Plan of the Lecture

- ▶ Review: arbitrary pole placement by full state feedback.
- ► Today's topic: observer design for state estimation when full state feedback is not implementable.

Plan of the Lecture

- ▶ Review: arbitrary pole placement by full state feedback.
- ► Today's topic: observer design for state estimation when full state feedback is not implementable.

Goal: for observable systems (definition to be introduced today), learn how to estimate the state x from output y = Cx using an observer.

Plan of the Lecture

- ▶ Review: arbitrary pole placement by full state feedback.
- ► Today's topic: observer design for state estimation when full state feedback is not implementable.

Goal: for observable systems (definition to be introduced today), learn how to estimate the state x from output y = Cx using an observer.

Reading: FPE, Chapter 7

Assume that the plant is controllable:

$$r \xrightarrow{+} u \xrightarrow{x} x + Bu \\ y = x \\ K \xrightarrow{-} K$$

Assume that the plant is controllable:

$$r \xrightarrow{+} u \qquad x = Ax + Bu \\ y = x \qquad y = x$$

$$\dot{x} = Ax + B(-Kx + r) = (A - BK)x + Br, \qquad y = x$$

Assume that the plant is controllable:

$$r \xrightarrow{+} u \xrightarrow{x} Ax + Bu \\ y = x \\ K \xrightarrow{-} K$$

$$\dot{x} = Ax + B(-Kx + r) = (A - BK)x + Br, \qquad y = x$$

Transfer function from R to Y:

$$Y(s) = (Is - A + BK)^{-1}BR(s)$$

Assume that the plant is controllable:

$$r \xrightarrow{+} u \xrightarrow{x} Ax + Bu \\ y = x \\ K \xrightarrow{} K$$

$$\dot{x} = Ax + B(-Kx + r) = (A - BK)x + Br, \qquad y = x$$

Transfer function from R to Y:

$$Y(s) = (Is - A + BK)^{-1}BR(s)$$

Closed-loop poles are the eigenvalues of A - BK!!

$$\dot{x} = (A - BK)x + Br, \quad y = Cx$$

$$A - BK = -\begin{pmatrix} 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \\ a_n + k_1 & a_{n-1} + k_2 & \dots & a_2 + k_{n-1} & a_1 + k_n \end{pmatrix}$$

$$\dot{x} = (A - BK)x + Br, \quad y = Cx$$

$$A - BK = -\begin{pmatrix} 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \\ a_n + k_1 & a_{n-1} + k_2 & \dots & a_2 + k_{n-1} & a_1 + k_n \end{pmatrix}$$

Closed-loop poles are the roots of the characteristic polynomial

$$\det(Is - A + BK)$$

= $s^n + (a_1 + k_n)s^{n-1} + \ldots + (a_{n-1} + k_2)s + (a_n + k_1)$

$$\dot{x} = (A - BK)x + Br, \quad y = Cx$$

$$A - BK = -\begin{pmatrix} 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \\ a_n + k_1 & a_{n-1} + k_2 & \dots & a_2 + k_{n-1} & a_1 + k_n \end{pmatrix}$$

Closed-loop poles are the roots of the characteristic polynomial

$$\det(Is - A + BK)$$

= $s^n + (a_1 + k_n)s^{n-1} + \ldots + (a_{n-1} + k_2)s + (a_n + k_1)$

Key observation: When the system is in CCF, each control gain affects only *one* of the coefficients of the characteristic polynomial, and these coefficients can be assigned arbitrarily by a suitable choice of k_1, \ldots, k_n .

$$\dot{x} = (A - BK)x + Br, \quad y = Cx$$

$$A - BK = -\begin{pmatrix} 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \\ a_n + k_1 & a_{n-1} + k_2 & \dots & a_2 + k_{n-1} & a_1 + k_n \end{pmatrix}$$

Closed-loop poles are the roots of the characteristic polynomial

$$\det(Is - A + BK)$$

= $s^n + (a_1 + k_n)s^{n-1} + \ldots + (a_{n-1} + k_2)s + (a_n + k_1)$

Key observation: When the system is in CCF, each control gain affects only *one* of the coefficients of the characteristic polynomial, and these coefficients can be assigned arbitrarily by a suitable choice of k_1, \ldots, k_n .

Hence the name Controller Canonical Form — convenient for control design.

General procedure for any *controllable* system:

General procedure for any *controllable* system:

1. Convert to CCF using a suitable invertible coordinate transformation T (such a transformation exists by controllability).

General procedure for any *controllable* system:

- 1. Convert to CCF using a suitable invertible coordinate transformation T (such a transformation exists by controllability).
- 2. Solve the pole placement problem in the new coordinates.

General procedure for any *controllable* system:

- 1. Convert to CCF using a suitable invertible coordinate transformation T (such a transformation exists by controllability).
- 2. Solve the pole placement problem in the new coordinates.
- 3. Convert back to original coordinates.

Is Full State Feedback Always Available?

In a typical system, measurements are provided by sensors:

Is Full State Feedback Always Available?

In a typical system, measurements are provided by sensors:

Full state feedback u = -Kx is *not implementable*!!

When Full State Feedback Is Unavailable ...

... we need an Observer!!

When Full State Feedback Is Unavailable ...

... we need an Observer!!

State Estimation Using an Observer

When full state feedback is unavailable, the observer is used to estimate the state x:

State Estimation Using an Observer

The idea is to design the observer in such a way that the state estimate \hat{x} is asymptotically accurate:

$$\|\widehat{x}(t) - x(t)\| = \sqrt{\sum_{i=1}^{n} (\widehat{x}_i(t) - x_i(t))^2} \xrightarrow{t \to \infty} 0$$

State Estimation Using an Observer

The idea is to design the observer in such a way that the state estimate \hat{x} is *asymptotically accurate*:

$$\|\widehat{x}(t) - x(t)\| = \sqrt{\sum_{i=1}^{n} \left(\widehat{x}_i(t) - x_i(t)\right)^2} \xrightarrow{t \to \infty} 0$$

If we are successful, then we can try estimated state feedback:

▶ Before, we saw that closed-loop poles can be assigned arbitrarily by full state feedback when the plant is controllable.

- ▶ Before, we saw that closed-loop poles can be assigned arbitrarily by full state feedback when the plant is controllable.
- Now, we will see that asymptotically accurate state estimation will be possible when the system is observable.

- ▶ Before, we saw that closed-loop poles can be assigned arbitrarily by full state feedback when the plant is controllable.
- ▶ Now, we will see that asymptotically accurate state estimation will be possible when the system is observable.
- ► Observability is a system property which is dual to controllability.

Consider a single-output system $(y \in \mathbb{R})$:

$$\dot{x} = Ax + Bu, \qquad y = Cx \qquad \qquad x \in \mathbb{R}^n$$

Consider a single-output system $(y \in \mathbb{R})$:

$$\dot{x} = Ax + Bu, \qquad y = Cx \qquad \qquad x \in \mathbb{R}^n$$

The Observability Matrix is defined as

$$\mathcal{O}(A,C) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

Consider a single-output system $(y \in \mathbb{R})$:

$$\dot{x} = Ax + Bu, \qquad y = Cx \qquad \qquad x \in \mathbb{R}^n$$

The Observability Matrix is defined as

$$\mathcal{O}(A,C) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

— recall that C is $1 \times n$ and A is $n \times n$, so $\mathcal{O}(A, C)$ is $n \times n$;

Consider a single-output system $(y \in \mathbb{R})$:

$$\dot{x} = Ax + Bu, \qquad y = Cx \qquad \qquad x \in \mathbb{R}^n$$

The Observability Matrix is defined as

$$\mathcal{O}(A,C) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

— recall that C is $1 \times n$ and A is $n \times n$, so $\mathcal{O}(A, C)$ is $n \times n$; — the observability matrix only involves A and C, not B

Consider a single-output system $(y \in \mathbb{R})$:

$$\dot{x} = Ax + Bu, \qquad y = Cx \qquad \qquad x \in \mathbb{R}^n$$

The Observability Matrix is defined as

$$\mathcal{O}(A,C) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

— recall that C is $1 \times n$ and A is $n \times n$, so $\mathcal{O}(A, C)$ is $n \times n$; — the observability matrix only involves A and C, not B

We say that the above system is observable if its observability matrix $\mathcal{O}(A, C)$ is *invertible*.

Consider a single-output system $(y \in \mathbb{R})$:

$$\dot{x} = Ax + Bu, \qquad y = Cx \qquad \qquad x \in \mathbb{R}^n$$

The Observability Matrix is defined as

$$\mathcal{O}(A,C) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

— recall that C is $1 \times n$ and A is $n \times n$, so $\mathcal{O}(A, C)$ is $n \times n$; — the observability matrix only involves A and C, not B

We say that the above system is observable if its observability matrix $\mathcal{O}(A, C)$ is *invertible*.

(This definition is only true for the single-output case; the multiple-output case involves the rank of $\mathcal{O}(A, C)$.)

Let
$$A = \begin{pmatrix} 0 & -6 \\ 1 & -5 \end{pmatrix}$$
, $C = \begin{pmatrix} 0 & 1 \end{pmatrix}$

Let
$$A = \begin{pmatrix} 0 & -6 \\ 1 & -5 \end{pmatrix}$$
, $C = \begin{pmatrix} 0 & 1 \end{pmatrix}$

Here, $n = 2, C \in \mathbb{R}^{1 \times 2}, A \in \mathbb{R}^{2 \times 2} \Longrightarrow \mathcal{O}(A, C) \in \mathbb{R}^{2 \times 2}$.

Let
$$A = \begin{pmatrix} 0 & -6 \\ 1 & -5 \end{pmatrix}$$
, $C = \begin{pmatrix} 0 & 1 \end{pmatrix}$

Here, $n = 2, C \in \mathbb{R}^{1 \times 2}, A \in \mathbb{R}^{2 \times 2} \Longrightarrow \mathcal{O}(A, C) \in \mathbb{R}^{2 \times 2}$.

$$\mathcal{O}(A,C) = \begin{bmatrix} C\\ CA \end{bmatrix}$$

Let
$$A = \begin{pmatrix} 0 & -6 \\ 1 & -5 \end{pmatrix}$$
, $C = \begin{pmatrix} 0 & 1 \end{pmatrix}$

Here, $n = 2, C \in \mathbb{R}^{1 \times 2}, A \in \mathbb{R}^{2 \times 2} \Longrightarrow \mathcal{O}(A, C) \in \mathbb{R}^{2 \times 2}$.

$$\mathcal{O}(A,C) = \begin{bmatrix} C\\ CA \end{bmatrix}$$

where $CA = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -6\\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 1 & -5 \end{pmatrix}$
Example: Computing $\mathcal{O}(A, C)$

Let
$$A = \begin{pmatrix} 0 & -6 \\ 1 & -5 \end{pmatrix}$$
, $C = \begin{pmatrix} 0 & 1 \end{pmatrix}$

Here, $n = 2, C \in \mathbb{R}^{1 \times 2}, A \in \mathbb{R}^{2 \times 2} \Longrightarrow \mathcal{O}(A, C) \in \mathbb{R}^{2 \times 2}$.

$$\mathcal{O}(A, C) = \begin{bmatrix} C \\ CA \end{bmatrix}$$

where $CA = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -6 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 1 & -5 \end{pmatrix}$
 $\therefore \quad \mathcal{O}(A, C) = \begin{pmatrix} 0 & 1 \\ 1 & -5 \end{pmatrix}$

Example: Computing $\mathcal{O}(A, C)$

Let
$$A = \begin{pmatrix} 0 & -6 \\ 1 & -5 \end{pmatrix}$$
, $C = \begin{pmatrix} 0 & 1 \end{pmatrix}$

Here, $n = 2, C \in \mathbb{R}^{1 \times 2}, A \in \mathbb{R}^{2 \times 2} \Longrightarrow \mathcal{O}(A, C) \in \mathbb{R}^{2 \times 2}$.

$$\mathcal{O}(A, C) = \begin{bmatrix} C \\ CA \end{bmatrix}$$

where $CA = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -6 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 1 & -5 \end{pmatrix}$
 $\therefore \quad \mathcal{O}(A, C) = \begin{pmatrix} 0 & 1 \\ 1 & -5 \end{pmatrix}$
 $\det \mathcal{O}(A, C) = -1 \implies$ the system is observable

Example: Computing $\mathcal{O}(A, C)$

Let
$$A = \begin{pmatrix} 0 & -6 \\ 1 & -5 \end{pmatrix}$$
, $C = \begin{pmatrix} 0 & 1 \end{pmatrix}$

Here, $n = 2, C \in \mathbb{R}^{1 \times 2}, A \in \mathbb{R}^{2 \times 2} \Longrightarrow \mathcal{O}(A, C) \in \mathbb{R}^{2 \times 2}$.

$$\mathcal{O}(A, C) = \begin{bmatrix} C \\ CA \end{bmatrix}$$

where $CA = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -6 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 1 & -5 \end{pmatrix}$
 $\therefore \quad \mathcal{O}(A, C) = \begin{pmatrix} 0 & 1 \\ 1 & -5 \end{pmatrix}$
 $\det \mathcal{O}(A, C) = -1 \implies$ the system is observable

— recall: this system is in Observer Canonical Form (OCF) ...

Observer Canonical Form

A single-output state-space model

$$\dot{x} = Ax + Bu, \qquad y = Cx$$

is said to be in Observer Canonical Form (OCF) if the matrices A, C are of the form

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & * \\ 1 & 0 & \dots & 0 & 0 & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & * \\ 0 & 0 & \dots & 0 & 1 & * \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Observer Canonical Form

A single-output state-space model

$$\dot{x} = Ax + Bu, \qquad y = Cx$$

is said to be in Observer Canonical Form (OCF) if the matrices A, C are of the form

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & * \\ 1 & 0 & \dots & 0 & 0 & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & * \\ 0 & 0 & \dots & 0 & 1 & * \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Fact: A system in OCF is always observable!!

Observer Canonical Form

A single-output state-space model

$$\dot{x} = Ax + Bu, \qquad y = Cx$$

is said to be in Observer Canonical Form (OCF) if the matrices A, C are of the form

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & * \\ 1 & 0 & \dots & 0 & 0 & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & * \\ 0 & 0 & \dots & 0 & 1 & * \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Fact: A system in OCF is always observable!!

(The proof of this for n > 2 uses the Jordan canonical form, we will not worry about this.)

Just like controllability, observability is preserved under invertible coordinate transformations.

Just like controllability, observability is preserved under invertible coordinate transformations.

$$\begin{split} \dot{x} &= Ax + Bu & \xrightarrow{T} & \dot{\bar{x}} &= \bar{A}\bar{x} + \bar{B}u \\ y &= Cx & y &= \bar{C}\bar{x} \\ \text{where } \bar{A} &= TAT^{-1}, & \bar{B} &= TB, & \bar{C} &= CT^{-1} \end{split}$$

Just like controllability, observability is preserved under invertible coordinate transformations.

$$\begin{split} \dot{x} &= Ax + Bu & \xrightarrow{T} & \dot{\bar{x}} &= \bar{A}\bar{x} + \bar{B}u \\ y &= Cx & y &= \bar{C}\bar{x} \\ \text{where } \bar{A} &= TAT^{-1}, & \bar{B} &= TB, & \bar{C} &= CT^{-1} \end{split}$$

$$\mathcal{O}(\bar{A}, \bar{C}) = \begin{pmatrix} \bar{C} \\ \bar{C}\bar{A} \\ \vdots \\ \bar{C}\bar{A}^{n-1} \end{pmatrix}$$

Just like controllability, observability is preserved under invertible coordinate transformations.

$$\begin{aligned} \dot{x} &= Ax + Bu & \xrightarrow{T} & \dot{\bar{x}} &= \bar{A}\bar{x} + \bar{B}u \\ y &= Cx & y &= \bar{C}\bar{x} \end{aligned}$$

where $\bar{A} &= TAT^{-1}$, $\bar{B} &= TB$, $\bar{C} &= CT^{-1}$

$$\mathcal{O}(\bar{A},\bar{C}) = \begin{pmatrix} \bar{C} \\ \bar{C}\bar{A} \\ \vdots \\ \bar{C}\bar{A}^{n-1} \end{pmatrix} = \begin{pmatrix} CT^{-1} \\ CT^{-1}TAT^{-1} \\ \vdots \\ CT^{-1}TA^{n-1}T^{-1} \end{pmatrix}$$

Just like controllability, observability is preserved under invertible coordinate transformations.

$$\begin{split} \dot{x} &= Ax + Bu & \xrightarrow{T} & \dot{\bar{x}} &= \bar{A}\bar{x} + \bar{B}u \\ y &= Cx & y &= \bar{C}\bar{x} \\ \text{where } \bar{A} &= TAT^{-1}, & \bar{B} &= TB, & \bar{C} &= CT^{-1} \end{split}$$

$$\mathcal{O}(\bar{A}, \bar{C}) = \begin{pmatrix} \bar{C} \\ \bar{C}\bar{A} \\ \vdots \\ \bar{C}\bar{A}^{n-1} \end{pmatrix} = \begin{pmatrix} CT^{-1} \\ CT^{-1}TAT^{-1} \\ \vdots \\ CT^{-1}TA^{n-1}T^{-1} \end{pmatrix}$$
$$= \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix} T^{-1}$$

Just like controllability, observability is preserved under invertible coordinate transformations.

$$\begin{aligned} \dot{x} &= Ax + Bu & \xrightarrow{T} & \dot{\bar{x}} &= \bar{A}\bar{x} + \bar{B}u \\ y &= Cx & y &= \bar{C}\bar{x} \end{aligned}$$

where $\bar{A} &= TAT^{-1}$, $\bar{B} &= TB$, $\bar{C} &= CT^{-1}$

$$\mathcal{O}(\bar{A}, \bar{C}) = \begin{pmatrix} \bar{C} \\ \bar{C}\bar{A} \\ \vdots \\ \bar{C}\bar{A}^{n-1} \end{pmatrix} = \begin{pmatrix} CT^{-1} \\ CT^{-1}TAT^{-1} \\ \vdots \\ CT^{-1}TA^{n-1}T^{-1} \end{pmatrix}$$
$$= \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix} T^{-1} = \mathcal{O}(A, C)T^{-1}$$

Just like controllability, observability is preserved under invertible coordinate transformations:

$$\begin{split} \dot{x} &= Ax + Bu & \xrightarrow{T} & \dot{\bar{x}} &= \bar{A}\bar{x} + \bar{B}u \\ y &= Cx & y &= \bar{C}\bar{x} \\ \text{where } \bar{A} &= TAT^{-1}, & \bar{B} &= TB, & \bar{C} &= CT^{-1} \end{split}$$

Just like controllability, observability is preserved under invertible coordinate transformations:

$$\begin{split} \dot{x} &= Ax + Bu & \xrightarrow{T} & \dot{\bar{x}} &= \bar{A}\bar{x} + \bar{B}u \\ y &= Cx & y &= \bar{C}\bar{x} \\ \text{where } \bar{A} &= TAT^{-1}, & \bar{B} &= TB, & \bar{C} &= CT^{-1} \end{split}$$

If the original system is observable, then

Observability and State Estimation

As we will show next:

If the system is observable, then there exists an observer (state estimator) that provides an asymptotically convergent estimate \hat{x} of the state x based on the observed output y.

Observability and State Estimation

As we will show next:

If the system is observable, then there exists an observer (state estimator) that provides an asymptotically convergent estimate \hat{x} of the state x based on the observed output y.

The particular type of observer we will construct is called the Luenberger observer after David G. Luenberger, who developed this idea in his 1963 Ph.D. dissertation.

David Luenberger is a Professor at Stanford University.

Consider a state-space model

$$\dot{x} = Ax$$
 (for now, assume $u = 0$)
 $y = Cx$

Consider a state-space model

$$\dot{x} = Ax$$
 (for now, assume $u = 0$)
 $y = Cx$

We wish to estimate the state x based on the output y.

Consider a state-space model

$$\dot{x} = Ax$$
 (for now, assume $u = 0$)
 $y = Cx$

We wish to estimate the state x based on the output y.

Consider feeding the output y as input to the following system with state \hat{x} :

$$\dot{\widehat{x}} = (A - LC)\widehat{x} + Ly.$$

Consider a state-space model

$$\dot{x} = Ax$$
 (for now, assume $u = 0$)
 $y = Cx$

We wish to estimate the state x based on the output y.

Consider feeding the output y as input to the following system with state \hat{x} :

$$\dot{\widehat{x}} = (A - LC)\widehat{x} + Ly.$$

Assumption: The output injection matrix L is chosen in such a way that the matrix A - LC is Hurwitz (i.e., all of its eigenvalues lie in LHP).

Consider a state-space model

$$\dot{x} = Ax$$
 (for now, assume $u = 0$)
 $y = Cx$

We wish to estimate the state x based on the output y.

Consider feeding the output y as input to the following system with state \hat{x} :

$$\dot{\widehat{x}} = (A - LC)\widehat{x} + Ly.$$

Assumption: The output injection matrix L is chosen in such a way that the matrix A - LC is Hurwitz (i.e., all of its eigenvalues lie in LHP).

At this point, we do not assume anything about observability.

System:
$$\dot{x} = Ax$$

 $y = Cx$
Observer: $\dot{\hat{x}} = (A - LC)\hat{x} + Ly.$

System:
$$\dot{x} = Ax$$

 $y = Cx$
Observer: $\dot{\hat{x}} = (A - LC)\hat{x} + Ly.$

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

System:

$$\dot{x} = Ax$$

 $y = Cx$
Observer:
 $\dot{\hat{x}} = (A - LC)\hat{x} + Ly.$

$$\begin{split} \dot{e} &= \dot{x} - \dot{\widehat{x}} \\ &= Ax - [(A - LC)\widehat{x} + LCx] \end{split}$$

System:
$$\dot{x} = Ax$$

 $y = Cx$
Observer: $\dot{\hat{x}} = (A - LC)\hat{x} + Ly$.

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

= $Ax - [(A - LC)\hat{x} + LCx]$
= $(A - LC)x - (A - LC)\hat{x}$

System:
$$\dot{x} = Ax$$

 $y = Cx$
Observer: $\dot{\hat{x}} = (A - LC)\hat{x} + Ly$.

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

$$= Ax - [(A - LC)\hat{x} + LCx]$$

$$= (A - LC)x - (A - LC)\hat{x}$$

$$= (A - LC)e$$

System:

$$\dot{x} = Ax$$

 $y = Cx$
Observer:
 $\dot{\hat{x}} = (A - LC)\hat{x} + Ly.$

What happens to state estimation error $e = x - \hat{x}$ as $t \to \infty$?

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

$$= Ax - [(A - LC)\hat{x} + LCx]$$

$$= (A - LC)x - (A - LC)\hat{x}$$

$$= (A - LC)e$$

Does e(t) converge to zero in some sense?

$$\dot{v} = Fv, \qquad v \in \mathbb{R}^n, \ F \in \mathbb{R}^{n \times n}$$

 $\dot{v} = Fv, \qquad v \in \mathbb{R}^n, \ F \in \mathbb{R}^{n \times n}$

Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of F, i.e., roots of det(Is - F) = 0.

$$\dot{v} = Fv, \qquad v \in \mathbb{R}^n, \ F \in \mathbb{R}^{n \times n}$$

Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of F, i.e., roots of det(Is - F) = 0.

Then there exists a matrix $T \in \mathbb{R}^{n \times n}$, such that $T^{-1} = T^T$ and

$$F = T^{-1} \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} T$$

$$\dot{v} = Fv, \qquad v \in \mathbb{R}^n, \ F \in \mathbb{R}^{n \times n}$$

Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of F, i.e., roots of det(Is - F) = 0.

Then there exists a matrix $T \in \mathbb{R}^{n \times n}$, such that $T^{-1} = T^T$ and

$$F = T^{-1} \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_n \end{pmatrix} T$$

Consider the change of coordinates $\bar{v} = Tv$. Then

$$\dot{v} = Fv, \qquad v \in \mathbb{R}^n, \ F \in \mathbb{R}^{n \times n}$$

Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of F, i.e., roots of det(Is - F) = 0.

Then there exists a matrix $T \in \mathbb{R}^{n \times n}$, such that $T^{-1} = T^T$ and

$$F = T^{-1} \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_n \end{pmatrix} T$$

Consider the change of coordinates $\bar{v} = Tv$. Then

$$\dot{\bar{v}} = TFT^{-1}\bar{v} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \bar{v}$$

Linear ODEs: A Digression

$$\dot{\bar{v}} = TFT^{-1}\bar{v} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \bar{v}, \qquad (\lambda_1, \dots, \lambda_n) = \operatorname{eig}(F)$$

$$\uparrow \\ \dot{\bar{v}}_i = \lambda_i \bar{v}_i, \qquad i = 1, 2, \dots, n$$

Linear ODEs: A Digression

$$\dot{\bar{v}} = TFT^{-1}\bar{v} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \bar{v}, \qquad (\lambda_1, \dots, \lambda_n) = \operatorname{eig}(F)$$

$$\uparrow \\ \dot{\bar{v}}_i = \lambda_i \bar{v}_i, \qquad i = 1, 2, \dots, n$$

This system of n 1st-order ODEs has the solution

$$\bar{v}_i(t) = \bar{v}_i(0)e^{\lambda_i t}, \qquad i = 1, 2, \dots, n$$

Linear ODEs: A Digression

$$\dot{\bar{v}} = TFT^{-1}\bar{v} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \bar{v}, \qquad (\lambda_1, \dots, \lambda_n) = \operatorname{eig}(F)$$

$$\uparrow \\ \dot{\bar{v}}_i = \lambda_i \bar{v}_i, \qquad i = 1, 2, \dots, n$$

This system of n 1st-order ODEs has the solution

$$\bar{v}_i(t) = \bar{v}_i(0)e^{\lambda_i t}, \qquad i = 1, 2, \dots, n$$

If all λ_i 's have negative real parts, then

$$\begin{aligned} \|v(t)\|^2 &= v(t)^T v(t) = \bar{v}(t)^T \bar{v}(t) \\ &\leq C e^{-2\sigma_{\min}t}, \qquad \text{where } \sigma_{\min} = \min_{1 \leq i \leq n} |\operatorname{Re}(\lambda_i)| \end{aligned}$$
System:	$\dot{x} = Ax$
	y = Cx
Observer:	$\dot{\widehat{x}} = (A - LC)\widehat{x} + Ly$
Error:	$\dot{e} = (A - LC)e$

System:

$$\dot{x} = Ax$$

 $y = Cx$
Observer:
 $\dot{\hat{x}} = (A - LC)\hat{x} + Ly$
Error:
 $\dot{e} = (A - LC)e$

Recall our assumption that A - LC is Hurwitz (all eigenvalues are in LHP). This implies that

$$||x(t) - \hat{x}(t)||^2 = ||e(t)||^2 = \sum_{i=1}^n |e_i(t)|^2 \xrightarrow{t \to \infty} 0$$

at an exponential rate, determined by the eigenvalues of A - LC.

System:

$$\dot{x} = Ax$$

 $y = Cx$
Observer:
 $\dot{\hat{x}} = (A - LC)\hat{x} + Ly$
Error:
 $\dot{e} = (A - LC)e$

Recall our assumption that A - LC is Hurwitz (all eigenvalues are in LHP). This implies that

$$||x(t) - \hat{x}(t)||^2 = ||e(t)||^2 = \sum_{i=1}^n |e_i(t)|^2 \xrightarrow{t \to \infty} 0$$

at an exponential rate, determined by the eigenvalues of A - LC.

For fast convergence, want eigenvalues of A - LC far into LHP!!

System:	$\dot{x} = Ax$
	y = Cx
Observer:	$\dot{\widehat{x}} = (A - LC)\widehat{x} + Ly$
Error:	$\dot{e} = (A - LC)e$

System:

$$\dot{x} = Ax$$

 $y = Cx$
Observer:
 $\dot{\hat{x}} = (A - LC)\hat{x} + Ly$
Error:
 $\dot{e} = (A - LC)e$

Observer transfer function:

$$s\widehat{X}(s) = (A - LC)\widehat{X}(s) + LY(s)$$
$$(Is - A + LC)\widehat{X}(s) = LY(s)$$
$$\widehat{X}(s) = (Is - A + LC)^{-1}LY(s).$$

System:

$$\dot{x} = Ax$$

 $y = Cx$
Observer:
 $\dot{\hat{x}} = (A - LC)\hat{x} + Ly$
Error:
 $\dot{e} = (A - LC)e$

Observer transfer function:

$$s\widehat{X}(s) = (A - LC)\widehat{X}(s) + LY(s)$$
$$(Is - A + LC)\widehat{X}(s) = LY(s)$$
$$\widehat{X}(s) = (Is - A + LC)^{-1}LY(s).$$

The eigenvalues of A - LC are the observer poles. We want these poles to be *stable* and *fast*.

Observability and Estimation Error

Fact: If the system

$$\dot{x} = Ax, \qquad y = Cx$$

is observable, then we can arbitrarily assign eigenvalues of A - LC by a suitable choice of the output injection matrix L.

Observability and Estimation Error

Fact: If the system

$$\dot{x} = Ax, \qquad y = Cx$$

is observable, then we can arbitrarily assign eigenvalues of A - LC by a suitable choice of the output injection matrix L.

This is similar to the fact that controllability implies arbitrary closed-loop pole placement by state feedback.

Observability and Estimation Error

Fact: If the system

$$\dot{x} = Ax, \qquad y = Cx$$

is observable, then we can arbitrarily assign eigenvalues of A - LC by a suitable choice of the output injection matrix L.

This is similar to the fact that controllability implies arbitrary closed-loop pole placement by state feedback.

In fact, these two facts are closely related because CCF is dual to OCF.

Consider a single-output system in OCF:

$$\dot{x} = Ax$$

$$y = Cx, \quad y \in \mathbb{R}$$
where $A = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & -a_n \\ 1 & 0 & \dots & 0 & 0 & -a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & -a_2 \\ 0 & 0 & \dots & 0 & 1 & -a_1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \end{pmatrix}$

Consider a single-output system in OCF:

$$\dot{x} = Ax$$

$$y = Cx, \quad y \in \mathbb{R}$$
where $A = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & -a_n \\ 1 & 0 & \dots & 0 & 0 & -a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & -a_2 \\ 0 & 0 & \dots & 0 & 1 & -a_1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \end{pmatrix}$

Note that A^T has the form of a CCF system matrix, thus:

$$\det(Is - A) = \det((Is - A)^T) = \det(Is - A^T)$$
$$= s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n$$

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_n \\ 0 & 1 & \dots & 0 & -a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & -a_2 \\ 0 & 0 & \dots & 1 & -a_1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_n \\ 0 & 1 & \dots & 0 & -a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & -a_2 \\ 0 & 0 & \dots & 1 & -a_1 \end{pmatrix}$$
$$LC = \begin{pmatrix} \ell_1 \\ \ell_2 \\ \vdots \\ \ell_n \end{pmatrix} \begin{pmatrix} 0 & 0 & \dots & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & \dots & 0 & \ell_1 \\ 0 & 0 & \dots & 0 & \ell_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \ell_n -1 \\ 0 & 0 & \dots & 0 & \ell_n \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_n \\ 0 & 1 & \dots & 0 & -a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & -a_2 \\ 0 & 0 & \dots & 1 & -a_1 \end{pmatrix}$$
$$LC = \begin{pmatrix} \ell_1 \\ \ell_2 \\ \vdots \\ \ell_n \end{pmatrix} \begin{pmatrix} 0 & 0 & \dots & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & \dots & 0 & \ell_1 \\ 0 & 0 & \dots & 0 & \ell_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \ell_{n-1} \\ 0 & 0 & \dots & 0 & \ell_n \end{pmatrix}$$
$$A - LC = \begin{pmatrix} 0 & 0 & \dots & 0 & -(a_n + \ell_1) \\ 0 & 1 & \dots & 0 & -(a_{n-1} + \ell_2) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & -(a_2 + \ell_{n-1}) \\ 0 & 0 & \dots & 1 & -(a_1 + \ell_n) \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_n \\ 0 & 1 & \dots & 0 & -a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & -a_2 \\ 0 & 0 & \dots & 1 & -a_1 \end{pmatrix}$$
$$LC = \begin{pmatrix} \ell_1 \\ \ell_2 \\ \vdots \\ \ell_n \end{pmatrix} \begin{pmatrix} 0 & 0 & \dots & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & \dots & 0 & \ell_1 \\ 0 & 0 & \dots & 0 & \ell_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \ell_{n-1} \\ 0 & 0 & \dots & 0 & \ell_n \end{pmatrix}$$
$$A - LC = \begin{pmatrix} 0 & 0 & \dots & 0 & -(a_n + \ell_1) \\ 0 & 1 & \dots & 0 & -(a_{n-1} + \ell_2) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & -(a_2 + \ell_{n-1}) \\ 0 & 0 & \dots & 1 & -(a_1 + \ell_n) \end{pmatrix}$$

— still in OCF!!

$$\dot{x} = Ax, \qquad y = Cx, \qquad \dot{\hat{x}} = (A - LC)\hat{x} + Ly$$
$$A - LC = \begin{pmatrix} 0 & 0 & \dots & 0 & -(a_n + \ell_1) \\ 1 & 0 & \dots & 0 & -(a_{n-1} + \ell_2) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & -(a_2 + \ell_{n-1}) \\ 0 & 0 & \dots & 1 & -(a_1 + \ell_n) \end{pmatrix}$$

$$\dot{x} = Ax, \qquad y = Cx, \qquad \dot{\hat{x}} = (A - LC)\hat{x} + Ly$$
$$A - LC = \begin{pmatrix} 0 & 0 & \dots & 0 & -(a_n + \ell_1) \\ 1 & 0 & \dots & 0 & -(a_{n-1} + \ell_2) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & -(a_2 + \ell_{n-1}) \\ 0 & 0 & \dots & 1 & -(a_1 + \ell_n) \end{pmatrix}$$

Eigenvalues of A - LC are the roots of the characteristic polynomial

$$\det(Is - A + LC) = s^n + (a_1 + \ell_n)s^{n-1} + \dots + (a_{n-1} + \ell_2)s + (a_n + \ell_1)$$

$$\dot{x} = Ax, \qquad y = Cx, \qquad \dot{\hat{x}} = (A - LC)\hat{x} + Ly$$
$$A - LC = \begin{pmatrix} 0 & 0 & \dots & 0 & -(a_n + \ell_1) \\ 1 & 0 & \dots & 0 & -(a_{n-1} + \ell_2) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & -(a_2 + \ell_{n-1}) \\ 0 & 0 & \dots & 1 & -(a_1 + \ell_n) \end{pmatrix}$$

Eigenvalues of A - LC are the roots of the characteristic polynomial

$$\det(Is - A + LC) = s^n + (a_1 + \ell_n)s^{n-1} + \ldots + (a_{n-1} + \ell_2)s + (a_n + \ell_1)$$

Key observation: In OCF, each observer gain affects only one of the coefficients of the characteristic polynomial, which can be assigned arbitrarily by a suitable choice of ℓ_1, \ldots, ℓ_n .

$$\dot{x} = Ax, \qquad y = Cx, \qquad \dot{\hat{x}} = (A - LC)\hat{x} + Ly$$
$$A - LC = \begin{pmatrix} 0 & 0 & \dots & 0 & -(a_n + \ell_1) \\ 1 & 0 & \dots & 0 & -(a_{n-1} + \ell_2) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & -(a_2 + \ell_{n-1}) \\ 0 & 0 & \dots & 1 & -(a_1 + \ell_n) \end{pmatrix}$$

Eigenvalues of A - LC are the roots of the characteristic polynomial

$$\det(Is - A + LC) = s^n + (a_1 + \ell_n)s^{n-1} + \ldots + (a_{n-1} + \ell_2)s + (a_n + \ell_1)$$

Key observation: In OCF, each observer gain affects only one of the coefficients of the characteristic polynomial, which can be assigned arbitrarily by a suitable choice of ℓ_1, \ldots, ℓ_n .

Hence the name Observer Canonical Form — convenient for observer design.

General procedure for any *observable* system:

General procedure for any *observable* system: 1. Convert to OCF: $T = \underbrace{\mathcal{O}(\bar{A}, \bar{C})^{-1}}_{\mathcal{O}(\bar{A}, C)} \underbrace{[\mathcal{O}(A, C)]}_{\mathcal{O}(\bar{A}, C)}$

new old

General procedure for any *observable* system:

1. Convert to OCF: $T = \mathcal{O}(\overline{A}, \overline{C})^{-1} [\mathcal{O}(A, C)]$

2. Find \overline{L} , such that $\overline{A} - \overline{L}\overline{C}$ has desired eigenvalues.

new

old

General procedure for any *observable* system:

- 1. Convert to OCF: $T = \underbrace{\mathcal{O}(\bar{A}, \bar{C})^{-1}}_{\mathcal{O}(\bar{A}, \bar{C})} \underbrace{[\mathcal{O}(A, C)]}_{\mathcal{O}(\bar{A}, \bar{C})}$
 - new old
- 2. Find \overline{L} , such that $\overline{A} \overline{L}\overline{C}$ has desired eigenvalues.
- 3. Convert back to original coordinates: $L = T^{-1}\overline{L}$.

General procedure for any *observable* system:

- 1. Convert to OCF: $T = \underbrace{\mathcal{O}(\bar{A}, \bar{C})^{-1}}_{\text{new}} \underbrace{[\mathcal{O}(A, C)]}_{\text{old}}$
- 2. Find \overline{L} , such that $\overline{A} \overline{L}\overline{C}$ has desired eigenvalues.
- 3. Convert back to original coordinates: $L = T^{-1}\overline{L}$.

The resulting observer is

$$\dot{\widehat{x}} = (A - T^{-1}\overline{L}C)\widehat{x} + T^{-1}\overline{L}y$$

General procedure for any *observable* system:

- 1. Convert to OCF: $T = \underbrace{\mathcal{O}(\bar{A}, \bar{C})^{-1}}_{\text{new}} \underbrace{[\mathcal{O}(A, C)]}_{\text{old}}$
- 2. Find \bar{L} , such that $\bar{A} \bar{L}\bar{C}$ has desired eigenvalues.
- 3. Convert back to original coordinates: $L = T^{-1}\overline{L}$.

The resulting observer is

$$\dot{\widehat{x}} = (A - T^{-1}\overline{L}C)\widehat{x} + T^{-1}\overline{L}y$$

In fact, this procedure is not necessary because of duality between controllability and observability!!

Claim: The system

$$\dot{x} = Ax, \qquad y = Cx$$

is observable if and only if the system

$$\dot{x} = A^T x + C^T u$$

Claim: The system

$$\dot{x} = Ax, \qquad y = Cx$$

is observable if and only if the system

$$\dot{x} = A^T x + C^T u$$

is controllable.

Proof:

Claim: The system

$$\dot{x} = Ax, \qquad y = Cx$$

is observable if and only if the system

$$\dot{x} = A^T x + C^T u$$

Proof:
$$\mathcal{C}(A^T, C^T) = \left[C^T \mid A^T C^T \mid \dots \mid (A^T)^{n-1} C^T\right]$$

Claim: The system

$$\dot{x} = Ax, \qquad y = Cx$$

is observable if and only if the system

$$\dot{x} = A^T x + C^T u$$

Proof:
$$C(A^T, C^T) = \begin{bmatrix} C^T | A^T C^T | \dots | (A^T)^{n-1} C^T \end{bmatrix}$$
$$= \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^T$$

Claim: The system

$$\dot{x} = Ax, \qquad y = Cx$$

is observable if and only if the system

$$\dot{x} = A^T x + C^T u$$

Proof:
$$C(A^T, C^T) = \begin{bmatrix} C^T | A^T C^T | \dots | (A^T)^{n-1} C^T \end{bmatrix}$$
$$= \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^T = \begin{bmatrix} \mathcal{O}(A, C) \end{bmatrix}^T$$

Claim: The system

$$\dot{x} = Ax, \qquad y = Cx$$

is observable if and only if the system

$$\dot{x} = A^T x + C^T u$$

is controllable.

Proof:
$$C(A^T, C^T) = \begin{bmatrix} C^T | A^T C^T | \dots | (A^T)^{n-1} C^T \end{bmatrix}$$
$$= \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^T = \begin{bmatrix} \mathcal{O}(A, C) \end{bmatrix}^T$$

Thus, $\mathcal{O}(A, C)$ is nonsingular if and only if $\mathcal{C}(A^T, C^T)$ is.

Observer Pole Placement, O/C Duality Version Given an observable pair (A, C): Observer Pole Placement, O/C Duality Version Given an observable pair (A, C):

1. For $F = A^T$, $G = C^T$, consider the system $\dot{x} = Fx + Gu$ (this system is controllable).

Observer Pole Placement, O/C Duality Version Given an observable pair (A, C):

- 1. For $F = A^T$, $G = C^T$, consider the system $\dot{x} = Fx + Gu$ (this system is controllable).
- 2. Use our earlier procedure to find K, such that

$$F - GK = A^T - C^T K$$

has desired eigenvalues.

Observer Pole Placement, O/C Duality Version Given an observable pair (A, C):

- 1. For $F = A^T$, $G = C^T$, consider the system $\dot{x} = Fx + Gu$ (this system is controllable).
- 2. Use our earlier procedure to find K, such that

$$F - GK = A^T - C^T K$$

has desired eigenvalues.

3. Then

$$\operatorname{eig}(A^T - C^T K) = \operatorname{eig}(A^T - C^T K)^T = \operatorname{eig}(A - K^T C),$$

so $L = K^T$ is the desired output injection matrix.

Observer Pole Placement, O/C Duality Version Given an observable pair (A, C):

- 1. For $F = A^T$, $G = C^T$, consider the system $\dot{x} = Fx + Gu$ (this system is controllable).
- 2. Use our earlier procedure to find K, such that

$$F - GK = A^T - C^T K$$

has desired eigenvalues.

3. Then

$$\operatorname{eig}(A^T - C^T K) = \operatorname{eig}(A^T - C^T K)^T = \operatorname{eig}(A - K^T C),$$

so $L = K^T$ is the desired output injection matrix.

Final answer: use the observer

$$\dot{\widehat{x}} = (A - LC)\widehat{x} + Ly$$
$$= (A - K^T C)\widehat{x} + K^T y$$
▶ So far, we have focused on autonomous systems (u = 0).

- ▶ So far, we have focused on autonomous systems (u = 0).
- ▶ What about nonzero inputs?

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

- ▶ So far, we have focused on autonomous systems (u = 0).
- ▶ What about nonzero inputs?

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

— assume (A, B) is controllable and (A, C) is observable.

- ▶ So far, we have focused on autonomous systems (u = 0).
- ▶ What about nonzero inputs?

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

assume (A, B) is controllable and (A, C) is observable.
In the next lecture, we will learn how to use an observer together with estimated state feedback to (approximately) place closed-loop poles.

- ▶ So far, we have focused on autonomous systems (u = 0).
- ▶ What about nonzero inputs?

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

assume (A, B) is controllable and (A, C) is observable.
In the next lecture, we will learn how to use an observer together with estimated state feedback to (approximately) place closed-loop poles.

