After knowing what type of beer the barcode is, we will store the
type of beer and quantity in an inventory. Finally, we will write a simple phone application that will allow

the user to view his inventory and will send a notification whenever a beer is taken out incorrectly.

We made some changes for this block diagram as the semester progressed. Firstly, we struggled with the
SPI communication between the RFID Reader and the MCU, so instead we used an Arduino for that
integration. However, as that also failed, we attempted to mend this problem by communicating via Wi-Fi
but unfortunately we did not have enough time to accomplish this. Therefore, we did not have any integration
between the MCU and the RFID reader. Secondly, due to lack of microcontroller programming experience,
we were unable to port the Arduino code for the RFID reader, the weight sensor, and Status LEDs over to
TI’s GNU compiler. So, we used an Arduino to control those three modules. Lastly, the barcode scanned

by the camera was extremely unclear, so we used a phone camera instead to process the image.

2.1 Physical Design

Figure 2: Physical Design for our RFID Fridge

A 3.3 cubic foot refrigerator will be used. It is large enough to hold the weight sensor on one of the shelves.
In Figure 2 it is shown the location of the weight sensor and the location of the circuitry. The circuit is

mounted in the interior of the fridge door.

2.2 Control Module

The control module handles the processing of the data from the RFID reader, camera, and weight scale
through GPIOs and a built in Parallel Interface and can send this data over Wi-Fi to a user device. In
addition, there will be a status bipolar LED that will display green if the beer is properly placed and red if
it is improperly placed.



2.2.1 Microcontroller and Wi-Fi Module

The microcontroller, a Texas Instruments CC3200, processes all the data from the weight sensor module,
RFID reader, and camera. The Launchpad we chose was the Arducam CC3200 UNO [5]. We chose this
particular launchpad because it conveniently has a high speed 8 bit parallel interface for a camera with
speeds up to 80 Mbps, along with 1 SPI port, and numerous GPIO ports. In addition, it has a build-in
Wi-Fi module that can be programmed into Access Point mode which we can set up as a TCP server to send
and receive data from an Android device. The microcontroller was chosen for its low cost and built-in Wi-Fi
module with the "standard 802.11b/g/n radio, baseband, and MAC with a powerful crypto engine for fast,
secure Internet connections with 256-bit encryption” [6]. In addition, we can program the Wi-Fi Module to
have a static IP for easier socket communication. That is, we do not need to change the IP address of the
user device every time one connects. In addition, this microcontroller is powered by a ARM Cortex-M4 core

which has an 80MHz base clock so data transfers and processing can occur as quickly as possible.

However, due to lack of programming experience, we were unable to allow our MCU to communicate with
the weight sensor module and the RFID reader, so instead we used an Arduino to communicate that system.
Originally, we were going to have the Arduino communicate with the MCU via SPI so that the Arduino
would be able to send data over to the MCU where it can be processed and sent via Wi-Fi to the Android
Device. That is, we wanted to have the MCU act as a master device and the Arduino as a slave device.
However, unfortunately we were unable to get this interface to work, as the SPI Chip Select Signal never

got read by the Arduino.
2.2.2 Status LED

The purpose of the status LEDs is to alert the user when the process of placing a beer is complete or
incomplete. We would use one 5mm Bi-Polar Red/Green LEDs that would change colors based on the
polarity. The LED would be attached on the door and be powered by the GPIO pins of the microcontroller.
The LED would turn green whenever a beer is tagged, the barcode scanned, and placed on the weight sensor.
In addition, the LED would also turn green if a beer is removed correctly. That is, removed from the weight
sensor and scanned with the RFID reader. In any other situation where the beer is placed or removed from
the weight sensors improperly, the LED would turn red. In addition, the LED would be off if no action has

been taken.

This system ultimately managed to work, but instead of interfacing with the Microcontroller, we needed to

interface it with the Arduino so that it would interface well with the RFID reader and the weight sensor.

2.3 Camera Module

The purpose of the camera module is to take a picture of a barcode with a high resolution. The camera that
we are using is the MT9D111 because it interfaces well with our microcontroller, in addition to its cheap
cost. That is, it conveniently connects to our Launchpad using the 8-bit parallel interface at 80MBps. In
addition, the MT9D111 has an auto focus mode, which is important in getting a high-resolution image of
our barcode [7]. To scan a barcode, however, the resolution itself does not matter. Instead, we must take a
picture such that the barcode is wide enough. That is, the smallest bar or space in the barcode must take

at least be two pixels wide [8].

After testing this, however, we found that the auto focus mode did not work as intended. This will be further



described in the Requirements and Verifications section. The workaround we used for this was to use the
Phone Camera to take the picture for barcode processing. In the future, however, we would like to attach a

lens to this camera or get a higher quality camera.

2.4 Microcontroller, Camera, RFID and Android Integration
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Figure 3: Screenshot of Microcontroller, Camera, RFID and Android Integration App

The general setup for our microcontroller, camera, RFID and android device integration is to have the mi-
crocontroller serve as the server and slave device that runs a TCP server and listens for incoming connections
from the Android Device. The Android device then sends commands to the CC3200 and then the CC3200
responds to these commands by sending the requested data back to the Android Device [9].

Figure 3 is a screenshot of the app we created for the Microcontroller, Camera, RFID, and Android Device
Integration. The user would first need to connect to the Access Point created by the CC3200, called “RFID
Fridge. By doing this, the Android Device can connect to the TCP Server Socket created by the CC3200.
Next, the CC3200 initiates the camera. The user then can hit the “Take Photo on the Android app, which
will send a “get image size request to the MCU. The size depends on the resolution requested by the Android
app. Next, the MCU will send the total image size to the Android app, which will then create an array based
on that size. The Android will then automatically send a “Get Image Data request to the MCU, which then
the MCU will send over the image. The image will then be displayed on the top left corner of the app and
then processed by the barcode reader. Next, the app will send an RFID request to the MCU. The MCU will
then turn on its chip select signal and wait for an RFID scan. After it is scanned, the data will be written
into the RFID tag and it will be sent to the MCU and then over to the MCU. The RFID data will then be



displayed on the app.

Unfortunately, as we could not get the SPI interface working, we could not display actual RFID Data. So
instead, we simulated the fact that we could send a string from the MCU to the Android App. In addition,
the barcode picture could not be processed by the barcode processor, so we used a phone camera to take

those pictures instead.

2.5 RFID Module

The RFID module consists of an RFID reader and passive RFID tags. The purpose of the RFID module
is to tag the beer with one of the RFID tags and then scan the beer with the RFID reader, which then
transmits the signal to the microprocessor that a bottle/can of beer was scanned and will be placed in the

fridge.
2.5.1 RFID Tags

The RFID tags are placed on the items in the fridge and will store information. The type of tag we
implemented is a passive tag. Passive tags do not require a power source because it will use the energy used
from the RF waves from the RFID reader to power itself while also transferring information. This simplifies
the power system. Tags must be able to hold at least 512 bytes so we can store enough information on the
item. The RFID tags only directly interact with the reader through RF waves at the 13.553 13.567 MHz
range. The frequency range is in the allowable range under FCC regulation and most passive, low range
RFID systems operate in the range. RFID systems are generally cheaper than their UHF counterparts. In
order to fulfill all of the requirements, we chose the Avery Dennison adhesive tags. It is a passive tag that
opperates at the same frequency as the reader IC. The tag sticks to cans, which allows the user to easily

apply and remove the tag from items.
2.5.2 RFID Reader

A 4 wire Serial Peripheral Interface (SPI) is used to communicate between reader and microcontroller. The
frequency must be within range in according to FCC regulations. The RFID reader will run on 3.3V with
10% tolerance so it can use power directly from voltage regulator. TRF7960 from TI has an input range of
2.7V to 5.5V which can be powered from the buck converter or the AC/DC converter. The frequency used is
13.56 MHz. Unfortunately, the RFID Reader did not operate properly. The PCB was designed and printed.
There was an issue with the soldering of the components with the board. In order to work around the issue,
we used the Parallax RFID Reader/Writer. It has the an PCB antenna attached.

2.6 Weight Sensor Module

The purpose of the weight sensor is to place it on a shelf and then the microcontroller would be alerted
whenever there was a beer placed or removed. The system is composed of two components: load sensor and
a load amplifier. In addition, there would be a plate on top of the load sensors. We are using 2 load sensors
in the middle of the plate and the four corners would have some stubs on the bottom so that the plate does
not tip on one side. This plate would be on top of the already existing shelf of the refrigerator. The beer
would be placed on the shelf and then the analog signal would go through a load amplifier into a digital

signal, which would go into the microcontroller.



2.6.1 Load Sensor

The load sensor that we will use is the SEN-10245 made by Sparkfun. This particular load sensor can
measure up to 50kgs, or 110 pounds. This particular type of load sensor uses a strain gauge load cell, where
the force is being sensed by the deformation of strain gauges on the element. A strain gauge is a device that
measures electrical resistance changes in response to force that is applied to the device. Each different type
of gauge has a different sensitivity to strain and the output is generally measured by resistance. However,
the base resistance of each gauge isnt that high, and most microcontrollers would not be able to detect the
weight, so we must also use an amplifier to do so. For our design, we will use 2 load sensor, which can detect
up to 220 pounds. We would choose sensors with a lower range of weight for more accuracy, but this was
the cheapest. Although the range of the load sensor is so large, we calibrated at a more reasonable weight

of 30 pounds.
2.6.2 Load Amplifier

For our load cell amplifier, we will use the HX711 IC that will allow us to easily read load cells to measure
weight. The purpose of a load cell amplifier is to be able to more easily read the changes of the resistance
of the load cell, and by calibrating with the microcontroller, we will be able to get very accurate weight
measurements. This particular Load Amplifier is a 24-bit analog-to-digital converter designed for weight
scales. By using a 24-bit ADC, we can achieve higher resolution for weight. That is, we can more easily
detect small changes in weight. It will take in a power supply of 2.7-5.5V, so our PSU should be able to
provide enough power for our load amplifier. The HX711 uses clock and data pins, so we should be able
to connect it with the GPIO pins of our microcontroller. The microcontroller and the load cell amplifier
both use a clock of 80Hz. The HX711 Load Cell Amplifier accepts 5 wires from our load sensor. Four of
the wires are hooked up in a Wheatstone Bridge Formation. How a wheatstone bridge works is that it is a
configuration of four resistors with a known applied voltage. The output voltage can be calculated by using

Equation 1:

R3  R2
R3+R4 R1+R2

Vout = ( )‘/m (1)

2.7 Power Module

The purpose of our power system is to output a 3.3V DC voltage from a 120V AC Wall Power source. To do
this, we must first use an AC/DC transformer that will convert our 120V AC voltage into a 5V DC output.
That will directly power the weight sensor. The other components in the circuit require 3.3V so a buck
converter will be used to efficiently lower the DC voltage from 5V to 3.3V. The input range is important

because the buck converter will take its input directly from AC/DC converter.
2.7.1 AC/DC Converter

First step is to take the 120VAC and convert it to 5VDC. The AC/DC converter we plan on purchasing is
RAC04-05SC/W from Recom. It takes an input voltage of 120VAC and outputs regulated 5VDC with a

typical tolerance of 2%. The part is capable of outputing enough current to power the whole project.



2.7.2 Buck Converter

The AC/DC converter we originally wanted to use was the LXDC3EP micro DC-DC. It was able to take
the full range of output of the AC/DC converter as in input. The max current is 1 A which is more than
the AC/DC converter. During the semester we decided to switch to the PAM2305AAB330 from Diodes
Incorporated. The first choice had a package that was challenging to solder. As a result, the component

burned up. The second choice has a package of SOT-23.
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3 Design Verification

3.1 Control Module

3.1.1 Microcontroller
Camera Speed Test

Our first requirement for our microcontroller was that the transfer speed between the 8bit parallel interface
and the camera must be at least 80 MBps. This way, there is the least latency possible without increasing
the cost of the overall system. To test this, we used an oscilloscope to probe one Data Out pin out of the 8
data out pins and then multiply that frequency by 8. We ran 10 trials as shown in Table 1 and found that
the average was around 11.9 MHz. What’s interesting is the wide range of values. That is, the standard
deviation is around 5.28 MHz for one pin. One cause of this could be the the amount of frames that actually
needed to be captured at that moment varied for each trial. How we actually tested this is that we put the
Android app into Surveillance mode, in which it can capture a continuous stream of images. We realized,
however, that depending on what is actually captured influences the frequency. Figure 4 shows the 24 MHz

capture of the oscilloscope and Figure 5 shows the TMHz capture of the oscilloscope.

Table 1: Frequency of Data-Out Pin

Trial | Measured Frequency (MHz) | Total Frequency(MHz)
1 12.85 102.8
2 24.04 192.32
3 8.15 65.2

4 11.9 95.2

5 16.54 132.32
6 7.14 57.12
7 13.67 109.36
8 8.19 65.52
9 7.56 60.48
10 8.96 71.68

GPIO Test

Because our load sensor uses a 24-bit Analog to Digital Converter (ADC), one of our main requirements
was that the Microcontroller must be able to take in a 24 bit digital input via GPIO. How we tested this
was that we wrote an Arduino code that could read the 24-bit digital input and display it in a 32-bit sign
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‘igure 6: Screenshot of Arduino Serial Monitor

extended form. We decided to use the 32-bit sign extended form because that is the value that the Arduino
is able to convert into weight. We also use the 80 MHz base clock on the Launchpad so that way it is able
to take data at the rate of 333kHz. Figure 6 shows the Arduino Serial Monitor of this process, where the
number at the very right of each row is the 32-bit sign extended version of the 24-bit GPIO input.

SPI Test

Since our RFID reader uses a 4 wire Serial Parallel Interface, one of our requirements for the MCU is that
it must act as a master to to the RFID reader, which would act as a slave. That is, it must be the one
to initiate communication with the RFID reader i.e. it must be able to send a chip select signal in order
to send and receive data from the slave. However, this failed to work as the MCU failed to initiate a chip
select signal to the RFID reader. The code we attempted to use was a modified version of the provided
example code in the CC3200 SDK. However, the RFID reader was unable to retrieve this signal. In addition,
because of limited time, we were unable to fully understand how SPI worked and merely based our code off
the example code. We tried a workaround where we connected the RFID reader to the Arduino instead.
However, the Arduino uses a different clock rate than the CC3200 and we were unable to adjust the clock
rate on the MCU. In addition, the Arduino sent and received of the type “byte” whereas the MCU sent and
received data of the type “unsigned long” so we had trouble convertering between the two. In the future,

we would like to further address this issue and spend more time understanding SPI.
3.2 Camera Module
3.3 RFID Module

3.3.1 RFID Tags

Once the tag was read, it was possible to test the writing capabilities. The test required reading out the
current value of the tag and instructing the RFID chip throught the MCU to write different values. After

10



attempting to write new data, the tag was read. The test was repeated 15 times. Each of the 15 times, the

tag read the correct value.

3.4 Weight Sensor Module

The load cell was accurate in the weight range of 1 Ib to 30 1b. In order to verify it, an item with a known
weight was placed on the sensor. The calibration factor was changed until the output accuartly reflected the
known weight. Once we got the calibration factor, we placed the weights on the sensor and measured the

output voltage. Figure 7 shows the weight vs voltage plot of our calibration results.

Weight vs Voltage

Vortage Measured (V)

Weight (Ib)

Figure 7: Weight Sensor Calibration Results

3.5 Power Module

3.5.1 AC/DC Converter

In order to test the AC/DC Converter, we soldered the converter to the PCB and powered it with a wall
outlet. An oscilloscope was used to measure the output voltage. The output voltage was mesured at 5.05 V.
The converter was left plugged for 5 hours to make sure the AC/DC converter still operated properly after

in used for an extended amounted of time.
3.5.2 Buck Converter

A signal generator swept across the values of 3.3 V to 5.5 V as the input. An oscilloscope measured the

output voltages. The output voltages were always within the 10% range.
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4 Cost

4.1 Parts
Table 2: Parts Costs
Part Manufacturer Retail Cost Bulk Actual Cost
(%) Purchase (%)
Cost ($)
RFID Reader Module TI 6.25 3.96 6.25
AC/DC Converter Recom 15.30 12.23 15.30
Buck Converter Diodes Incorporated 0.58 0.24 0.58
RFID Tags Avery Dennison RFID 0.68 0.32 3.40
MCU TI 11.63 11.63 11.63
2 MP Camera Micron 18.99 18.99 18.99
Load Cell Amp SparkFun Elctronics 9.95 9.95 9.95
Status LED Lite-On Inc. 1.99 1.99 1.99
Load Sensor Strain Gauge | SparkFun Electronics 9.95 9.95 9.95
Shelf N/A 2.00 2.00 2.00
PCB ECEB Parts Shop 4.00 4.00 20.00
Total 100.04
4.2 Labor

Our labor costs are estimated to be $40/hour, 250 hours total, for three people. This brings our total

estimate to $30,000.

Table 3: Labor Cost

Name Hourly Rate($) Hours Total($) Total x 2.5($)
Jeffrey Lee 40 250 10000 25000
Yuanhao Wang 40 250 10000 25000
William Mercado 40 250 10000 25000
Total 30000 75000
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5 Conclusion

5.1 Accomplishments

Overall, for our project, we were able to get most if all of the individual components to work, with some
integration between modules. That is, for our PCB, we successfully converted a 120 VAC to a 5V using
AC/DC Converter and then back down to 3.3V using a Buck Converter. In addition, we were able to program
our Wi-Fi Module into Access Point mode so that we could create a TCP Server to send and receive data via
Wi-Fi. Subsequently, we are able to send a notification to the Android Device whenever an item is removed
correctly or incorrectly. Our Android App is also able to have multiple users access its inventory and have

a working inventory system that can store 50 items.

5.2 Uncertainties

The overall integration was a big flaw in our project. That is, even though the individual components
worked, we were unable to accomplish integration between most of the parts. For example, we could not get
the SPI interface to work because the chip select signal failed to function, so we could not get the RFID and
MCU interface to work. We even used an Arduino to see if that would work, but ultimately that failed as
well. Our final plan was to use a second Launchpad board to see if we could send RFID data through Wi-Fi
but we did not have enough time to accomplish this. Another flaw was that because of our inexperience in
microcontroller programming, we were unable to port Arduino code into TI CCS (Code Composer Studio)
code as they used different compiliers. Thus, we ended up with errors that were ultimately undebuggable
from copying the libraries over from the Arduino to CCS. Thus, our workaround for this was to use an
Arduino for the RFID/LED/Weight Sensor System which we had hoped could communicate with the MCU
via SPI. Also, the RFID portion of our PCB failed to function as well, as we used through-hole components,
so there was too much inductance for the RFID chip to work. Thus, our workaround for this was to use
a premade RFID system that could automatically read and write RFID tags using the Arduino. Our final
uncertainty is that our barcodes taken by the camera were mostly unreadable because of the failure to

auto-focus, so we used a phone camera instead to amend this.

5.3 Ethical considerations

The main safety we might encounter with our project is the camera and regulator circuity. These cameras
will be placed in the fridge, where the moisture could lead to short-circuits and damage components. While
the microcontroller itself doesnt need to be in the fridge, it will share connections with cameras, which are
inside the fridge. We will need to ensure that our camera and microcontrollers and their connections are

cased so that the moisture will not cause any safety hazards.

As engineers, we must be sure to credit properly the contribution of others as stated in #7 of the IEEE
Code of Ethics [10]. We acknowledge that we will be building off of or incorporating many already existing
components into our project, such as the ZXing library. We will ensure to always cite the authors wherever

necessary to avoid accidentally representing any of those components as proprietary.

As engineers, we are called to improve the understanding of technology; its appropriate application, and
potential consequences, as stated in #5 of the IEEE Code of Ethics [10]. We believe that our project will

have a positive impact on the application of RFID technology, and will serve to provide a way for an owner
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to protect his items. However, we are responsible for all information sent through our technology, and it is
known that RFID tags can be compromised, and have their information extracted, deleted, or rewritten. In
event that the tags are compromised, a user could lose track on items in the fridge, which could result in
potential false alerts. However, we believe that the likelihood of a dedicated attack on our system is small,
simply because of the low value of goods that our system is intended to deal with. Some users may attempt
to use our project to facilitate in their storing of items that may be deemed illegal, or could be used to harm
others. While we do not have a method to ensure that our project is used solely for legal purposes, we do
not believe that limiting the functionality of our system is the right course of action, as they can easily use
any number of alternatives. Overall, we believe that our project will have successfully used technology to

improve the life of others.

5.4 Future work

A goal for future work would be to fully integrate the project. After gaining more experence programming
microproccessors, integrating the RFID reader and weight sensor to the MCU should be feasible. Another
area we would work on is the RFID system. A new PCB should be designed with surface mount components
and with the matching netwrok on the board as well. Once all of the modules of the project work and are
intergrated, the next step is to expand the scope of the project. The orignal idea was to have the system
work with food as well. In order to do that more sensors would need to be included in order to detect items
without barcodes. Adding more cameras inside the fridge can help with the detection of what items are

currently present.
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Appendix A Requirement and Verification Tables

An appendix is a good place for the Requirement and Verification Table from your design review. Below
is a starter table. Including these details here will help to avoid lengthy and tedious narrative descriptions
in the main text, which may not be of immediate interest to your imagined audience of company managers
and professionals. Any requirement that is not verified should be explained either in the main text or the
appendix. Note that both the pagination and the numbering of figures, tables, and equations continues from

main text to appendices.

Table 4: Requirements and Verification for the Buck Converter (5 points)

Requirements

Verification

1. Output must be 3.3 with 10% tolerance
with 5£5% V input. (2.5)

1. Signal generator to create the min and max
voltage input, and use oscilloscope to verify
output. 2. Sweep the input from 3.3V to 5.5V.

2. Output current must be able to reach rated
current max (1 A) as according to data sheet

of buck converter (2.5)

Connect a resistive load with appropriate load
that would lead to max current, verify with

oscilloscope.

Table 5: Requirements and Verification for the RFID Tags (5 points)

Requirements

Verification

1. Must be able to write new RFID data after

each scan.

1. Through attempt to scan new data to tag
(place tag next to RFID reader).
2. Verify that data is either removed or writ-

ten on microcontroller

Table 6: Requirements and Verification for the RFID Antenna (5 points)

Requirements Verification
1. Attach the matching network circuit to the
1. The antenna must transmit waves with | spectrum analyzer.

a peak frequency in the 13.553- 13.567 MHz
range (2)

. 2. Use spectrum analyzer with the antenna
and verify the peak frequency is in the 13.553-
13.567 MHz range.

2. Must be able to transfer data at 848kbps(2)

1. Attach the matching network and antenna
to a spectrum analyzer.
2. Verify that the bandwidth is 848 kbps.

3. Must be able to read data from reasonable
distance, 10- 30 cm (1)

1. Program the reader to read tags.
2. Wave a tag from 10 cm and 30 cm.
3. Verify on microcontroller that data was

read.
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Table 7: Requirements and Verification for the Microcontroller (5 points)

Requirements

Verification

1. Must be able to receive data from the 8-bit
parallel interface (camera)at 80 Mbps.(2)

1. Take a picture with the MT9D111 Camera.
2.Use an oscilloscope to probe the DO pin on
the camera.

3. Verify that the frequency is greater than
10Mhz. (8 bit parallel interface so multiply by
8 for final bitrate)

2. Must be able to take a 24 bit digital input
via GPIO. (2)

1. Use the HX711 (ADC for our weight sensor
module) and probe the voltage between the
two weight sensors (around 0.768V).

2.Put this value in our AC power supply and
verify that the MCU is reading a 24 bit binary
input.

3. Repeat with decreasing voltages and verify
that the MCU is reading a lower 24 bit binary
number for a lower voltage.

4. The number will be stored as a 32 bit sign

extended integer

3. The MCU must be able to perform as a
master device for the RFID reader (slave) via
SPI. That is, the MCU must be able to initiate

all communications with the reader.(1)

1. Program the MCU to send a start condition
to the RFID reader.

2. Verify that the RFID reader is able to re-
ceive data by scanning an RFID tag next to
it.

3. Check on MCU that the RFID tag data is

stored.

Table 8: Requirements and Verification for Wi-Fi Module (5 points)

Requirements

Verification

1. The built-in Wi-Fi subsystem must be able
to communicate over IEEE 802.11b/g/n at
4.5Mbps.(2.5)

1. Setup the Wifi and register the IP Address
on the MCU.
2. Use an app to determine the bitrate of the
Wi-Fi bitrate.

2. Wi-Fi module must be able to transmit and
receive at 40ft with at least 18.2 dBm transmit

power and -95.7dBm receiver sensitivity.(2.5)

1. Place MCU 40 feet away from user device
in an open-field environment.

2. Use an app to measure the RSSI.

17




Table 9: Requirements and Verification for Status LEDs (5 points)

Requirements

Verification

1. The LEDs must turn on with a drive current
of 2,4, or 6 mA (the drive strength of the GPIO
for MCU)(2.5)

Attach LED to breadboard with the pins pro-
grammed with a drive strength of 2, 4, or 6
mA and then see which option provides the
brightest LED without burnout

2. Microcontroller must be able to change the
polarity of its two ports in order to change
LEDs from Red to Green(2.5)

Program the microcontroller to change polar-
ities every few seconds and use a multimeter

to test if the voltage is reversed

Table 10: Requirements and Verification for Weight Sensor System (5 points)

Requirements

Verification

1. Each plate must have a maximum weight of
30 pounds overall. Plot the weight vs voltage
curve. (1)

1. Acquire three different weights of 11b, 101bs,
and 30 1bs.

2. Place three weights on plate separately

3. Use a multimeter to measure the output
voltage of the weight sensor system.

4. The 11b weight should output the highest
voltage, whereas the 30lbs should output the
lowest voltage.

2. Each shelf must have a sensitivity of £0.5
pounds.(2)

1. Acquire three different weights of 0, 10, and
30 pounds.

2. Place three weights on the shelf separately.
3. Place a 0.6 pound weight and verify on the
MCU that the weight changed.

3. The load amplifier must be able to take
in an input of around 0.783 volts (The high-
est voltage with no weight) to the 0.616 volts
(the voltage at 15lbs per load sensor) with a
tolerance of +£5% and convert it to a digital
signal, where it will be processed by the mi-
crocontroller and interpreted as weight(2)

1. Use an AC power source and output volt-
ages of 0.783 to 0.616 with steps in between.
2. Connect the output of the AC power source
into the ADC and connect the digital output
of the ADC into the MCU via GPIO.

3. Record the value that is outputted by the
ADC.

4. Plot the curve
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Table 11: Requirements and Verification for Camera Module (3 points)

Requirements

Verification

The camera must be able to take a picture of
a barcode from 1 to 5 inches away and the
smallest space or bar must be at least 2 pixels
wide.(1)

1. Program the camera to take pictures with
the MCU.

2. After programming, toggle the camera to
take a picture of a barcode that ideally has
perfect resolution (take the barcode from a
commercial product).

3. Transfer the image to the computer.

4. Verify that each the minimum size of the
smallest bar or space is 2 pixels wide.
5.Repeat for 1, 3, and 5 inches away from cam-
era

The camera must be able to capture an un-
compressed QVGA image and convert it into
a JPEG format and then send it to a MCU.

(2)

1. Capture image with camera with MCU.

2. Use the MCU to send the picture over Wi-
Fi to a user device (computer or phone).

3. Check whether the sent image is in a com-
pressed JPEG format.

Table 12: Requirements and Verification for Data Processing (7 points)

Requirements

Verification

The software must be able to send received
barcode images to the SDK and retrieve infor-
mation. (4)

1. Take a clear, unobstructed picture of a bar-
code and ensure that existing applications can
recognize it.

2. Use the same photo and send it to the ap-
plication.

3. Verify that the application can recognize
the image as a barcode.

4. Verify the accuracy of the information re-
trieved by comparing it with manual lookup.

User must be able to able to modify all in-
ventory entries associated with each item (i.e.
warning date and amount), including creating
and deleting items in the inventory.(3)

1. Upon ensuring the software is able to rec-
ognize the image as barcode, attempt to have
it search up the barcode information.

2. Verify the accuracy of the information re-
trieved by comparing it with manual lookup.

Table 13: Requirements and Verification for the Inventory(5 points)

Requirements

Verification

All users on the same Wi-Fi network must be
able to access the inventory (1)

Have all group members attempt to access the
inventory while on same network.

User must be able to manually modify the in-
ventory (2)

1. Have user input a custom entry and verify
that the inventory has been updated.

2. Have user change amount of item and verify
that the inventory has been updated.

3. Have user remove item and verify it is
deleted from inventory

Inventory must be able to store at least 50
items (2)

Manually enter 50 test points and verify that
the inventory is able to successfully hold all
points
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Appendix B Tolerance Analysis

One important risk we must consider is the readability of the barcode pictures. One important aspect for
unreadable barcodes is that the resolution is too low. However, for a barcode reader SDK on Android to
work, resolution itself does not matter: what matters is how wide the barcode is, measured in pixels [12].
The number of pixels for the barcode depends on the number of characters encoded and the type of barcode.
In addition, a barcode can only be decoded if every bar and space in the original barcode is preserved in
the scanned image. That is, if the bars and spaces somehow blur into each other, then the barcode would
be extremely difficult to decode. A barcode module is defined as the smallest width of a bar or a space in a
barcode, and all other bars and spaces are merely multiples of a module. A perfect scan of a barcode would
only need 1 pixel. However, this will most likely result in a barcode with mostly shades of grey. Thus, we
must allow at least 2 pixels for each module. Additionally, different barcodes have different pixel widths,
depending on the type of barcode being used and the number of characters being encoded in the barcode.
For a UPC-A/EAN-13 barcode, which are generally found on beer, the pixel width is 166 Pixels. Next, to
calculate the resolution that we need to use, we use Equation 2:

Pizel width
Width of a barcode in inches

(2)

Resolution(dpi) =

So if we had a barcode width of 2 inches, the minimum resolution that we would need is shown in equation
> 166
Resolution = 5 = 83ppi (3)

Note that the scanner SDK normally has resolutions of 100, 200, etc ppi so if our Resolution were 83 ppi in

this case, then we would use a 100 ppi resolution.

Another issue we may encounter is the low contrast of the barcode. That is, during when a user wants to
scan in an item, the lighting in the room may be too low for the phone to process the image. This is because
the barcode scanner must be able to differentiate between the light and dark elements of the symbol. If
there is not enough contrast between these two barcode elements, then the barcode SDK might be unable
to distinguish the barcode from the substrate (the black from the white) and the result will most likely end

in a read failure. Figure 8 shows a couple of examples of unreadable barcodes.

”
-
-

Figure 8: Examples of Unreadable Barcodes [13]

Ensuring distinct and uniform barcode elements is the first step to preventing unreadable codes due to low

contrast [13]. To do this, we can use lighting equipment that is tailored to produce the most uniform and
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highest-contrast images of barcodes. If our beer has a glossy label, we can use diffused lighting. Figure
9 shows the difference between proper lighting on a glossy label. We can also use a dark field lighting to
enhance the white-parts.

Figure 9: Effects of Proper Lighting on Glossy Label [13]

Another big issue we may encounter is with the read angle of a barcode. That is, a barcode sometimes may
fail to be read due to the physical position of the camera relative to the barcode. Thus, it is important for
our Android SDK that we use that it is able to auto-adjust the barcode to a right angle. That is, if it is
slightly angled, the SDK must adjust the code so that it is level.
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