CS440/ECE448 Lecture 14: Bayesian Networks

Mark Hasegawa-Johnson
Slides are CCO: Public Domain

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=129209878

Outline

- Review: Bayesian classifier
- The Los Angeles burglar alarm example
- Bayesian network: A better way to represent knowledge
- Inference using a Bayesian network
- Independence and Conditional independence

Review: Bayesian Classifier

- Class label Y = y, drawn from some set of labels
- Observation X = x, drawn from some set of features
- Bayesian classifier: choose the class label, y, that minimizes your probability of making a mistake:

$$f(x) = \underset{y}{\operatorname{argmax}} P(Y = y | X = x)$$

Today: What if P(X,Y) is complicated, and the naïve Bayes assumption is unreasonable?

- Example: Y is a scalar, but $X = [X_1, ..., X_{100}]^T$ is a vector
- Then, even if every variable is binary, P(Y=y|X=x) is a table with 2^{101} numbers. Hard to learn from data; hard to use.
- The naïve Bayes assumption simplified the problem as

$$P(X_1, ..., X_{100}|Y) \approx \prod_{i=1}^{n} P(X_i|Y)$$

- ... but what if that assumption is unreasonable? Do we then have no alternative besides learning all 2^{101} probabilities?
- Today: an alternative called a Bayesian network

Outline

- Review: Bayesian classifier
- The Los Angeles burglar alarm example
- Bayesian network: A better way to represent knowledge
- Inference using a Bayesian network
- Independence and Conditional independence

The Los Angeles burglar alarm example

- Suppose I have a house in LA. I'm in Champaign.
- My phone beeps in class: I have messages from both of my LA neighbors, John and Mary.
- Does getting messages from both John and Mary mean that my burglar alarm is going off?
- If my burglar alarm is going off, does that mean my house is being robbed, or is it just an earthquake?

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=129209878

Variables

- B = T if my house is being burglarized, else $B = \bot$
- $E=\top$ if there's an earthquake in LA right now, else $E=\bot$
- A = T if my alarm is going off right now, else $A = \bot$
- J = T if John is texting me, else $J = \bot$
- M = T if Mary is texting me, else $M = \bot$

Inference Problem

- Given that $J={\sf T}$ and $M={\sf T}$, I want to know what is the probability that I'm being burglarized
- In other words, what is P(B = T | M = T, J = T)
- How on Earth would I estimate that probability? I don't know how to estimate that.

Available Knowledge

- LA has 1 million houses & 41 burglaries/day: $Pr(B = T) = \frac{41}{1000000}$
- There are ~20 earthquakes/year: $P(E = T) = \frac{20}{365}$
- My burglar alarm is pretty good:

	$B = \bot$, $E = \bot$	$B = \bot, E = \top$	$B = T, E = \bot$	B = T, E = T
P(A = T B,E)	1	3	99	99
	$\overline{100}$	<u>-</u> 5	$\overline{100}$	$\overline{100}$

- John would text if there was an alarm: $P(J = T|A = T) = \frac{9}{10}$
- On days with no alarm, he often sends cat videos: $P(J = T | A = \bot) = \frac{1}{2}$

Combining the Available Knowledge

Putting it all together, we have ... well, we have a big mess. And that's not including the variable M:

	$B = \bot$	B = T
$P(B, E = \bot, A = \bot, J = \bot)$	$\left(\frac{999959}{1000000}\right) \left(\frac{345}{365}\right) \left(\frac{99}{100}\right) \left(\frac{1}{2}\right)$	$\left(\frac{41}{1000000}\right) \left(\frac{345}{365}\right) \left(\frac{99}{100}\right) \left(\frac{1}{2}\right)$
$P(B, E = \bot, A = \bot, J = \top)$	$\left(\frac{999959}{1000000}\right) \left(\frac{345}{365}\right) \left(\frac{99}{100}\right) \left(\frac{1}{2}\right)$	$\left(\frac{41}{1000000}\right) \left(\frac{345}{365}\right) \left(\frac{99}{100}\right) \left(\frac{1}{2}\right)$
$P(B, E = \bot, A = \top, J = \bot)$	$\left(\frac{999959}{1000000}\right)\left(\frac{345}{365}\right)\left(\frac{1}{100}\right)\left(\frac{1}{10}\right)$	$\left(\frac{41}{1000000}\right) \left(\frac{345}{365}\right) \left(\frac{1}{100}\right) \left(\frac{1}{10}\right)$
$P(B, E = \bot, A = \top, J = T)$	$\left(\frac{999959}{1000000}\right)\left(\frac{345}{365}\right)\left(\frac{1}{100}\right)\left(\frac{9}{10}\right)$	$\left(\frac{41}{1000000}\right) \left(\frac{345}{365}\right) \left(\frac{99}{100}\right) \left(\frac{9}{10}\right)$
i i	:	:

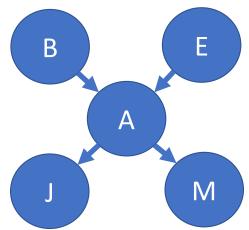
Outline

- Review: Bayesian classifier
- The Los Angeles burglar alarm example
- Bayesian network: A better way to represent knowledge
- Inference using a Bayesian network
- Independence and Conditional independence

Bayesian network: A better way to represent knowledge

A Bayesian network is a graph in which:

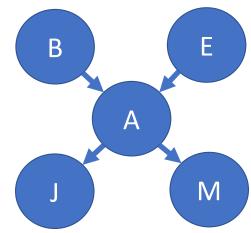
- Each variable is a node.
- An arrow between two nodes means that the child depends on the parent.
- If the child has no direct dependence on the parent, then there is no arrow.



Bayesian network: A better way to represent knowledge

For example, this graph shows my knowledge that:

- My alarm rings if there is a burglary or an earthquake.
- John is more likely to call if my alarm is going off.
- Mary is more likely to call if my alarm is going off.



Complete description of my knowledge about the burglar alarm

P(B = T)	41
	$\overline{1000000}$

P(E = T)	20
	365

$E = \bot$	B = T, $E = T$	
_	0.0	

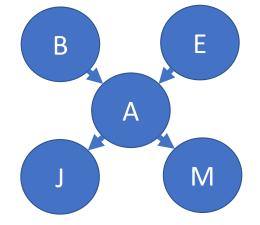
	$B = \bot$, $E = \bot$	$B = \bot$, $E = \top$	$B = T, E = \bot$	B = T, E = T
P(A = T B, E)	1	3	99	99
	$\overline{100}$	- 5	$\overline{100}$	$\overline{100}$

	$A = \bot$	A = T
P(J = T A)	1	9
	$\frac{\overline{2}}{2}$	$\overline{10}$

	$A = \bot$	A = T
P(M = T A)	1	7
, ,	8	8

Space complexity

- Without the Bayes network, space complexity is $O(v^n)$
 - $v = \max \text{ cardinality of each variable}$
 - n = total # of variables
- With the Bayes network, space complexity is $\mathcal{O}\{nv^p\}$
 - $p = \max \#$ parents any variable is allowed to have



Space complexity

- This is a Bayes network to help diagnose problems with your car's audio system.
- Naïve method: 41 binary variables, so the distribution is a table with $2^{41} \approx 2 \times 10^{12}$ entries.
- Bayes network: each variable has at most four parents, so the whole distribution can be described by less than $41\times2^4=656$ numbers.

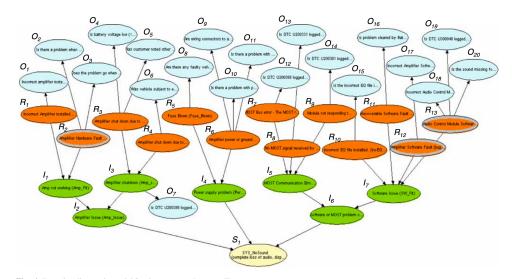


Fig. 6 Bayesian diagnostic model for the symptom "no sound"

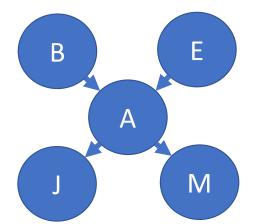
Huang, McMurran, Dhadyalla & Jones, "Probability-based vehicle fault diagnosis: Bayesian network method," 2008

Outline

- Review: Bayesian classifier
- The Los Angeles burglar alarm example
- Bayesian network: A better way to represent knowledge
- Inference using a Bayesian network
- Independence and Conditional independence

Inference

Both John and Mary texted me. Am I being burglarized?

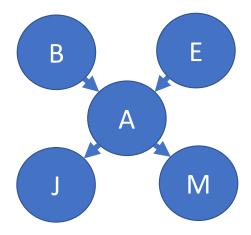


$$P(B = T|J = T, M = T) = \frac{P(B = T, J = T, M = T)}{P(B = T, J = T, M = T) + P(B = \bot, J = T, M = T)}$$

$$P(B = T, J = T, M = T) = \sum_{e=T}^{\perp} \sum_{a=T}^{\perp} P(B = T, E = e, A = a, J = T, M = T)$$

$$= \sum_{a=T}^{L} \sum_{a=T}^{L} P(B=T)P(E=e)P(A=a|B=T,E=e)P(J=T|A=a)P(M=T|A=a)$$

Time Complexity



- Using a Bayes network doesn't usually change the time complexity of a problem.
- If computing $P(B = \top | J = \top, M = \top)$ required considering $\mathcal{O}\{v^n\}$ possibilities without a Bayes network, it still requires considering $\mathcal{O}\{v^n\}$ possibilities

Some unexpected conclusions

 Burglary is so unlikely that, even if both Mary and John call, it is still more probable that a burglary didn't happen

$$P(B = \top | J = \top, M = \top) < P(B = \bot | J = \top, M = \top)$$

The probability of an earthquake is higher!

$$P(B = T|J = T, M = T) < P(E = T|J = T, M = T)$$

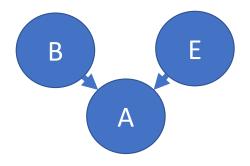
Quiz

Try the quiz!

Outline

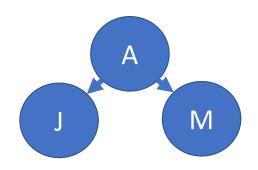
- Review: Bayesian classifier
- The Los Angeles burglar alarm example
- Bayesian network: A better way to represent knowledge
- Inference using a Bayesian network
- Independence and Conditional independence

Independence: No shared ancestors



- The variables B and E are independent
- Days with earthquakes and days w/o earthquakes have the same number of burglaries: P(B = T | E = T) = P(B = T | E = T) = P(B = T).

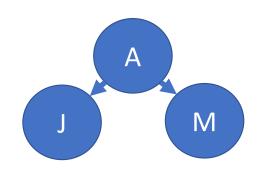
Shared ancestor = Not independent



- The variables J and M are not independent!
- If you know that John texted, that tells you that there was probably an alarm.
 Knowing that there was an alarm tells you that Mary will probably text you too:

$$P(M = T|J = T) \neq P(M = T|J = \bot)$$

Conditional Independence if the Connection is Cut

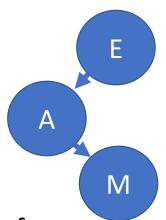


- The variables J and M are conditionally independent of one another given knowledge of A
- If you know that there was an alarm, then knowing that John texted gives no extra knowledge about whether Mary will text:

$$P(M = \top | J = \top, A = \top) = P(M = \top | J = \bot, A = \top) = P(M = \top | A = \top)$$

Our knowledge of A "cuts the connection" between J and M

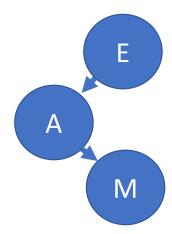
Shared ancestor = Not independent



- The "shared ancestor" rule also applies when the shared ancestor of one variable is the descendant of the other
- For example, the variables E and M are not independent! M's ancestor, A, is the descendant of E.
- If you know that Mary texted, that tells you that there was probably an alarm. Knowing that there was an alarm tells you that there is a >50% probability that there was an earthquake:

$$P(E = T|M = T) \neq P(E = T|M = \bot)$$

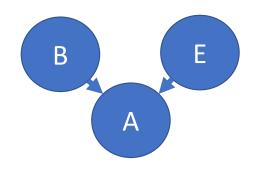
Conditional Independence if the Connection is Cut



- The variables E and M are conditionally independent of one another given knowledge of A
- If you know that there was an alarm, then knowing that Mary texted gives no extra knowledge about the existence of an earthquake:

$$P(E = T | M = T, A = T) = P(E = T | M = \bot, A = T) = P(E = T | A = T)$$

Independent variables may not be conditionally independent!



- The variables B and E are not conditionally independent of one another given knowledge of A
- If your alarm is ringing, then you probably have an earthquake <u>OR</u> a burglary.
 If there is an earthquake, then the conditional probability of a burglary goes down:

$$P(B = T | E = T, A = T) \neq P(B = T | E = \bot, A = T)$$

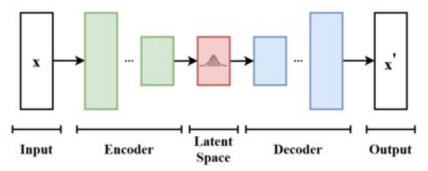
 This is called the "explaining away" effect. The earthquake "explains away" the alarm, so you become less worried about a burglary.

Knowing about Independence and Conditional Independence can improve time complexity

 Improve time complexity by specifying the value of a shared ancestor: cuts the network into conditionally independent halves

• Example: Variational Autoencoder. Given the latent variable, the encoder and decoder are conditionally independent, can be solved with less time

complexity



https://commons.wikimedia.org/wiki/File:VAE_Basic.png

Summary

- Bayesian network: A better way to represent knowledge
 - Reduces space complexity from $\mathcal{O}\{v^n\}$ to $\mathcal{O}\{nv^p\}$ -- huge if $n\gg p$
 - Does not automatically reduce time complexity.
- Key ideas: Independence and Conditional independence

		Shared Ancestor (of at least one)?		
		No	Yes	
Shared Descendant (of both)?	No	Independent	Dependent unless shared ancestor value is known	
,	Yes	Independent unless shared descendant value is known	Dependent unless shared ancestor value known AND shared descendant value unknown	