Plan of the Lecture

- Review: coordinate transformations; conversion of any controllable system to CCF.
- Today's topic: pole placement by (full) state feedback.

Plan of the Lecture

- Review: coordinate transformations; conversion of any controllable system to CCF.
- Today's topic: pole placement by (full) state feedback.

Goal: learn how to assign arbitrary closed-loop poles of a controllable system $\dot{x}=A x+B u$ by means of state feedback $u=-K x$.

Plan of the Lecture

- Review: coordinate transformations; conversion of any controllable system to CCF.
- Today's topic: pole placement by (full) state feedback.

Goal: learn how to assign arbitrary closed-loop poles of a controllable system $\dot{x}=A x+B u$ by means of state feedback $u=-K x$.

Reading: FPE, Chapter 7

State-Space Realizations

$$
\begin{gathered}
u \longrightarrow \begin{array}{c}
\dot{x}=A x+B u \\
y=C x
\end{array} \\
\downarrow \\
G(s)=C(I s-A)^{-1} B
\end{gathered}
$$

State-Space Realizations

$$
\begin{gathered}
u \longrightarrow \begin{array}{c}
\dot{x}=A x+B u \\
y=C x
\end{array} \\
\downarrow \\
G(s)=C(I s-A)^{-1} B
\end{gathered}
$$

Open-loop poles are the eigenvalues of A :

$$
\operatorname{det}(I s-A)=0
$$

State-Space Realizations

$$
\begin{gathered}
\left.u \longrightarrow \begin{array}{c}
\dot{x}=A x+B u \\
y=C x
\end{array}\right] y \\
\downarrow \\
G(s)=C(I s-A)^{-1} B
\end{gathered}
$$

Open-loop poles are the eigenvalues of A :

$$
\operatorname{det}(I s-A)=0
$$

Then we add a controller to move the poles to desired locations:

Goal: Pole Placement by State Feedback

Consider a single-input system in state-space form:

$$
u \longrightarrow \begin{gathered}
\dot{x}=A x+B u \\
y=C x
\end{gathered} \longrightarrow y
$$

Today, our goal is to establish the following fact:
If the above system is controllable, then we can assign arbitrary closed-loop poles by means of a state feedback law

$$
\begin{aligned}
u & =-K x=-\left(\begin{array}{llll}
k_{1} & k_{2} & \ldots & k_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
& =-\left(k_{1} x_{1}+\ldots+k_{n} x_{n}\right),
\end{aligned}
$$

where K is a $1 \times n$ matrix of feedback gains.

Review: Controllability

Consider a single-input system $(u \in \mathbb{R})$:

$$
\dot{x}=A x+B u, \quad y=C x \quad x \in \mathbb{R}^{n}
$$

The Controllability Matrix is defined as

$$
\mathcal{C}(A, B)=\left[B|A B| A^{2} B|\ldots| A^{n-1} B\right]
$$

We say that the above system is controllable if its controllability matrix $\mathcal{C}(A, B)$ is invertible.

Review: Controllability

Consider a single-input system $(u \in \mathbb{R})$:

$$
\dot{x}=A x+B u, \quad y=C x \quad x \in \mathbb{R}^{n}
$$

The Controllability Matrix is defined as

$$
\mathcal{C}(A, B)=\left[B|A B| A^{2} B|\ldots| A^{n-1} B\right]
$$

We say that the above system is controllable if its controllability matrix $\mathcal{C}(A, B)$ is invertible.

- As we will see today, if the system is controllable, then we may assign arbitrary closed-loop poles by state feedback of the form $u=-K x$.

Review: Controllability

Consider a single-input system $(u \in \mathbb{R})$:

$$
\dot{x}=A x+B u, \quad y=C x \quad x \in \mathbb{R}^{n}
$$

The Controllability Matrix is defined as

$$
\mathcal{C}(A, B)=\left[B|A B| A^{2} B|\ldots| A^{n-1} B\right]
$$

We say that the above system is controllable if its controllability matrix $\mathcal{C}(A, B)$ is invertible.

- As we will see today, if the system is controllable, then we may assign arbitrary closed-loop poles by state feedback of the form $u=-K x$.
- Whether or not the system is controllable depends on its state-space realization.

Controller Canonical Form

A single-input state-space model

$$
\dot{x}=A x+B u, \quad y=C x
$$

is said to be in Controller Canonical Form (CCF) is the matrices A, B are of the form

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
* & * & * & \ldots & * & *
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

A system in CCF is always controllable!!
(The proof of this for $n>2$ uses the Jordan canonical form, we will not worry about this.)

Coordinate Transformations

Coordinate Transformations

- We will see that state feedback design is particularly easy when the system is in CCF.

Coordinate Transformations

- We will see that state feedback design is particularly easy when the system is in CCF.
- Hence, we need a way of constructing a CCF state-space realization of a given controllable system.

Coordinate Transformations

- We will see that state feedback design is particularly easy when the system is in CCF.
- Hence, we need a way of constructing a CCF state-space realization of a given controllable system.
- We will do this by suitably changing the coordinate system for the state vector.

Coordinate Transformations and State-Space Models

$$
\begin{array}{lr}
\dot{x} & =A x+B u \quad \xrightarrow{T} \\
y & =C x
\end{array} \quad \begin{array}{r}
\dot{A} \bar{x}+\bar{B} u \\
y
\end{array} \quad=\bar{C} \bar{x}
$$

where $\bar{A}=T A T^{-1}, \quad \bar{B}=T B, \quad \bar{C}=C T^{-1}$

Coordinate Transformations and State-Space Models

$$
\begin{array}{lrr}
\dot{x} & =A x+B u \quad \xrightarrow{T} & \dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u \\
y & =C x & y
\end{array}
$$

where $\bar{A}=T A T^{-1}, \quad \bar{B}=T B, \quad \bar{C}=C T^{-1}$

- The transfer function does not change.

Coordinate Transformations and State-Space Models

$$
\begin{array}{lrr}
\dot{x} & =A x+B u \quad \xrightarrow{T} & \dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u \\
y & =C x & y
\end{array}
$$

where $\bar{A}=T A T^{-1}, \quad \bar{B}=T B, \quad \bar{C}=C T^{-1}$

- The transfer function does not change.
- The controllability matrix is transformed:

$$
\mathcal{C}(\bar{A}, \bar{B})=T \mathcal{C}(A, B)
$$

Coordinate Transformations and State-Space Models

$$
\begin{array}{rlr}
\dot{x} & =A x+B u \quad \stackrel{T}{\longrightarrow} \\
y & =C x & \\
\dot{x}=\bar{A} \bar{x}+\bar{B} u \\
y & =\bar{C} \bar{x}
\end{array}
$$

where $\bar{A}=T A T^{-1}, \quad \bar{B}=T B, \quad \bar{C}=C T^{-1}$

- The transfer function does not change.
- The controllability matrix is transformed:

$$
\mathcal{C}(\bar{A}, \bar{B})=T \mathcal{C}(A, B)
$$

- The transformed system is controllable if and only if the original one is.

Coordinate Transformations and State-Space Models

$$
\begin{aligned}
& \dot{x}=A x+B u \quad \xrightarrow{T} \\
& y=C x \\
& \dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u \\
& y=\bar{C} \bar{x}
\end{aligned}
$$

where $\bar{A}=T A T^{-1}, \quad \bar{B}=T B, \quad \bar{C}=C T^{-1}$

- The transfer function does not change.
- The controllability matrix is transformed:

$$
\mathcal{C}(\bar{A}, \bar{B})=T \mathcal{C}(A, B) .
$$

- The transformed system is controllable if and only if the original one is.
- If the original system is controllable, then

$$
T=\mathcal{C}(\bar{A}, \bar{B})[\mathcal{C}(A, B)]^{-1}
$$

Coordinate Transformations and State-Space Models

$$
\begin{array}{lr}
\dot{x}=A x+B u \quad \xrightarrow{T} \quad \bar{A} \bar{x}+\bar{B} u \\
y & =C x
\end{array} \quad y=\bar{C} \bar{x} \text { and }
$$

where $\bar{A}=T A T^{-1}, \quad \bar{B}=T B, \quad \bar{C}=C T^{-1}$

- The transfer function does not change.
- The controllability matrix is transformed:

$$
\mathcal{C}(\bar{A}, \bar{B})=T \mathcal{C}(A, B) .
$$

- The transformed system is controllable if and only if the original one is.
- If the original system is controllable, then

$$
T=\mathcal{C}(\bar{A}, \bar{B})[\mathcal{C}(A, B)]^{-1}
$$

This gives us a way of systematically passing to CCF.

Example: Converting a Controllable System to CCF

$$
A=\left(\begin{array}{ll}
-15 & 8 \\
-15 & 7
\end{array}\right), B=\binom{1}{1} \quad(C \text { is immaterial })
$$

Example: Converting a Controllable System to CCF

$$
A=\left(\begin{array}{ll}
-15 & 8 \\
-15 & 7
\end{array}\right), B=\binom{1}{1} \quad(C \text { is immaterial })
$$

Step 1: check for controllability.

$$
\mathcal{C}=\left(\begin{array}{ll}
1 & -7 \\
1 & -8
\end{array}\right) \quad \operatorname{det} \mathcal{C}=-1 \quad-\text { controllable }
$$

Example: Converting a Controllable System to CCF

$$
A=\left(\begin{array}{ll}
-15 & 8 \\
-15 & 7
\end{array}\right), B=\binom{1}{1} \quad(C \text { is immaterial })
$$

Step 1: check for controllability.

$$
\mathcal{C}=\left(\begin{array}{ll}
1 & -7 \\
1 & -8
\end{array}\right) \quad \operatorname{det} \mathcal{C}=-1 \quad-\text { controllable }
$$

Step 2: Determine desired $\mathcal{C}(\bar{A}, \bar{B})$.

$$
\mathcal{C}(\bar{A}, \bar{B})=[\bar{B} \mid \bar{A} \bar{B}]=\left(\begin{array}{cc}
0 & 1 \\
1 & -8
\end{array}\right)
$$

Example: Converting a Controllable System to CCF

$$
A=\left(\begin{array}{ll}
-15 & 8 \\
-15 & 7
\end{array}\right), B=\binom{1}{1} \quad(C \text { is immaterial })
$$

Step 1: check for controllability.

$$
\mathcal{C}=\left(\begin{array}{ll}
1 & -7 \\
1 & -8
\end{array}\right) \quad \operatorname{det} \mathcal{C}=-1 \quad-\text { controllable }
$$

Step 2: Determine desired $\mathcal{C}(\bar{A}, \bar{B})$.

$$
\mathcal{C}(\bar{A}, \bar{B})=[\bar{B} \mid \bar{A} \bar{B}]=\left(\begin{array}{cc}
0 & 1 \\
1 & -8
\end{array}\right)
$$

Step 3: Compute T.

$$
T=\mathcal{C}(\bar{A}, \bar{B}) \cdot[\mathcal{C}(A, B)]^{-1}=\left(\begin{array}{cc}
0 & 1 \\
1 & -8
\end{array}\right)\left(\begin{array}{ll}
8 & -7 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

Finally, Pole Placement via State Feedback

Consider a state-space model

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R} \\
& y=x
\end{aligned}
$$

Finally, Pole Placement via State Feedback

Consider a state-space model

$$
\begin{aligned}
\dot{x} & =A x+B u, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R} \\
y & =x
\end{aligned}
$$

Let's introduce a state feedback law

$$
\begin{aligned}
u & =-K y \equiv-K x \\
& =-\left(\begin{array}{llll}
k_{1} & k_{2} & \ldots & k_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=-\left(k_{1} x_{1}+\ldots+k_{n} x_{n}\right)
\end{aligned}
$$

Finally, Pole Placement via State Feedback

Consider a state-space model

$$
\begin{aligned}
\dot{x} & =A x+B u, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R} \\
y & =x
\end{aligned}
$$

Let's introduce a state feedback law

$$
\begin{aligned}
u & =-K y \equiv-K x \\
& =-\left(\begin{array}{llll}
k_{1} & k_{2} & \ldots & k_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=-\left(k_{1} x_{1}+\ldots+k_{n} x_{n}\right)
\end{aligned}
$$

Closed-loop system:

$$
\begin{aligned}
\dot{x} & =A x-B K x=(A-B K) x \\
y & =x
\end{aligned}
$$

Pole Placement via State Feedback

Let's also add a reference input:

Pole Placement via State Feedback

Let's also add a reference input:

$$
\dot{x}=A x+B(-K x+r)=(A-B K) x+B r, \quad y=x
$$

Pole Placement via State Feedback

Let's also add a reference input:

$$
\dot{x}=A x+B(-K x+r)=(A-B K) x+B r, \quad y=x
$$

Take the Laplace transform:

$$
\begin{aligned}
s X(s) & =(A-B K) X(s)+B R(s), Y(s)=X(s) \\
Y(s) & =\underbrace{(I s-A+B K)^{-1} B}_{G} R(s)
\end{aligned}
$$

Pole Placement via State Feedback

Let's also add a reference input:

$$
\dot{x}=A x+B(-K x+r)=(A-B K) x+B r, \quad y=x
$$

Take the Laplace transform:

$$
\begin{aligned}
s X(s) & =(A-B K) X(s)+B R(s), Y(s)=X(s) \\
Y(s) & =\underbrace{(I s-A+B K)^{-1} B}_{G} R(s)
\end{aligned}
$$

Closed-loop poles are the eigenvalues of $A-B K!!$

Pole Placement via State Feedback

assigning closed-loop poles $=$ assigning eigenvalues of $A-B K$

Pole Placement via State Feedback

assigning closed-loop poles $=$ assigning eigenvalues of $A-B K$

Now we will see that this is particularly straightforward if the (A, B) system is in CCF.

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \ldots & -a_{2} & -a_{1}
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

The Beauty of CCF

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \cdots & -a_{2} & -a_{1}
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

The Beauty of CCF

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \ldots & -a_{2} & -a_{1}
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

Claim.

$$
\operatorname{det}(I s-A)=s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}
$$

- the last row of the A matrix in CCF consists of the coefficients of the characteristic polynomial, in reverse order, with "-" signs.

Proof of the Claim

A nice way is via Laplace transforms:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \ldots & -a_{2} & -a_{1}
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Proof of the Claim

A nice way is via Laplace transforms:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \cdots & -a_{2} & -a_{1}
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Represent this as a system of ODEs:

Proof of the Claim

A nice way is via Laplace transforms:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \ldots & -a_{2} & -a_{1}
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Represent this as a system of ODEs:

$$
\dot{x}_{1}=x_{2}
$$

$$
X_{2}=s X_{1}
$$

Proof of the Claim

A nice way is via Laplace transforms:

$$
\begin{aligned}
\dot{x} & =A x+B u \\
A & =\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \ldots & -a_{2} & -a_{1}
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Represent this as a system of ODEs:

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=x_{3}
\end{aligned}
$$

$$
\begin{array}{r}
X_{2}=s X_{1} \\
X_{3}=s X_{2}=s^{2} X_{1}
\end{array}
$$

Proof of the Claim

A nice way is via Laplace transforms:

$$
\begin{aligned}
\dot{x} & =A x+B u \\
A & =\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \ldots & -a_{2} & -a_{1}
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Represent this as a system of ODEs:

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=x_{3}
\end{aligned}
$$

$$
\begin{array}{r}
X_{2}=s X_{1} \\
X_{3}=s X_{2}=s^{2} X_{1}
\end{array}
$$

Proof of the Claim

A nice way is via Laplace transforms:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \ldots & -a_{2} & -a_{1}
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Represent this as a system of ODEs:

$$
\begin{array}{rr}
\dot{x}_{1}=x_{2} & X_{2}=s X_{1} \\
\dot{x}_{2}=x_{3} & X_{3}=s X_{2}=s^{2} X_{1} \\
\vdots & \underbrace{\left(s^{n}+a_{1} s^{n-1}+\ldots+a_{n}\right)}_{\text {char. poly. }} X_{1}=U
\end{array}
$$

... And, Back to Pole Placement

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \ldots & -a_{2} & -a_{1}
\end{array}\right)
$$

... And, Back to Pole Placement

$$
\left.\begin{array}{rl}
A & =\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \ldots & -a_{2} & -a_{1}
\end{array}\right) \\
B K=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
\end{array} \begin{array}{llll}
0 & 0 & 0 & \ldots \\
k_{1} & k_{2} & \ldots & k_{n}
\end{array}\right)=\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 \\
k_{1} & k_{2} & k_{3} & \ldots & k_{n-1} & k_{n}
\end{array}\right) .
$$

... And, Back to Pole Placement

$$
\begin{aligned}
& A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \ldots & -a_{2} & -a_{1}
\end{array}\right) \\
& B K=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)\left(\begin{array}{llll}
k_{1} & k_{2} & \ldots & k_{n}
\end{array}\right)=\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 \\
k_{1} & k_{2} & k_{3} & \ldots & k_{n-1} & k_{n}
\end{array}\right) \\
& A-B K=-\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
a_{n}+k_{1} & a_{n-1}+k_{2} & a_{n-2}+k_{3} & \ldots & a_{2}+k_{n-1} & a_{1}+k_{n}
\end{array}\right)
\end{aligned}
$$

... And, Back to Pole Placement

$$
\begin{aligned}
& A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \ldots & -a_{2} & -a_{1}
\end{array}\right) \\
& B K=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)\left(\begin{array}{llll}
k_{1} & k_{2} & \ldots & k_{n}
\end{array}\right)=\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 \\
k_{1} & k_{2} & k_{3} & \ldots & k_{n-1} & k_{n}
\end{array}\right) \\
& A-B K=-\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
a_{n}+k_{1} & a_{n-1}+k_{2} & a_{n-2}+k_{3} & \ldots & a_{2}+k_{n-1} & a_{1}+k_{n}
\end{array}\right)
\end{aligned}
$$

Pole Placement in CCF

$$
\begin{aligned}
& \dot{x}=(A-B K) x+B r, \quad y=C x \\
& A-B K=-\left(\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
a_{n}+k_{1} & a_{n-1}+k_{2} & \ldots & a_{2}+k_{n-1} & a_{1}+k_{n}
\end{array}\right)
\end{aligned}
$$

Pole Placement in CCF

$$
\begin{aligned}
& \dot{x}=(A-B K) x+B r, \quad y=C x \\
& A-B K=-\left(\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
a_{n}+k_{1} & a_{n-1}+k_{2} & \ldots & a_{2}+k_{n-1} & a_{1}+k_{n}
\end{array}\right)
\end{aligned}
$$

Closed-loop poles are the roots of the characteristic polynomial

$$
\begin{aligned}
& \operatorname{det}(I s-A+B K) \\
& =s^{n}+\left(a_{1}+k_{n}\right) s^{n-1}+\ldots+\left(a_{n-1}+k_{2}\right) s+\left(a_{n}+k_{1}\right)
\end{aligned}
$$

Pole Placement in CCF

$$
\begin{aligned}
& \dot{x}=(A-B K) x+B r, \quad y=C x \\
& A-B K=-\left(\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
a_{n}+k_{1} & a_{n-1}+k_{2} & \ldots & a_{2}+k_{n-1} & a_{1}+k_{n}
\end{array}\right)
\end{aligned}
$$

Closed-loop poles are the roots of the characteristic polynomial

$$
\begin{aligned}
& \operatorname{det}(I s-A+B K) \\
& =s^{n}+\left(a_{1}+k_{n}\right) s^{n-1}+\ldots+\left(a_{n-1}+k_{2}\right) s+\left(a_{n}+k_{1}\right)
\end{aligned}
$$

Key observation: When the system is in CCF, each control gain affects only one of the coefficients of the characteristic polynomial, and these coefficients can be assigned arbitrarily by a suitable choice of k_{1}, \ldots, k_{n}.

Pole Placement in CCF

$$
\begin{aligned}
& \dot{x}=(A-B K) x+B r, \quad y=C x \\
& A-B K=-\left(\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
a_{n}+k_{1} & a_{n-1}+k_{2} & \ldots & a_{2}+k_{n-1} & a_{1}+k_{n}
\end{array}\right)
\end{aligned}
$$

Closed-loop poles are the roots of the characteristic polynomial

$$
\begin{aligned}
& \operatorname{det}(I s-A+B K) \\
& =s^{n}+\left(a_{1}+k_{n}\right) s^{n-1}+\ldots+\left(a_{n-1}+k_{2}\right) s+\left(a_{n}+k_{1}\right)
\end{aligned}
$$

Key observation: When the system is in CCF, each control gain affects only one of the coefficients of the characteristic polynomial, and these coefficients can be assigned arbitrarily by a suitable choice of k_{1}, \ldots, k_{n}.

Hence the name Controller Canonical Form - convenient for control design.

Pole Placement by State Feedback

General procedure for any controllable system:

Pole Placement by State Feedback

General procedure for any controllable system:

1. Convert to CCF using a suitable invertible coordinate transformation T (such a transformation exists by controllability).

Pole Placement by State Feedback

General procedure for any controllable system:

1. Convert to CCF using a suitable invertible coordinate transformation T (such a transformation exists by controllability).
2. Solve the pole placement problem in the new coordinates.

Pole Placement by State Feedback

General procedure for any controllable system:

1. Convert to CCF using a suitable invertible coordinate transformation T (such a transformation exists by controllability).
2. Solve the pole placement problem in the new coordinates.
3. Convert back to original coordinates.

Example

Given $\dot{x}=A x+B u$

$$
A=\left(\begin{array}{cc}
-15 & 8 \\
-7 & 1
\end{array}\right), \quad B=\binom{1}{1}
$$

Goal: apply state feedback to place closed-loop poles at $-10 \pm j$.

Example

Given $\dot{x}=A x+B u$

$$
A=\left(\begin{array}{cc}
-15 & 8 \\
-7 & 1
\end{array}\right), \quad B=\binom{1}{1}
$$

Goal: apply state feedback to place closed-loop poles at $-10 \pm j$.
Step 1: convert to CCF - already did this

Example

Given $\dot{x}=A x+B u$

$$
A=\left(\begin{array}{cc}
-15 & 8 \\
-7 & 1
\end{array}\right), \quad B=\binom{1}{1}
$$

Goal: apply state feedback to place closed-loop poles at $-10 \pm j$.
Step 1: convert to CCF - already did this

$$
T=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \quad \longrightarrow \quad \bar{A}=\left(\begin{array}{cc}
0 & 1 \\
-15 & -8
\end{array}\right), \bar{B}=\binom{0}{1}
$$

Example

Step 2: find $u=-\bar{K} \bar{x}$ to place closed-loop poles at $-10 \pm j$.

Example

Step 2: find $u=-\bar{K} \bar{x}$ to place closed-loop poles at $-10 \pm j$.
Desired characteristic polynomial:

$$
(s+10+j)(s+10-j)=(s+10)^{2}+1=s^{2}+20 s+101
$$

Example

Step 2: find $u=-\bar{K} \bar{x}$ to place closed-loop poles at $-10 \pm j$.
Desired characteristic polynomial:

$$
(s+10+j)(s+10-j)=(s+10)^{2}+1=s^{2}+20 s+101
$$

Thus, the closed-loop system matrix should be

$$
\bar{A}-\bar{B} \bar{K}=\left(\begin{array}{cc}
0 & 1 \\
-101 & -20
\end{array}\right)
$$

Example

Step 2: find $u=-\bar{K} \bar{x}$ to place closed-loop poles at $-10 \pm j$.
Desired characteristic polynomial:

$$
(s+10+j)(s+10-j)=(s+10)^{2}+1=s^{2}+20 s+101
$$

Thus, the closed-loop system matrix should be

$$
\bar{A}-\bar{B} \bar{K}=\left(\begin{array}{cc}
0 & 1 \\
-101 & -20
\end{array}\right)
$$

On the other hand, we know

$$
\bar{A}-\bar{B} \bar{K}=\left(\begin{array}{cc}
0 & 1 \\
-\left(15+\bar{k}_{1}\right) & -\left(8+\bar{k}_{2}\right)
\end{array}\right) \quad \Longrightarrow \quad \bar{k}_{1}=86, \bar{k}_{2}=12
$$

Example

Step 2: find $u=-\bar{K} \bar{x}$ to place closed-loop poles at $-10 \pm j$.
Desired characteristic polynomial:

$$
(s+10+j)(s+10-j)=(s+10)^{2}+1=s^{2}+20 s+101
$$

Thus, the closed-loop system matrix should be

$$
\bar{A}-\bar{B} \bar{K}=\left(\begin{array}{cc}
0 & 1 \\
-101 & -20
\end{array}\right)
$$

On the other hand, we know

$$
\bar{A}-\bar{B} \bar{K}=\left(\begin{array}{cc}
0 & 1 \\
-\left(15+\bar{k}_{1}\right) & -\left(8+\bar{k}_{2}\right)
\end{array}\right) \quad \Longrightarrow \quad \bar{k}_{1}=86, \bar{k}_{2}=12
$$

This gives the control law

$$
u=-\bar{K} \bar{x}=-\left(\begin{array}{ll}
86 & 12
\end{array}\right)\binom{\bar{x}_{1}}{\bar{x}_{2}}
$$

Example

Step 3: convert back to the old coordinates.

Example

Step 3: convert back to the old coordinates.

$$
\begin{aligned}
u & =-\bar{K} \bar{x} \\
& =-\underbrace{\bar{K} T}_{K} x
\end{aligned}
$$

Example

Step 3: convert back to the old coordinates.

$$
\begin{aligned}
u & =-\bar{K} \bar{x} \\
& =-\underbrace{\bar{K} T}_{K} x
\end{aligned}
$$

- therefore,

$$
\begin{aligned}
K & =\bar{K} T \\
& =\left(\begin{array}{ll}
86 & 12
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
86 & -74
\end{array}\right)
\end{aligned}
$$

Example

Step 3: convert back to the old coordinates.

$$
\begin{aligned}
u & =-\bar{K} \bar{x} \\
& =-\underbrace{\bar{K} T}_{K} x
\end{aligned}
$$

- therefore,

$$
\begin{aligned}
K & =\bar{K} T \\
& =\left(\begin{array}{ll}
86 & 12
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
86 & -74
\end{array}\right)
\end{aligned}
$$

The desired state feedback law is

$$
u=\left(\begin{array}{ll}
-86 & 74
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

