ECE 486: Control Systems

Lecture 5C: State-Space Models




Key Takeaways

This lecture introduces linear state-space models.

An nt-order linear state-space model expresses the dynamics as
a first-order, vector differential equation. It is possible to express
as an equivalent nth-order linear ODE.

State-space models have several uses:

* There are different tools for analysis and design of feedback
systems based on state-space models.

* They can be used to approximate a nonlinear model by a
related linear model.




Linear State-Space Model

An nt-order linear state-space model with one input and
one output has the form:

t1(t) = Ap1x1(t) + Aroxa(t) + - - - + Ay pxn(t) + Byul(t)
il?g(t) = Ag,l.f(;'l (t) + AQ,QIQ(t) + 0+ Agjn.’ﬂn(t) + BQU(t)

xn(t) — An,lxl (t) + An,QIEQ (t) + -+ An,n-xn(t) + Bnu(t)
[C: 21(0) = 2105+ - 74(0) = T

This is n coupled first-order ODEs. We can express this
compactly using matrices and vectors:

&(t) = Ax(t) + Bu(t)
y(t) = Cz(t) + Du(t) where r € R"™ is the state
IC: ZE’(O) p— :L‘O



ODE to State-Space

Consider the third-order ODE:
yBl(t) +0.24(t) — 0.3y(t) + Ty(t) = —0.4ii(t) + du(t) + 11u(t)

Recall that we can re-write this to avoid differentiating u:

wBl () +0.20(t) — 0.3w(t) + Tw(t) = u(t)
y(t) = —0.40(t) + 5w(t) + 11w(t)

Define the state-variables:
T =W, Ty (=W, T3 := W




ODE to State-Space

Consider the third-order ODE:

yBl(t) + 0.24(t) — 0.39(t) + Ty(t) = —0.4ii(t) + 5a(t) + 11u(t)
A block diagram is shown below.
The states are the outputs of the integrators.
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ODE to State-Space

Consider the third-order ODE:
yBl(t) + 0.24(t) — 0.39(t) + Ty(t) = —0.4ii(t) + 5a(t) + 11u(t)
The derivatives satisfy:
T1 = X9, T9 = xr3 and @3(t) = —Tx1(t) + 0.3x2(t) — 0.2x3(t) + u(t)

The output satisfies:
y(t) = 11z, (t) + Sxo(t) — 0.4x3(t)
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ODE to State-Space

Consider the third-order ODE:
yBl(t) + 0.24(t) — 0.39(t) + Ty(t) = —0.4ii(t) + 5a(t) + 11u(t)
The derivatives satisfy:
T1 = X9, T9 = xr3 and @3(t) = —Tx1(t) + 0.3x2(t) — 0.2x3(t) + u(t)
The output satisfies:
y(t) = 11x1(t) + Sao(t) — 0.4w3(t)

This gives the state-space model

. 0 1 0 0

i(t) = Az(t) + Bu(t) A=lo o 1|, B=|o0|.

y(t) = Cz(t) + Du(t) —7 0.3 —0.2 1
C=[] 1 5 —04], D=0

The state-space model is not unique. (We can define a new set
state z=Tx where T is a non-singular matrix.)



State-Space to ODE

Consider an nt"-order state-space model:
i(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Du(t)
Roughly, replace the differentiation with “s”:
sX(s) = AX(s) + BU(s) = X(s)=(sI — A)~'BU(s)

Substitute into the output equation:
Y(s)=CX(s)+DU(s) =Y(s)=|C(sI —A)"1B+ D|U(s)

= G(s)=C(sI —A)~'B+D

This is useful conceptually, but it does not provide the ODE
coefficients associated with numerator/denominator polynomials.

These can be obtained with some linear algebra results but we
will rely on numerical tools, e.g. Matlab.



Example

Consider the third-order ODE:
yBl(t) 4+ 0.24(t) — 0.39(t) + Ty(t) = —0.4ii(t) + 5u(t) + 11u(t)

> A=[0 1 0; 00 1; -7 0.3 -0.2];
>> B=[0;0;1]; C=[11 5 -0.4]; D=0;
>> G=ss(A,B,C,D);

% Comment: tf() converts G from SS to TF form. Note that we
% recover the TF for the original 3rd-order ODE.
>> tf (G)
ans =
-0.4 872 + 5 s + 11

s 3+ 0.2s82-0.3s+7



Example

Consider the third-order ODE:
yBl(t) 4+ 0.24(t) — 0.39(t) + Ty(t) = —0.4ii(t) + 5u(t) + 11u(t)

% We can also construct the original TF and convert from TF to SS.
>> G2 = t£([-0.4 5 11],[1 0.2 -0.3 71); % Construct original TF
>> G3 = ss(G2); % ss() converts G2 from TF to SS form

%» Note that A3 is not the same as A given above. This is due to
/» the non-uniqueness of state-space models, i.e. both G and G3
% represent the same dynamics but with different state matrices.
>> [A3,B3,C3,D3]=ssdata(G3);

>> A3
A3 =
-0.2000 0.1500 -1.7500
2.0000 0 0
0 2.0000 0



