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• This document is an info sheet about the final exam of ECE 486, Spring 2018.

• Please read the following information carefully and start/continue studying the final exam.

* * * * *

• When and where is the exam taking place?

The final exam will be held on Friday, May 11 in 3017 ECEB from 8 a.m. — 11 a.m.
There is no conflict exam offered at any other time.

• What topics will be covered?

The final exam is comprehensive. Everything covered in Lecture 1 (lec1.html) through
23 (lec23.html) is a fair game. That is everything from Day 1 to the last lecture; see
lecture matrix for details.

https://courses.engr.illinois.edu/ece486/sp2018/lectures/

Here is a list of specific topics:

– All topics listed in midterm 1 and midterm 2 information sheets

– State-space models and associated transfer functions; Linear (coordinate) transforma-
tions; Canonical Forms

– Controllability; Pole placement by full-state feedback

– Observability; Observer design

– Combining full-state feedback and observer; Dynamic output feedback

• What to bring during the exam?

The exam is closed-book, closed-notes. You may bring three sheets (double-sided, letter
size 8.5 × 11 inch) of notes with any necessary formulas. A simple calculator without
symbolic computation is allowed.

• Any tips for studying the exam?

The primary goal of the exam is to test your understanding of the main concepts, not
memorization or computational skills. Make sure you can follow all the lecture material,
readings, and homework problems and solutions. On the next page, an exam from a past
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semester is given as a sample. An outline of solutions to this sample exam is posted
alongside the sample exam.

Disclaimer: The exam this semester will be significantly different in style and content
from that older one.

• Is there any extra office hours?

No office hours after Reading Day. However there is a two-hour session of extra office hours
in 4034 ECEB (not 3034 for normal office hours) on Thursday 1 p.m. — 3 p.m., May 10.

◦
I wish you good luck on your final exams and a successful future! –Yün

typeset with AMS-LATEX
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ECE 486, Spring 2018 Sample Final Tuesday, May 1st

1. Problem 1:

(a) Consider the single-input linear system ẋ = Ax + Bu where

A =

λ 0 0
0 λ 1
0 0 λ

 ,

in which λ ∈ R a real number.

Show the system is not completely controllable, i.e., there is no matrix B such
that (A,B) is completely controllable.

(b) Notations as above but A changes to

A =

λ1 0 0
0 λ2 1
0 0 λ2

 ,

where λ1 6= λ2. Is it still true that (A,B) is not completely controllable for any
matrix B?

Solution:

(a) We notice B is a column vector so we can write

B =

b1b2
b3

 .

Then we compute the controllability matrix C(A,B)

C(A,B) =
(
B AB A2B

)
=

b1 λb1 λ2b1
b2 λb2 + b3 λ2b2 + 2λb3
b3 λb3 λ2b3

 .

• If b1 = 0, then the first row of C(A,B) is a zero row, resulting in a singular
controllability matrix.

• If b1 6= 0, the third row and the first row differ by a ratio
b3
b1

, i.e., they are

linearly dependent; the controllability matrix is also singular.

Therefore the system is never completely controllable.

(b) With the new A, the controllability matrix C(A,B) becomes

C(A,B) =
(
B AB A2B

)
=

b1 λ1b1 λ21b1
b2 λ2b2 + b3 λ22b2 + 2λ2b3
b3 λ2b3 λ22b3

 .
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If we wish to find such a B that makes the controllability matrix non singular, we
restrict to b1, b3 6= 0. By elementary row operations, C(A,B) can be reduced to

C(A,B) ;

 1 λ1 λ21
0 λ2 − λ1 λ22 − λ21
b2 λ2b2 + b3 λ22b2 + 2λ2b3


;

1 λ1 λ21
0 1 λ1 + λ2
0 0 (λ2 − λ1)b3

 .

We see that when b1, b3 are nonzero and λ1 6= λ2, the controllability matrix is
invertible. The system is completely controllable.

2. Problem 2: If the linear system (A, b) is completely controllable, it is always possible
to find a c such that (A, c) is completely observable? Prove your claim.

Solution: Yes, it is always possible. To prove the claim, we use the controllability of
(A, b) to find a linear transformation matrix T such that (A, b) will be converted to
(Ā, b̄) in CCF, where Ā and b̄ are in the form

Ā =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 an−2 · · · −a1



b̄ =


0
0
...
0
1

 .

Now if we choose c̄ =
(
1 0 · · · 0

)
, we notice that the observability matrix O(Ā, c̄) =

In. This choice of c̄ gives us a non singular observability matrix, making (Ā, c̄) com-
pletely observable.

Transforming back to the original coordinate, we get

c = c̄T

=
(
1 0 · · · 0

)
T ,

where T is the transformation matrix such that Ā = TAT−1. Then (A, c) is also
completely observable since observability is preserved under linear transformation.

3. Problem 3: Consider the transfer function G(s) =
s+ 1

s2 + 2s+ 1
.

(a) Find a second order state-space realization in Controllable Canonical Form for
this transfer function G(s). Check if your realization is completely observable.
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(b) Find a second order state-space realization in Observable Canonical Form for this
transfer function G(s). Check if your realization is completely controllable.

(c) Is it possible to find a second order realization that is both completely controllable
and completely observable?

Solution:

(a) One Controllable Canonical Form is given by

ẋ =

(
0 1
−1 −2

)
x +

(
0
1

)
u,

y =
(
1 1

)
x.

The observability matrix associated with the above representation is

O(A,C) =

(
C
CA

)
=

(
1 1
−1 −1

)
,

which is singular. Hence this state-space model is not completely observable.

(b) One Observable Canonical Form is given by

ẋ =

(
0 −1
1 −2

)
x +

(
1
1

)
u,

y =
(
0 1

)
x.

The controllability matrix associated with the above representation is

C(A,B) =
(
B AB

)
=

(
1 −1
1 −1

)
,

which is singular. Hence this state-space model is not completely controllable.

(c) Suppose there is a second order realization which is both completely controllable
and completely observable, then this second order realization is the minimal real-
ization of the transfer function G(s). But obviously there is pole-zero cancellation.

Actually G(s) =
1

s+ 1
.

The minimal realization of G(s) =
1

s+ 1
is first order given by

ẋ = −x+ u,

y = x.
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4. Problem 4: Consider a linear system

ẋ = Ax + Bu,

y = Cx

together with an observer

˙̂x = (A−LC)x̂ + Ly + Bu

and full-state feedback control
u = −Kx̂.

Find the transfer function from Y (s) to U(s).

Solution: By control law u = −Kx̂, if we can write X̂(s) in terms of Y (s) then we
win. This was done in lec23.html.

sX̂ = (A−LC)X̂ + LY + BU

=⇒ (sI −A + LC)X̂ = LY + B(−KX̂)

=⇒ X̂ = (sI −A + LC + BK)−1LY.

Therefore the transfer function from Y (s) to U(s) is

U(s)

Y (s)
= −K(sI −A + LC + BK)−1L.

5. Problem 5: Consider the following linear system

ẋ =

(
0 1
1 −1

)
x +

(
0
1

)
u,

y =
(
1 0

)
x.

(a) Compute the open-loop transfer function based on (A,B,C) given above.

(b) Is the open-loop system stable?

(c) Is the system completely controllable? Is the system completely observable?

(d) Design an observer to place the observer poles at (−2, −2).

(e) Design a full-state feedback controller to place the closed-loop poles at (−1, −1).

Solution:

(a) Let A =

(
0 1
1 −1

)
, B =

(
0
1

)
, C =

(
1 0

)
. Then the open-loop transfer function

is given by

G(s) = C(sI −A)−1B

=
(
1 0

)( s −1
−1 s+ 1

)−1(
0
1

)
=

1

s2 + s− 1
.
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(b) The constant term of the characteristic polynomial is negative. The open-loop
transfer function is not stable.

(c) The controllability matrix is non singular.

C(A,B) =
(
B AB

)
=

(
0 1
1 −1

)
.

The observability matrix is non singular.

O(A,C) =

(
C
CA

)
=

(
1 0
0 1

)
.

Therefore, the given state-space representation is both completely controllable and
observable.

(d) Let output injection matrix L =

(
`1
`2

)
. The desired characteristic polynomial

given by observer poles is (s+ 2)2 = s2 + 4s+ 4. Matching the coefficients,

det(sI −A + LC) = det

(
sI −

(
−`1 1

1− `2 −1

))
= s2 + (`1 + 1)s+ (`1 + `2 − 1)

=⇒ `1 = 3, `2 = 2.

Then the observer is given by

˙̂x = (A−LC)x̂ + Ly + Bu.

(e) Let full-state feedback matrix K =
(
k1 k2

)
. The desired characteristic polyno-

mial given by closed-loop poles is (s+ 1)2 = s2 + 2s+ 1. Matching the coefficients,

det(sI −A + BK) = det

(
sI −

(
0 1

1− k1 −1− k2

))
= s2 + (k2 + 1)s+ (k1 − 1)

=⇒ k1 = 2, k2 = 1.

Then the full-state feedback control is given by

u = −Kx̂.

6. Problem 6: Consider the following system(
ẋ1
ẋ2

)
=

(
−x21 + 1
−x2

)
.
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(a) Find the equilibrium points of the system.

(b) Check the equilibrium points found in the previous question whether they are

i. Stable

ii. Unstable

Solution:

(a) Let the right hand side be zero vector and solve for the equilibrium points.(
−x21 + 1
−x2

)
=

(
0
0

)
=⇒ xe =

(
±1
0

)
.

There are two equilibrium points.

(b) The Jacobian of the right hand side is

∂

∂x
RHS =

(
−2x1 0

0 −1

)
.

i. Evaluating it at the first equilibrium point, we get(
−2x1 0

0 −1

)∣∣∣∣
xe=

−1
0

 =

(
2 0
0 −1

)
,

where one of the eigenvalues is positive. This equilibrium point is not stable.

ii. Evaluating it at the second equilibrium point, we get(
−2x1 0

0 −1

)∣∣∣∣
xe=

1
0

 =

(
−2 0
0 −1

)
,

where both eigenvalues are in LHP. This equilibrium point is stable.

7. Problem 7: Consider the differential equation

ÿ + (4 + y3)ẏ + 2y(1 + 3y2) = 2u+ 4u̇

with input u and output y.

(a) Linearize the differential equation at y = 0.

(b) Find a state-space realization in Controllable Canonical Form for the resulting
linear system from the previous question.

Solution:
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(a) Use Taylor expansion against y at 0 for both 4+y3 and 1+3y2. We have 4+y3 ≈ 4
and 1 + 3y2 ≈ 1. Then the differential equation becomes

ÿ + 4ẏ + 2y = 4u̇+ 2u.

(b) The transfer function according to the linearized differential equation above is

Y

U
(s) =

4s+ 2

s2 + 4s+ 2
.

One Controllable Canonical Form is given by

ẋ =

(
0 1
−2 −4

)
x +

(
0
1

)
u,

y =
(
2 4

)
x.
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