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Plan of the Lecture

» Review: prototype 2nd-order system

» Today’s topic: transient response specifications

Goal: develop formulas and intuition for various features of the
transient response: rise time, overshoot, settling time.

Reading: FPE, Sections 3.3-3.4; lab manual



Prototype 2nd-Order System

w?

H(s) = n
() $2 + 2Cwp s + w2

By the quadratic formula, the poles are:

s = —Cwp twpV/ (%2 -1
= —n (Ci N 1)

The nature of the poles changes depending on (:

» (>1 both poles are real and negative

» (=1 one negative pole

» (<1 two complex poles with negative real parts
§=—0 % jwg

where o= Cwp, wg = wnp\/1— (2



Prototype 2nd-Order System

2

w
H(s) = “ , <1
(5) 52 + 2Cwps + w? ¢

The poles are
5= —Cwp £ jwup V1 - =—0 =% jwy

Im
. wa = wn/T=C2 Note that
! <
- 0w = (Pl 4wl - (%l
o =Cwn 0 Re _ wi
o cosy = Wn =(
n
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2nd-Order Response
Let’s compute the system’s impulse and step response:
2 2
w w
H(s) = L = 4 5
82+ 2wns +w?  (s+0)2+ w3

» Impulse response:

w2 Jwq)w,
h(t)zf‘l{H@)}:f_l{m}
w2 _,

tsin(wgt) (table, # 20)
wq

> Step response:

T e )

=1-e (cos(wdt) +Z sin(wdt)> (table, #21)
wy
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2nd-Order Step Response
w2 (.U2

T 2+ 2wns + w2 (s+0)?+w?

H(s)

u(t) = 1(t) — y(t)=1—e7" <cos(wdt) + wi sin(wdt))
d
where 0 = (wy, and wg = wy/1 — ¢? (damped frequency)
y(®

The parameter ( is called
15) the damping ratio

/\ > ( > 1: system is
100 / overdamped
\/ > ( < 1: system is

— (=01
0.5} £=09 underdamped
— =1 » ( = 0: no damping

e (wa = wn)
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2nd-Order Step Response

2 w?

H — n — n
() $2 4+ 20wps +w?  (s+0)?+w?

u(t) = 1(t) — y(t) =1—e 7" <cos(wdt) + wid sin(wdt)>

where 0 = (w,, and wg = wyp+/1 — ¢? (damped frequency)

We will see that the parameters ¢ and w,, determine certain
important features of the transient part of the above step
response.

We will also learn how to pick ¢ and w,, in order to shape these
features according to given specifications.
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Let’s first take a look at 1st-order step response
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DC gain =1 (by FVT)
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Transient Response Specifications: Rise Time
Let’s first take a look at 1st-order step response

H(s) = . j_ . a>0 (stable pole)

DC gain = 1 (by FVT)

H 1 1
Step response: Y (s) = (5) = a4 ==

y(®
LOppommmssmmmmmmnneeeas [om-soosssszoooo
08! i
0.675 E Rise time ¢,: the time it
| | takes to get from 10% of
04k | steady-state value to 90%
0.275‘ rise time %, E




Rise Time
Step response: y(t) = 1(t) — e

—at

Rise time t¢,: the time it
takes to get from 10% of
steady-state value to 90%

<
)
:

[TI-~~===============7Y{™1




Rise Time
Step response: y(t) = 1(t) — e

—at

Rise time t¢,: the time it
takes to get from 10% of
steady-state value to 90%

[TI-~~===============7Y{™1

05 10 15 20
Examples of rise time:
» car — going from 0 to 60 mph in 7 sec

» oven — reach desired preheat temperature quickly

v

thermostat, building climate control

v

other examples?



Rise Time
Step response: y(t) = 1(t) — e

—at

Rise time ¢,: the time it
takes to get from 10% of
steady-state value to 90%
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Rise Time
Step response: y(t) = 1(t) — e

—at

Rise time ¢,: the time it
takes to get from 10% of
steady-state value to 90%

[T~~~ ============"=7"}™"1

05 10 15 20
In this example, it is easy to compute ¢, analytically:

In0.9

a
In0.1

a

l—e ™01 =01 ™1 =09 (o=

1—e @09 =09 e ™9=01 tog=—



Rise Time
Step response: y(t) = 1(t) — e

—at

Rise time ¢,: the time it
takes to get from 10% of
steady-state value to 90%

[T~~~ ============"=7"}™"1

05 10 5 20

In this example, it is easy to compute ¢, analytically:

n0.9
1o @01 =01 %1 =09 fo; =——
a
In0.1
1= @09 =09 ¢ %09 =01 fyg=——
a

In0.9—-1n0.1 B In9 N 2.2
a T a4  a

tr =t9.9 —to1 =



Transient Response Specs

Now let’s consider the more interesting case: 2nd-order response
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Transient Response Specs

Now let’s consider the more interesting case: 2nd-order response
2 2
2+ 2wps+ w2 (s+0)2+w?

where 0 = Cw, wg = wpy/1 — (2 (<1

Im

H(s)

(oo = T

Re

Step response: y(t) =1—e°¢ (Cos(wdt) +Z sin(wdt)>
Wd



Transient-Response Specs

Step response: y(t)=1—e (cos(wdt) + oii Sin(wdt))
d

y(@)
14,

120
110 S SR W
0.8
0.6F
04[
0.2




Transient-Response Specs

Step response:

y(@)
14,

120
0] Y SN N S
0.8
0.6]
04[
0.2

y(t) =1— et (cos(wdt) + 2 sin(wdt))

Wd

‘ Wy t

2 4 6 8 10

12 14

> rise time ¢, — time to get from 0.1y(co) to 0.9y(co)

» overshoot M, and peak time ¢,

> settling time t; — first time for transients to decay to
within a specified small percentage of y(co) and stay in
that range (we will usually worry about 5% settling time)



Transient-Response Specs

Step response: y(t) =1—e°¢ (Cos(wdt) +Z sin(wdt)>
w,
o) I
14,

12¢

10F---Z ::3:::, L L L L AT e S——— e

0.8F
0.6F

0.4}
02f / |

i} 1 1 wnt
2 4 6 8 10 12 14

» rise time ¢, — time to get from 0.1y(co) to 0.9y(c0)
» overshoot M, and peak time ¢,

» settling time ¢4 — first time for transients to decay to
within a specified small percentage of y(oco) and stay in
that range (we will usually worry about 5% settling time)
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Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?
» t, small
» M, small
> t, small
» t, small

Trade-offs among specs: decrease t, — increase M), etc.
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Formulas for TD Specs: Rise Time

14
12F
10F-Cofoc
0.8F
0.6
04F
02F i

Rise time ¢, — hard to calculate analytically.
Empirically, on the normalized time scale (¢ — wy,t), rise times
are approximately the same

wpty = 1.8 (exact for ¢ = 0.5)

1.8
So, we will work with ¢, ~ — (good approx. when ¢ ~ 0.5)
n



Formulas for TD Specs: Overshoot & Peak Time

y(0)
14,

12F
10E-cof=c
0.8}
0.6F
04F
02F |
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12F
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04F
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Formulas for TD Specs: Overshoot & Peak Time

tp is the first time t > 0 when y/'(t) =0

y(t) =1 — e~° (cos(wdt) + wid sin(wdt)>

2
y'(t) = (U + wd> e 7t sin(wqt) = 0 when wqt = 0,7, 27, ...
Wd

SO t, = —
P g
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14,
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wp t

m
We have just computed ¢, = —
Wd

To find M, plug this value into y(t):

My, =y(ty) —1= —67% (cos (de> + 7 sin (wdw))
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Formulas for TD Specs: Overshoot & Peak Time

()
14,

1.2F

|
) 0] Sty e S X b raptpp

08}
06F
04f
020/ !

|
Wnlp |Wits | ‘ ‘
2 4 6 8 10 12 14

m
We have just computed ¢, = —
Wd

To find M, plug this value into y(t):

My, =y(ty) —1= —67% (cos (de> + 7 sin (wdw))
Wq Wd wq

= exp L exp —L — exact formula
wq /1 — CQ



Formulas for TD Specs: Settling Time
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

) —
t, = min {t 0. W) =¥l g o for all ¢ > t} (here,
o0
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Formulas for TD Specs: Settling Time

y(@)
14
12} "\ | M,
it e e s
os” || 1
o6f [ !
o [ 1
020/ | i
Lol oty | nls Wyt
2 4 6 8 10 12 14 "
t') —
ts = min {t S0 WO =y o5 for an ¢/ > t} (here,
y(oo)
y(0) = 1)
—ot g .
ly(t) — 1| = e 7" |cos(wgt) + — sin(wgt)
wq
here, e is what matters (sin and cos are bounded between

+1), so e~ < 0.05



Formulas for TD Specs: Settling Time

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

R T o
2 T4 6 8 10 12 4

, —

ts = min {t S0 WO =y o5 for an ¢/ > t} (here,
y(o0)

y(o0) =1)

ly(t) — 1] = e 7" |cos(wqat) + z sin(wdt)‘
W

here, e is what matters (sin and cos are bounded between

n0.05 3

+1), so e~ < 0.05 this gives t, = —
o o



Formulas for TD Specs

w? o2+ wfl

H = n =
(s) $2+2wps +wl  (s+0)?2+w?

1.8
by =~ —
Wn
,
P g

Q



TD Specs in Frequency Domain

We want to visualize time-domain specs in terms of admissible

pole locations for the 2nd-order system
2
$2+ 2wns +wi  (s+0)? + w3

where 0 = (w,,
wg = wpV1—C2

Step response: y(t) =1 — e ¢ <cos(wdt) + sin(wdt))

Im

X Wd = Wp m

: ¢
o= Cwn 0 Re w2 =0%+ w?l
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Rise Time in Frequency Domain

Suppose we want t, < ¢ (c is some desired given value)
1.8 1.8

= —<c = Wp = —
W, c

Geometrically, we want poles to lie in the shaded region:

Im

1.8

Wy = —
\ Re

0

(recall that wy, is the magnitude of the poles)
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decreasing function

) <c — need large damping ratio

Geometrically, we want poles to lie in the shaded region:
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Suppose we want M, < c

M,, = exp (—\/%

decreasing function

) <c — need large damping ratio

Geometrically, we want poles to lie in the shaded region:

Im
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Overshoot in Frequency Domain
Suppose we want M, < c

M,, = exp (—\/%

decreasing function

) <c — need large damping ratio

Geometrically, we want poles to lie in the shaded region:

Im
¢ _ wnC
\/1_C2 Wn\/l_c2
-7 - cot
Pr Re wd
0 — need ¢ to be small

Intuition: good damping —
good decay in 1/2 period
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ts ~
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Settling Time in Frequency Domain

Suppose we want t; < ¢

ts =

<c - o>

Q| w
alw

Want poles to be sufficiently fast (large enough magnitude of
real part):

Im

Intuition: poles far to the
left — transients decay
faster — smaller ¢,

Re

Slalw
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If we have specs for any combination of t,, M,,ts, we can easily
relate them to allowed pole locations:

Im

The shape and size of the
region for admissible pole
locations will change

Re depending on which
specs are more severely
constrained.
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Combination of Specs

If we have specs for any combination of t,, M,,ts, we can easily
relate them to allowed pole locations:

Im

The shape and size of the
region for admissible pole
locations will change

Re depending on which
specs are more severely
constrained.

This is very appealing to engineers: easy to visualize things, no
such crisp visualization in time domain.

But: not very rigorous, and also only valid for our prototype
2nd-order system, which has only 2 poles and no zeros ...



