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Duty Ratio -- Modulation
• Modulation

In this case, we should be able to vary the duty 
ratio slowly.

• This is PWM.

tri j k( )

pwm j k m( )

ref j m( )

j
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How Does it Work?

• Imagine a buck converter, switching at 200 kHz, 
with 1% ripple.

• If we slowly adjust D, the average output is Vout
= D vin.

• What if D is a 1 Hz waveform, like D = 0.5 + 0.1 
cos(2t)?
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How Does it Work?

fswitch at 200 kHz 
Choose L for +1% ripple
Adjust D at 1 Hz

#1

L

VIN VOUTR#2



Engineering at IllinoisEngineering at Illinois

771

PWM

• Then we expect the output to be very close to 
DVin.

• Now, vary D more generally:        
d(t) = 0.5 + 0.5 k m(t)

• k is a constant between 0 and 1.
• m(t) is any time waveform between -1 and +1.
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PWM

D(t) = 0.5 + 0.5 k m(t)

k is “gain”,  0 < k < 1

Vout(t) = d(t) Vin

m(t) is an arbitrary time 
function between –1 and +1

This is a moving average
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Output Series

• We can write the actual switch matrix output, 
vout = q(t) Vin.

• This gives a useful Fourier series IF the 
frequencies in m(t) are well below the switching 
frequency.
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Output Series
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Output Series

• This is not in the form of a Fourier Series, since 
there is a term sin[m(t)].
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Output Series
If m(t) = cos (OUTt),

Then terms are
sin (n/2 k cos (OUTt)) cos (nSWITCHt)

Bessel functions provide a way to reduce it

sin (a cos (outt))  2Jm(a) cos (moutt)
(for odd values of m)
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Output Series

• This means the first part becomes a set of terms 
in multiples of the output frequency.

• Now, we have terms like
( ) cos(m out t) cos(n switch t)

• Trig identities give terms
( ) cos[(n switch ± m out)t]
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Output Series
The Fourier terms include: 

dc + kVin/2 cos (OUTt) 

+ 2Vin/( ) cosnSWITCH + mOUT)t]
If switch >> out, we can filter out the series (low-

pass), and are left with dc and 
kVin/2 cos(outt)
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Output Series
• Example:
• Switch at 200 kHz 

m(t)    at   60 Hz
• We get dc, then 60 Hz, then 

n 200 kHz + n 60 Hz
• Summary:  0 Hz, 60 Hz, 199940 Hz, 200060 

Hz, 199880 Hz, 200120 Hz, etc.
• Wide separation  easy filtering
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Inverter

• m(t)  “Modulating function” with ωm.
• Switch much faster than m.

• Example, 60 Hz modulation, 2820 Hz switching.
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Inverter

VIN

IOUT(t)  ?

PWM

L

R
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Inverter
• For two-level PWM, use ±Vin.
• This requires q11 = q22, so now 

vout = (2q11 – 1) Vin.
• Let d11(t) = 0.5 + 0.5 k cos(outt).

• Now vout = kVin cos (OUTt) 

+ 2Vin/( ) cosnSWITCH + mOUT)t]
• No dc.  Low pass filter to get 

kVin cos (OUTt) 



Engineering at IllinoisEngineering at Illinois

783

Components

• The unwanted components are near multiples of 
the switching frequency.

• Filtering involves a simple low-pass operation.
• Fast switching = high quality.
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How to Create PWM?

• Presumably, we have a modulating function 
m(t).

• This gives a voltage level as a function of time.
• We must convert it to a pulse width – a time 

value based on level.
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Doing This

• A triangle has a linear value as a function of 
time.

• PWM involves a comparison between a 
modulating function m(t) and a carrier function.

• A triangle carrier gives a linear change from 
level to width.
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PWM Process

• It is actually very easy to create a triangle (at 
high frequency), then compare it to a desired 
function.

• If the carrier frequency is much higher than the 
modulating frequency, a successful PWM 
process results.

• The value k is called the depth of modulation.
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PWM Process

+

_ q(t)carrier

m(t)

1) HIGH if m(t) > carrier
2) LOW  if m(t) < carrierOUT:

 q (t)
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How to Create PWM?

PWM, plus ripple on output current

L

R

 i = ( )
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Multi-Level PWM
• We can also switch among other levels:  +Vin, 

0, +Vin/2, etc.
• The case with zero is “three-level PWM.”
• Some people use five-level and even seven-

level PWM, sometimes more.
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3-Level PWM

• Switch between 0 and +Vin when m(t) > 0
• Switch between 0 and -Vin when m(t) < 0

trip j k( )

s3lev j k m( )

ref j m( )

trin j k( )

j
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PWM Examples

• Consider a high-quality backup power 
application.

• We desire 120 VRMS at 60 Hz into loads 
from 5 W to 500 W. The ripple around the 
nominal current sine wave should not 
exceed  +10 mA.
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PWM Example

• First, what bus voltage is needed?
• Since 120 VRMS corresponds to 170 Vpeak, we 

need at least 170 V at the input.
• This could come from a rectifier or from a 

backup battery set.
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PWM Example

120 VRMS  170 V peak

VIN
L R

Vin ~ 170 V
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Backup power methods
1. Standby U. P. S.

UPS  uninterruptible power supply
2. On-line U. P. S.

DC
BUS

PWM
INVERT

LOAD

PRIMARY
SOURCE
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Backup power methods

3. Rectified input or battery input

180 V
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PWM Example

• At this power level, it is reasonable to switch at 
20 kHz or more. Let us choose 40 kHz (rather 
arbitrary).

• Depth of modulation is 100% for rectifier input, 
and about 94% for a 180 V battery.
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PWM Example
fSWITCH   ?

5 W to 500 W

fSWITCH  ~ 20 kHz to 100 kHz

Choose ~ 40 kHz
m(t) = k cos(120t)
vOUT k vin cos(120t)
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PWM Example
fSWITCH   ?

vin ~ 170 V
k ~ 1

100% depth of modulation

vin ~ 180 V
k ~ 0.94

94% depth of modulation
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Ripple

• To check ripple, consider the 0 modulation case.
 Then the signals are all ripple.
• A square wave (180 V peak) is imposed on an L-

R circuit.
• The average output is intended to be zero.
• Thus vL = L di/dt, 180 V = L i/t.
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Ripple Inductor

• The period is 25 us, so 180 V is exposed to the 
inductor for 12.5 us.

• We need i < 0.02 A.
• L > 0.113 H.
• This is quite large, and we could benefit from a 

capacitor.
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Ripple Inductor

(120 ) (0.113) ~ 42 

ωL ~ near 0 at 60 Hz

VIN

L R

0.113 H at 60 Hz

 high at 40 kHz
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More Detail

• Let L = 20 mH instead.
• This gives i = 0.113 A.
• A capacitor across the load will see this ripple 

current.
• From Chap. 3, the voltage ripple with be about 

T/(8C), so 40 uF could drop the ripple enough.
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More Detail

C = 47F
Xc = 1/(120 )(47f)

VIN
L

R

C
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Design Sequence
• Select input so the maximum desired output 

can be reached.
• Select a switching frequency.  Typical:

– If Pout > 10 kW, the range today is 10-15 kHz.
– If Pout > 1 kW, the range today is 10-40 kHz.
– At lower power levels, 20-100 kHz.

• Set the modulation index to zero, then design 
for ripple level.

• Be sure the filter has little effect at fout.
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PWM Rectifiers
• We can always reverse the input and output 

source labels.
• This would become a rectifier application that 

involves dc voltage sources.
• The switches already handle ac current and dc 

voltage, so no change there.
• What if our “ac current source” is an ac voltage 

in series with L?
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PWM Rectifiers

INPUT

OUTPUT

PWM
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PWM Rectifiers

after filteringvOUT = kVin m(t)

+vLOADL

vOUT+ -

-
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PWM Rectifiers

• This is the basis of PWM rectifiers.
• In these circuits, the input current is controlled 

by PWM to be nearly sinusoidal.
• In fact, we should be able to modulate to follow 

any current.
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PWM Rectifier Circuit
• Take a simple version in one quadrant.
• A full-wave voltage is imposed, through an 

inductor as the input to a “reversed buck” 
converter.

• This is just a boost converter.
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Boost Rectifier
• As long as the input waveform changes slowly, 

we can adjust the duty ratio to provide a given 
output.

• Recall that Vin = D2 Vout.
• Now vin = |V0 cos(in t)|.
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Boost Rectifier

D ~ 1/2 + km(t)
D ~ | cos (t)|,  low

0 to 100%
Switching is fast!
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Boost Rectifier

If VOUT > Vin peak

L

C
R

+

_
outV

v in (t)

Vinboost
~ |V0 cos (int)|

VOUT is fixed
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Boost Rectifier

Boost on average,   

Set D2,,  so that

Vin = D2 VOUT

d2 = |V0/VOUT cos (int)|
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Boost Rectifier

• What if d2 = V0/Vout |cos(in t)|?
• Then the input properly matches the intended 

input voltage.
• What about the current?  As in the PWM case, 

the input current should follow the modulating 
function.
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Boost Rectifier

|V0/VOUT cos (int)| VOUT = vin

SLOW

|v0 cos (int)|  vin

Rectifier  no filter

Switching  FAST
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Boost Rectifier
For instance:

Parts  small

120 V
RMS

 DC-DC for output
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Boost Rectifier

PWM Inverter

Output into an ideal 
current source

waveform m(t)
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Inverter examples:
VSI with four alternative inputs:
1. Rectified 1 source 230V
2. Rectified 3 source 208V 
3. Batteries
4. Solar panel source

Motor 
load, 1

VIN M



Engineering at IllinoisEngineering at Illinois

819

Inverter examples:
Motor:

VVSI~ 4Vin/ cos (/2) cos (SWITCH t) 

230 V  230 2 ~ 325 V
208 V  208 2 ~ 295 V

230 V, 1Hz, 5 HP
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Inverter examples:

24Vin/ cos (/2) = 230  

Vbat ~ 300 V (x 12 V ) 

Vsolar ~ 300 V (600 cells x 0.5 V/cell )

Want an output of 230 V RMS
(325 V peak)
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VSI Example
• Source Delta

230 V ac 76°
208 V ac 60°
300 V dc 63°

• In general, any bus potential down to 255 V 
can be supported.

• For 208 V 3 with filter, bus is 243 V, and  = 
0 gives 219 V RMS (works).

• That extra 27% is quite useful.
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Ac Regulators

• A true ac-ac converter gathers energy at one 
frequency and delivers it at another.

• The actual most common “ac-ac converters” are 
only partial in the senses we usually use.
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Ac Regulators

• We might want to control energy flow without 
frequency change.

• An ac regulator is a converter that manipulates 
energy flow between a source and load in a 
single-frequency ac system.
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Applications

• Applications include incandescent light 
dimmers, heater controls, microwave ovens, 
hand tools, and some motor starters.

• Most ac regulators rely on a resistive load, or 
maybe a very slightly inductive load.
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Ac Regulators

2,2

1,21,1

2,1

fout

fin

finfout

Load

Adjust P

General ac-ac converter More basic ac regulator function
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Ac Regulators

vin R

Resistive version
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Ac Regulators
• Power:  <P> = < v(t) i(t) >
• For a resistive load:  <P> = < v(t) v(t)/R > and 

<P> = (1/R) < v(t)2 >.
• Recall that the RMS value is

• So <P> = (1/R) (vRMS
2)

2

0

1 ( )
T

msV v t dt
T

 
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Circuits and Cases

• If a load is resistive, we can vary the power by 
altering the connection time.

• Resistive loads make this easy and predictable 
with SCRs.

• Slightly inductive loads can be handled, but less 
predictably.
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Resistive Loads

• In this case, there is no single wanted 
component.

• All harmonics deliver energy into a resistor.
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Concept

With ideal diodes, there is no change in power 
flow (no turn-on delay).

vin
R
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Basic Regulator

• Use SCRs instead.  Now a delay angle can be 
added.  Power decreases with delay.

vin
R

vout
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Regulator Analysis

• We define a delay angle , based 
on diode waveforms as =0.

• With a resistive load, turn-off occurs 
at a later zero crossing.

• Alternative device:  the triac acts as reverse-
parallel SCRs with a single gate.  Good for ac 
regulators.
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Regulator Analysis

• <P> = vRMS
2/R.  The RMS voltage is

 












dVvRMS

22
0 sin1
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Regulator Analysis
• This integral yields

• The average power is the square of this 
divided by R.

• The valid range is 0° <  < 180°







4
2sin

22
1

0 VvRMS
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Regulator Analysis
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Inductive Loading
• When the load is inductive, turn-off is delayed.
• Turn-off occurs when current reaches zero, 

which will be delayed from the voltage zero.
• The power depends on L.
• Turn-off angle shown as β.
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Regulator Analysis with L

• The power will be lower than for the same 
resistor alone.
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Integral Cycle Control

• It is also possible to use SCRs or triacs to 
“meter” out the ac waveform on a cycle-by-cycle 
basis.

• For example, turn the waveform on for 5 cycles, 
then off for 5 cycles.
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Integral Cycle Control

This will deliver adjustable power in a direct 
way.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1

0

1

Integral cycle
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Integral Cycle Control

• This is a simple way to control energy flow to 
some types of loads.

• It cannot be used for lighting or for motors, but is 
sufficient for heating.

• If we switch on multi-second time scales, this 
works for many loads.
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Integral Cycle Control

• The trouble with this is subharmonics --
frequency terms below both the input and output 
values.

• For example, a 1-cycle on, 9-cycle off 
arrangement generates 6 Hz in a 60 Hz 
application.
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Final Comments

• Notice that ac regulators function by allowing all 
switches to turn off.

• There are times when no KCL path is required.
• This action is called discontinuous mode, since 

current paths are not always required.
• Ac regulators are a common example.
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Discontinuous Mode

• In other converters, we used large L and large C 
to form near-ideal sources and loads.

• In these cases, KVL and KCL make the switch 
action definite and pre-determined.

• In DCM, the switch action depends on load.
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How Large?
• When is L “large enough”?
• So far, we have some time constant 

arguments.
• The time constant should be much larger 

than the period,    L/R =  >> T.
• Similar arguments for C.
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Exceptions
• In ac regulators, we prefer small L, and 

make sure all switches turn off part of the 
time.

• In dc-dc converters, light loads imply that 
sometimes it might be hard to maintain 
current flow for a given inductor.

• Limit example:  buck converter with 
open-circuit output?
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Buck Converter
• Vout = D1 Vin

• What if the load is disconnected?
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Open Circuit Output

• When the switch turns on, the capacitor 
will charge to +Vin, like a classical rectifier.

• It never discharges.  Vout = Vin at all duty 
ratio values.

• So what happened to D1Vin?
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Discontinuous Mode

• What if an inductor energy or capacitor 
energy reaches zero at some point 
during a cycle?

• If inductor current drops to zero, no 
current path is needed (KCL).

• The path is discontinuous, and the 
converter is in discontinuous mode.
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Implications
• In discontinuous mode, the KVL and 

KCL constraints change.
• We can have intervals with all switches 

off or all switches on without violations.
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Some dc-dc Converters
• In a buck, boost, or buck-boost converter, 

discontinuous mode generally means 
that q1 + q2 < 1.

• The average result is D1 + D2 < 1.
• We have lost one of the equations used 

previously for analysis – have an extra 
unknown.
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Buck-Boost Example
• Even so, in any converter, <vL> = 0.
• This holds true no matter what the 

inductor value might be.
• In some converters, DCM applies to a 

capacitor, and there could be times when 
two switches can be on without violating 
KVL.

• It is still true that <iC> = 0.
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Buck-Boost Example

• Low output ripple requires C large.
• What about the choice of L?

L

iin

Is

R

id

C
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Buck-Boost Example
• Large L --> IL ~ constant.
• vL = q1 Vin + q2 Vout

• <vL> = 0 = D1 Vin + D2 Vout

• iin = q1 IL,  <iin> = D1 IL
• Input power Pin = D1 IL Vin

• id = q2 IL, <id> = D2 IL = Iload

• Output power Pout = D2 IL Vout

• IL > 0, q1 + q2 = 1, D1 + D2 = 1.

Same
relationships

as before
in Chap. 4.
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Buck-Boost Example
• Now use a smaller L, but still large 

enough to maintain positive energy.
• We still have D1 + D2 = 1, and analysis 

shows that the averages have not 
changed.
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Buck-Boost Example
• We still have vL = q1 Vin + q2 Vout, and

<vL> = D1 Vin + D2 Vout = 0.
• BUT, consider that <iin> = <q1iL> might 

not be equal to <q1><iL>, since iL now 
varies significantly.

• Try one of these waveforms:  it turns out 
that <iin> is still D1< iL>.

• We can check others.
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Buck-Boost Example
• All the original relationships hold with 

<iL> taking the place of IL.
• The switches still must alternate to 

provide a current path.
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Buck-Boost Example
• Drop the inductor still more, until the 

current is just barely above 0.
• We still require D1 + D2 = 1 to meet KCL.
• The average relationships still hold!
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Buck-Boost Example
• The relationships continue to be valid 

until iL just touches zero.
• Notice that provided L is large enough to 

enforce iL > 0, the average relationships 
still hold.

• As long as iL > 0, the average 
relationships are the same as for L --> !
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Buck-Boost Example
• This is the ultimate answer to “how 

large?”.
• If the inductor is big enough to maintain 

current flow (so that its energy never 
drops to 0), the average relationships 
match those for L  .

• The smallest inductor that enforces iL > 0 
is called critical inductance.
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Critical Inductance

• So, if L > Lcrit, then the inductor is “big enough” 
to support the ideal relationships.

• Similar ideal: a capacitor that is large enough to 
maintain its energy above zero will support the 
ideal relationships.

• The smallest capacitor for which vC > 0 would be 
the critical capacitance.
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Buck-Boost Example
• What if L is smaller, L < Lcrit?
• Now, with switch #1 on, the inductor 

current ramps up linearly.
• When the diode turns on, the current falls 

to zero.
• Then both switches turn off.
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Buck-Boost Case

• Low output ripple --> C large.
• The action when L < Lcrit.

L

iin

Is

R

id

C
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Exploring Relationships

• The buck-boost case.
• The peak inductor current is VinD1T/L.  The 

average input current is D1 iL(peak)/2.
• D2 is now unknown.
• But because Pin = Pout, we can find Vout in terms 

of Vin, D1, R, T, L.
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Discontinuous Mode

Now <iin>  D1 <iL>.

R

iL

inV

iL

iiin d

iL
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Relationships

• <iin> = <q1iL>,
• The average can be integrated to give

<iin> = 1/2 D1 iL(peak).

• On the output side, <id> = 1/2 D2 iLpeak

• But now, what about D2?  Don’t know it.

i in i d

i iin d

21D V =in -D Vout
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Begin Day 8  -- Relationships
• What is the peak current?

– Since vL = L di/dt, with #1 on we find
– ipeak = Vin D1 T/L

• The expression Pin = Pout gives us the 
second equation needed to complete the 
analysis.

• Pin = <Vin iin> = Vin <iin>
= Vin (D1/2)(Vin D1 T/L)
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Output Values
• Now, Pin = Vin

2 D1
2 T/(2L) = Pout

• Pout = Vout
2/R

• We have

• The solution is

when D1 + D2 < 1.

L
TDV

R
V

in
out

2

2
12

2


L
RTVDV inout 21
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Output Values

• The output magnitude is higher than would be 
expected with large L.

• In the end, the relationships listed in the text are 
the results.
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Summary of Relationships

• We can analyze any dc-dc converter based on 
energy conservation.

• Conservation holds even when average 
relationships become more complicated.
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Why Does It Matter?

• Why not choose sufficient L or C to avoid 
discontinuous mode?
– At light loads, this is not always possible.
– There are certain advantages to discontinuous mode.
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Advantages - DCM

• For current, each cycle is the same whether first 
starting or in steady state.  Response is very 
fast.

• Low L.
• Extra output voltage (is this is useful?).
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Disadvantages - DCM

• Output depends on load.
• Tendency toward magnetic saturation.
• Sometimes hard to keep the output voltage 

constrained.
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Light Load

• In general, there is always a DCM when the load 
power is low enough.

• This would suggest that we cannot assume 
continuous mode for design.

• One problem is that ripple is extreme in DCM.
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Ballast Load

• We can choose a minimum load to ensure 
continuous mode.

• One alternative is a ballast load:  an extra 
resistance inside the converter that keeps it out 
of discontinuous mode.

• We keep it low (e.g. 1% load).
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Definition

• The minimum value of L that is sufficient to 
maintain positive current is called the critical
inductance Lcrit.

• If L > Lcrit, current flow is maintained, and 
average relations hold as before.
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Critical Inductance

• Notice that if L = Lcrit, the inductor current ripple 
is +100% of the average current.

• Now we see the implications:  If  L > Lcrit, the 
converter action is pre-determined, and follows 
basic average relationships.
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Critical Inductance
• Critical inductance is an excellent design tool.

– It is easy to compute.
– Ripple is ±100% when L = Lcrit.

• Ripple is inversely proportional.
– If L = 10 Lcrit, then ripple is ±10%
– If L = 50 Lcrit, then ripple is ±2%   …
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For Converters

• Most converters have a range of operation 
rather than a single point.

• We need to define critical inductance for a 
converter, Lcrit, such that iL > 0 for all allowed 
operating conditions.
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For Converters
• To ensure continuous mode, L > Lcrit (for the 

converter).
• In contrast, to ensure DCM, L must be less 

than the lowest critical value.
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Capacitance

• In most circuits, ripple means the capacitors are 
far above the critical values.

• Exceptions are converters that have transfer 
voltage sources.

• The boost-buck is one example.
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Capacitance

• If the capacitor in a boost-buck allows its energy 
to drop to zero, there are times when both 
switches can be on without KVL problems.

• Diodes do this automatically.
• Now D1 + D2 > 1.
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Analysis

• The analysis is similar, since energy is 
conserved.

• For this converter, the output falls if the capacitor 
is too small for continuous mode.

• We can also have discontinuous modes 
involving the inductors.
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Concepts

• The concepts of critical inductance and 
capacitance apply to all types of converters.

• Many applications deliberately use 
discontinuous mode.  It is essential for ac 
regulators.
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Load Example

• A buck converter for 48 V to 12 V conversion 
operates at 50 kHz.  It has L = 100 uH, C = 100 
uF.  What is the minimum load to avoid DCM?

• The answer is that load for which L matches Lcrit.
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Load Example

• Consider just a load current.
• Since the load current matches <iL>, when L = 

Lcrit, the peak inductor current is twice Iload.
• The duty ratio is 25%.
• When #1 is on, vL = 36 V.
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Load Example
• 36 V = L di/dt = Lcrit (2Iload)/(D1T).
• With Lcrit = 100 uH and D1T = 5 us, we have 

Iload > 0.9 A.
• The load power would need to be at least 

10.8 W.
• We could add a ballast load to meet this 

minimum, although this would only be 
appropriate if Pout >> 10.8 W.
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Ballast Load Case

• To make Pout(min) smaller, we have several 
choices:
– Larger inductor
– Faster switching
– Ballast load
– Some combination
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Ballast Load Example
• Example:  Raise the switching frequency to 

100 kHz.  The inductance now matches the 
critical value at 5.4 W load.

• Raise the inductor to 250 uH instead.  Now 
the minimum load is 2.16 W.

• Add a 56  ballast resistor.  This will draw 
2.57 W and drops the minimum output 
power to zero.



Engineering at IllinoisEngineering at Illinois

889

Boost Example
• A boost converter has input in the range of 

8 V to 25 V, and an output of 50 V.  The 
allowed load ranges from 0 W to 200 W.  
The switching frequency is 50 kHz.  The 
output capacitor is large.

• Find Lcrit for this converter.
• Also find the inductance that ensures DCM 

operation under all conditions.
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Solution
• As stated, the answer is Lcrit  , 

because the minimum load is 0 W.
• We will need to add a ballast load to 

support a finite inductance.
• There is no single answer, but let us pick 

2 W as the ballast load to give a valid L 
with only 1% extra power loss.
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Solution
• Now we have an input inductor current equal 

to Pout/Vin, with a Pout range of 2 W to 202 W 
and a Vin range of 8 V to 25 V.

• We have D2 = Vin/Vout.
• If the inductor matches Lcrit, the current ripple 

is twice the average, and iL = 2Pout/Vin.
• With the transistor on, Vin = L iL/t.
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Solution
• Since iL is known, we can solve to get 

VinD1T/Lcrit = iL = 2Pout/Vin, and 
Lcrit = Vin

2D1T/(2Pout).
• We need the value that works in all cases – the 

largest.  But Vin and D1 are not independent:  
D1 = 1 – D2 = 1 – Vin/Vout.

• Lcrit = Vin
2(1-Vin/Vout)T/(2Pout).

• Highest value at 2 W out and at 33 V, but our 
input only extends to 25 V.
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Solution
• The end result is 1.56 mH.  We should set L > 

1.6 mH to avoid DCM with a 2 W ballast load.
• Now, what if we want to ensure DCM instead.  

Need the lowest value, then set L lower.
• Occurs at 202 W load and 8 V in.
• L < 2.66 uH in this case.
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Summary

• Critical inductance:  the value just big enough 
to maintain iL > 0.  This avoids DCM.

• Critical capacitance:  the value just big enough 
to maintain vC > 0.  Again avoids DCM.

• Concepts apply to all converters.
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Rectifier

• Consider Lcrit in an m-pulse rectifier.
• When the load is just series R-L, the critical 

inductance is zero under some conditions.
• If we add load filter capacitance, we have to 

compute Lcrit.
• The ripple is no longer triangular, but we still 

know what is happening.
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Rectifier
• If L = Lcrit, we know that the current minimum is 

exactly zero.
• The current also returns to zero at the end of 

each period.
• The average current must be consistent with 

the load


