ECE 498KL: eCrime and Internet Service Abuse # Basic Password Attacks and Defenses Kirill Levchenko November 13, 2018 Electrical & Computer Engineering COLLEGE OF ENGINEERING ## Passwords - Password: (a) secret known to a user that is (b) used to authenticate the user to a system (c) by supplying it to the system when challenged - Authenticating system needs to be able to verify that the supplied password is correct | ID | \mathbf{N} ame | Passw. routine | Accounts with passw. | Leak date | | | |----|---|-----------------------------|----------------------|----------------------------|--|--| | 1 | 000webhost.com | \$p | 15035687 | \approx Mar. 2015 | | | | 2 | 17.media | md5(\$p) | 3824575 | \approx Sep. 2015 | | | | 3 | 51cto.com | md5(md5(\$p).\$s), md5(\$p) | 3 923 449 | \approx Dec. 2013 | | | | 4 | 7k7k.com | \$p | 9 231 185 | \approx Oct. 2011 | | | | 5 | aipai.com | md5(\$p) | 4529928 | \approx Apr. 2011 | | | | 6 | ashleymadison.com | bcrypt(\$p) | 36 140 796 | \approx July 2015 | | | | 7 | badoo.com | md5(\$p) | 122 730 419 | \approx June 2016 | | | | 8 | csdn.net | \$p | 6425905 | \approx Oct. 2011 | | | | 9 | duduniu.cn | \$ p | 14 192 866 | \approx Aug. 2011 | | | | 10 | gawker.com | des(\$p) | 487 292 | \approx Dec. 2010 | | | | 11 | gmail.com | \$p | 4 925 994 | \approx Sep. 2014 | | | | 12 | imesh.com | md5(md5(\$p).\$s) | 51 308 651 | \approx Sep. 2013 | | | | 13 | ispeak.cn | \$p | 8 294 278 | \approx Apr. 2011 | | | | 14 | linkedin.com | sha1(\$p) | 112275414 | \approx Feb. 2012 | | | | 15 | mail.ru | \$p | 5 269 103 | \approx Sep. 2014 | | | | 16 | mate1.com | \$p | 27 402 581 | \approx Feb. 2016 | | | | 17 | mpgh.net | md5(md5(\$p).\$s) | 3 119 180 | \approx Oct. 2015 | | | | 18 | myspace.com | sha1(\$p) | 358 986 419 | ≈ 2008 | | | | 19 | naughtyamerica.com | md5(\$p) | 989 401 | \approx Apr. 2016 | | | | 20 | nexusmods.com | md5(md5(\$s).md5(\$p)) | 5 918 540 | \approx Dec. 2015 | | | | 21 | r2games.com | md5(md5(\$p).\$s), md5(\$p) | 11 758 232 | \approx Oct. 2015 | | | | 22 | renren.com | \$p | 4 392 208 | \approx Nov. 2011 | | | | 23 | sprashivai.ru | \$p | 3 472 645 | $\approx \text{May } 2015$ | | | | 24 | taobao.com | \$p | 14 769 995 | \approx Jul. 2015 | | | | 25 | tianya.cn | \$p | 29 642 564 | \approx Nov. 2011 | | | | 26 | twitter.com | \$p | 26 121 984 | \approx June 2016 | | | | 27 | vk.com | \$p | 92 144 526 | ≈ 2012 | | | | 28 | weibo.com | \$ p | 4 529 994 | \approx Dec. 2011 | | | | 29 | xiaomi.com | md5(md5(\$p).\$s) | 8 281 358 | $\approx \text{May } 2014$ | | | | 30 | xsplit.com | sha1(\$p) | 2 990 112 | \approx Nov. 2013 | | | | 31 | yandex.ru | \$p | 1 186 565 | \approx Sep. 2014 | | | | To | Total accounts with email addr.: 994 301 846, Total distinct email addr.: 884 460 979 | | | | | | Table 1: Analyzed identity leaks (\$p - clear password, \$s - salt) ``` Function bcrypt Input: log_2(Iterations). e.g. 12 => 2^{12} = 4,096 iterations Number (4..31) cost: array of Bytes (16 bytes) random salt salt: password: array of Bytes (1..72 bytes) UTF-8 encoded password Output: array of Bytes (24 bytes) hash: //Initialize Blowfish state with expensive key setup algorithm state \(\) EksBlowfishSetup(cost, salt, password) //Repeatedly encrypt the text "OrpheanBeholderScryDoubt" 64 times ctext ← "OrpheanBeholderScryDoubt" //24 bytes ==> three 64-bit blocks repeat (64) ctext \(\text{EncryptECB(state, ctext) //encrypt using standard Blowfish in ECB mode //24-byte ctext is resulting password hash return Concatenate(cost, salt, ctext) ``` ### Free Password Hash Cracker Enter up to 10 non-salted hashes: Supports: LM, NTLM, md2, md4, md5, md5(md5), md5-half, sha1, sha1(sha1_bin()), sha224, sha256, sha384, sha512, ripeMD160, whirlpool, MySQL 4.1+ ### Download CrackStation's Wordlist #### How CrackStation Works CrackStation uses massive pre-computed lookup tables to crack password hashes. These tables store a mapping between the hash of a password, and the correct password for that hash. The hash values are indexed so that it is possible to quickly search the database for a given hash. If the hash is present in the database, the password can be recovered in a fraction of a second. This only works for "unsalted" hashes. For information on password hashing systems that are not vulnerable to pre-computed lookup tables, see our hashing security page. Crackstation's lookup tables were created by extracting every word from the Wikipedia databases and adding with SplashData releases its annual list in an effort to encourage the adoption of stronger passwords to improve Internet security. The passwords evaluated are mostly from North American and Western European users. The list shows many people continue to put themselves at risk for hacking and identity theft by using weak, easily guessable passwords. | RANK | PASSWORD | CHANGE
FROM 2014 | |------|------------|---------------------| | 1 | 123456 | Unchanged | | 2 | password | Unchanged | | 3 | 12345678 | 1 7 | | 4 | qwerty | 1 7 | | 5 | 12345 | 2 🔰 | | 6 | 123456789 | Unchanged | | 7 | football | 3 7 | | 8 | 1234 | 1 🛭 | | 9 | 1234567 | 2 🞵 | | 10 | baseball | 2 🔟 | | 11 | welcome | NEW | | 12 | 1234567890 | 0 | | 13 | abc123 | 1 🗷 | | 14 | 111111 | 1 7 | | 15 | 1qaz2wsx | MEM | | 16 | dragon | 7 🛂 | "123456" and "password" once again reign supreme as the most commonly used passwords **Some longer passwords** are so simple as to make their extra length virtually **worthless**