Lecture 16: Exam 1 Review

Mark Hasegawa-Johnson

These slides are public domain: Copy at will

Outline

- How to take the exam
- What's on the exam
- Sample problems

How to take the exam

- Go to https://cbtf.Illinois.edu, choose CS440/ECE448 exam 1, and register the time and location where you will take the exam
- If you can't register at cbtf.Illinois.edu, contact us on campuswire

How to take the exam

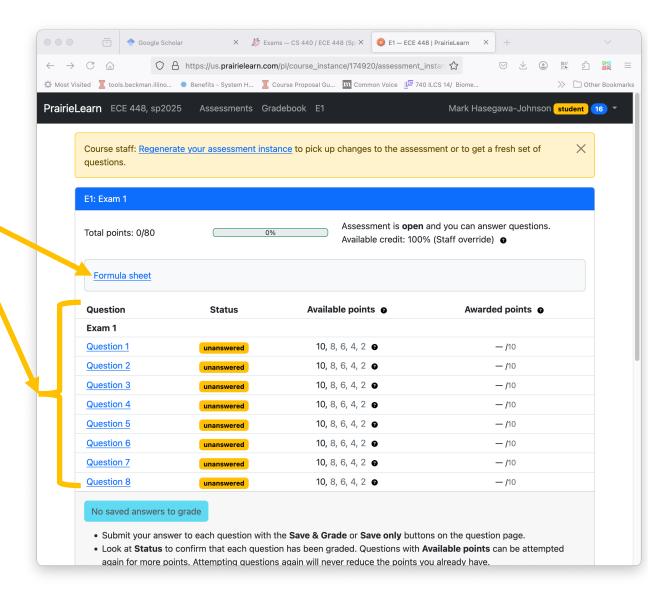
- Show up on time at the appointed location! It's possible to reschedule if you miss an exam, but it will require you to go to a CBTF location to apply in person for permission to do so.
- Bring: Pencils and erasers
- CBTF will provide: Scratch paper
- The exam will have attached: a PDF formula sheet, which is also available now on the course web page, so you can see what will be on it

Exam format

- The exam will have 8 questions.
- Most or all will be questions that you have seen in daily quizzes. Most are multiple choice, though some are short-answer.
- Points per question: 10,8,6,4,2 if you get it right on the first, second, third, fourth, fifth try.

Exam format

- Formula sheet
- Questions to answer



Outline

- How to take the exam
- What's on the exam
- Sample problems

Topics

- Probability
- Decision theory and fairness
- Naïve bayes
- Learning and linear regression
- Logistic regression and word2vec
- Nonlinear regression and relevance backprop
- Softmax and transformer
- HMMs and Bayesian networks

Probability

• Axioms of probability:

$$P(A) \ge 0, P(\Omega) = 1, P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Jointly random variables

$$P(X = x) = P(X_1 = x_1, \dots, X_n = x_n)$$

Conditional Probability

$$P(X,Y) = P(X|Y)P(Y)$$

• Independence

$$P(X|Y) = P(X) \Leftrightarrow P(X,Y) = P(X)P(Y)$$

• Expectation

$$E[f(X,Y)] = \sum_{x,y} f(x,y)P(X=x,Y=y)$$

Decision theory

• Minimum Probability of Error = Maximum *A Posteriori* Probability: $f(x) = \operatorname*{argmax}_{\mathcal{V}} P(Y = y | X = x)$

Bayes Error Rate:

Bayes Error Rate =
$$\sum_{x} P(X = x) \min_{y} P(Y \neq y | X = x)$$

• Confusion Matrix, Precision & Recall, Sensitivity & Selectivity

Precision & Recall, Sensitivity & Selectivity
$$Precision = P(Y = 1 | f(X) = 1) = \frac{TP}{TP + FP}$$

$$Sensitivity = Recall = P(f(X) = 1 | Y = 1) = \frac{TN}{TP + FN}$$

$$Selectivity = P(f(X) = 0 | Y = 0) = \frac{TN}{TN + FP}$$
and Test Corpora

Train, Dev, and Test Corpora

Naïve Bayes

• MPE = MAP with Bayes' rule:

$$f(x) = \underset{y}{\operatorname{argmax}} (\log P(Y = y) + \log P(X = x | Y = y))$$

naïve Bayes:

$$\log P(X = x | Y = y) \approx \sum_{i=1}^{n} \log P(W = w_i | Y = y)$$

• maximum likelihood parameter estimation:

$$P(W = w_i | Y = y) = \frac{\text{Count}(w_i, y)}{\sum_{v \in V} \text{Count}(v, y)}$$

• Laplace Smoothing:

$$P(W = w_i | Y = y) = \begin{cases} \frac{k + \text{Count}(w_i, y)}{k + \sum_{v \in V} (k + \text{Count}(v, y))} & W = OOV \text{ is possible} \\ \frac{k + \text{Count}(w_i, y)}{\sum_{v \in V} (k + \text{Count}(v, y))} & \text{otherwise} \end{cases}$$

Three Definitions of Fairness

- Demographic Parity: P(f(X)|A=1) = P(f(X)|A=0)
- Equal Odds: P(f(X)|Y, A = 1) = P(f(X)|Y, A = 0)
- Predictive Parity: P(Y|f(X), A = 1) = P(Y|f(X), A = 0)

Those three things can only all be true, all at the same time, if:

• P(Y|A = 1) = P(Y|A = 0)

Learning

- <u>Biological inspiration</u>: Neurons that fire together wire together. Given enough training examples (x_i, y_i) , can we learn a desired function so that $f(x) \approx y$?
- Classification tree: Learn a sequence of if-then statements that computes $f(x) \approx y$
- Mathematical definition of supervised learning: Given a training dataset, $\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}$, find a function f that minimizes the risk, $\mathcal{R} = \mathbb{E}[\ell(Y, f(X))]$.
- <u>Overtraining</u>: $\mathcal{R}_{\text{emp}} = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i))$ reaches zero if you train long enough.
- <u>Early Stopping</u>: Stop when error rate on the dev set reaches a minimum

Linear Regression

Definition of linear regression

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

Mean-squared error

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_i, \qquad \mathcal{L}_i = \frac{1}{2} \epsilon_i^2, \qquad \epsilon_i = f(\mathbf{x}_i) - y_i$$

Gradient descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{\partial \mathcal{L}}{\partial \mathbf{w}}, \qquad \frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \frac{1}{n} \sum_{i=1}^{n} \epsilon_i \mathbf{x}_i$$

• Stochastic gradient descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{\partial \mathcal{L}_i}{\partial \mathbf{w}}, \qquad \frac{\partial \mathcal{L}_i}{\partial \mathbf{w}} = \epsilon_i \mathbf{x}_i$$

Logistic Regression

Logistic regression

$$f(\mathbf{x}_i) = \sigma(\mathbf{x}_i^T \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{x}_i^T \mathbf{w}}}$$

Derivative of the sigmoid

$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z))$$

Derivative of the negative log sigmoid

$$\mathcal{L} = -\sum_{y_i=1}^{S} \log \sigma(\mathbf{x}_i^T \mathbf{w}) - \sum_{y_i=0}^{S} \log(1 - \sigma(\mathbf{x}_i^T \mathbf{w}))$$

word2vec

Continuous bag of words:

$$\mathcal{L} = -\frac{1}{T} \sum_{t=0}^{T-1} \sum_{j=-c, j \neq 0}^{c} \ln P(w_t | w_{t+j})$$

• Skip-gram:

$$\mathcal{L} = -\frac{1}{T} \sum_{t=0}^{T-1} \sum_{j=-c, j \neq 0}^{c} \ln P(w_{t+j}|w_t)$$

• Dot-product similarity:

$$\mathcal{L} = -\frac{1}{T} \sum_{t=0}^{T-1} \sum_{i=-c, i\neq 0}^{c} \ln \sigma(\boldsymbol{v}_1^T \boldsymbol{v}_2)$$

• Skip-gram noise contrastive estimation:

$$\mathcal{L} = -\ln \sigma(\boldsymbol{v}_{t+j}^T \boldsymbol{v}_t) - \frac{1}{k} \sum_{i=1}^k \ln(1 - \sigma(\boldsymbol{v}_i^T \boldsymbol{v}_t))$$

Nonlinear regression

Piece-wise constant nonlinear regression:

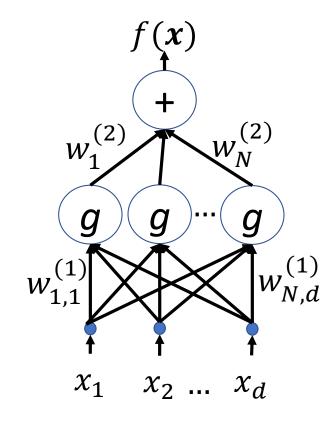
$$f(\mathbf{x}) = \mathbf{w}^{(2),T} \sigma \big(\mathbf{W}^{(1)} \mathbf{x} \big)$$

• Piece-wise linear regression:

$$f(x) = w^{(2),T} \operatorname{ReLU}(W^{(1)}x)$$

Back-propagation:

$$W^{(1)} \leftarrow W^{(1)} - \eta \frac{\partial \mathcal{L}_i}{\partial W^{(1)}}$$
$$w^{(2)} \leftarrow w^{(2)} - \eta \frac{\partial \mathcal{L}_i}{\partial w^{(2)}}$$



Softmax

Multi-class linear classifiers

$$f(x) = \operatorname{argmax} Wx$$

• One-hot vectors

$$f_c(\mathbf{x}) = \mathbb{I}_{\operatorname{argmax} \mathbf{W}\mathbf{x} = c}$$

Softmax nonlinearity

$$f_c(\mathbf{x}) = \frac{\exp(\mathbf{w}_c^T \mathbf{x})}{\sum_{k=1}^{v} \exp(\mathbf{w}_k^T \mathbf{x})}$$

Derivative of the log softmax

$$\mathbf{w}_c \leftarrow \mathbf{w}_c + \eta \sum_{i=1}^n \left(\mathbb{1}_{y_i = c} - f_c(\mathbf{x}) \right) \mathbf{x}_i$$

Transformer

• Query, Key, and Value matrices

$$m{V} = egin{bmatrix} m{v}_1^T \ dots \ m{v}_n^T \end{bmatrix}$$
 , $m{K} = egin{bmatrix} m{k}_1^T \ dots \ m{k}_n^T \end{bmatrix}$, $m{Q} = egin{bmatrix} m{q}_1^T \ dots \ m{q}_m^T \end{bmatrix}$

Attention

$$c_i = V^T \text{softmax}(Kq_i) = \sum_t \frac{\exp(q_i^T k_t)}{\sum_{\tau} \exp(q_i^T k_{\tau})} v_t$$

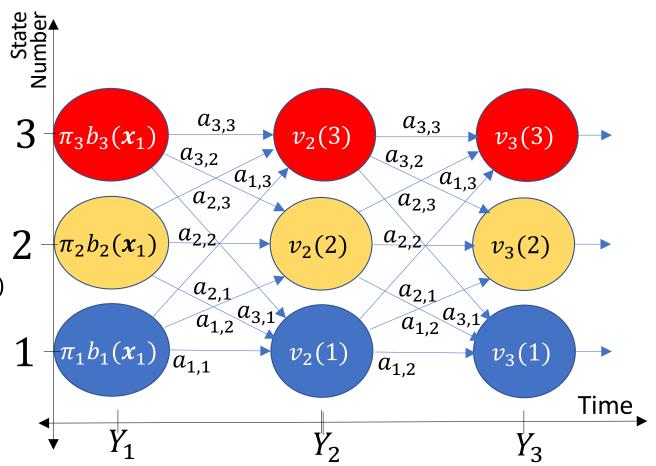
Positional encoding

$$\mathbf{x}_t += \begin{bmatrix} \cos\left(\frac{\pi t}{T}\right) \\ \sin\left(\frac{\pi t}{T}\right) \end{bmatrix}$$

HMM: Viterbi Algorithm

$$v_t(j) = \max_{i} v_{t-1}(i) \, a_{i,j} b_j(x_t) \quad 2$$

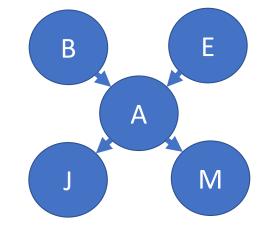
$$\psi_t(j) = \underset{i}{\text{argmax}} \, v_{t-1}(i) \, a_{i,j} b_j(x_t)$$



Bayesian Networks

- Bayesian network: A better way to represent knowledge
 - Reduces space complexity from $\mathcal{O}\{v^n\}$ to $\mathcal{O}\{nv^p\}$
 - Does not automatically reduce time complexity.
- Key ideas: Independence and Conditional independence

		Shared Ancestor (of at least one)?	
		No	Yes
Shared Descendant (of both)?	No	Independent	Dependent unless shared ancestor value is known
	Yes	Independent unless shared descendant value is known	Dependent unless shared ancestor value known AND shared descendant value unknown



Explainable Al

• Relevance of input x_d to output z_c :

$$R_{c,d} = \frac{\partial z_c}{\partial x_d} \cdot x_d$$

- Layer-wise relevance propagation: Normalize so $\sum_d R_{c,d} = R_c$
- Gradient-weighted class activation mapping: Keep only positive relevances
- Counter-Factual Reasoning:

$$\max_{F,X} |P(F,X,A=a) - P(F,X,A=\neg a)| > \epsilon?$$

• If the answer is yes, then you should add an edge between A and F

Outline

- How to take the exam
- What's on the exam
- Sample problems

Sample problems

- You can do the daily quizzes again, as often as you like
 - Only your highest score counts toward your grade (presumably this is the one you received the first time you did the quiz, when 100% was possible)
 - After you get a problem correct, you can click "Try a new variant" to try a new variant
- Sample exam is available
 - Coverage is similar to the exam next week
 - Style of questions is quite different

Sample problems

- Sample problems
 - NOT the same format as the real exam
- Formula sheet
 - SAME as the real exam

