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Let U be the set of users 

And let p be the user’s password

∀ui∈U,

 store {ui,Ci} 

where Ci = Ep(Nonce)
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P. Oechslin’s Attack

Ep(Nonce) vs. H(p)

1. Both take in a secret p and output a value indistinguishable from random
2. Both make it cryptographically hard to recover p

The attack will work on either method

We will use the H(k) notation today



Math
Let H() be a cryptographic hash function

Let P be the set of all possible passwords.

Let pi be a password from the set P.

Let hi = H(pi)

Let H be the set of the corresponding hi for all pi

|H| == |P| 

 



Hash Table
For every pi in P:

Compute & Store hi

Time complexity to generate:  Θ(|P|)

Time complexity to lookup: Θ(log(|P|))

Space complexity: Θ(|P|)



How big is |P| ?
Consider an exactly 7-character password with upper and lower case letters.

Permutation(48,7) = 587,068,342,272

How long would it take to generate every SHA-256 hash?





How big is |P| ?
Consider an exactly 7-character password with upper and lower case letters.

Permutation(48,7) = 587,068,342,272

200Gh = 200,000,000 hashes per second

P(48,7)/200Gh = ~50 Minutes on a $400 machine



How big is |P| ?
Consider an exactly 7-character password with upper and lower case letters.

Sha-256 hash = 32 bytes 

32 bytes * |P| = 17 TB



Idea

Can we trade lookup time for storage reduction?



Hash Chains
Define a reduction function R that maps from hash-output space back into P.

For each chain, select a random pi from P as your starting point.

Chaini = [pi -> R(H(pi)) -> {repeat t times}  -> final_value]

Repeat until you have coverage.



Reduction Function
Its input is the output of a hash function:  0x59ae5403928df849394...

Its output is a string that is a possible password: “a#2%33pq”

Simple example, treat the last 7 bytes of the hash as ascii.
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Hash Chains

“1234567” R(H(t1) = “BasketB”H(pi) = 0xaf39...

t1 t2

R(H(t2) = “FooBarz”

t3

*If I store t1 then I can re-compute the whole chain.

*If I store tn (the last link) then I can check if any password is in the chain.
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Hash Chains Lookup
Start with a hash - apply R() to it and see if it matches any of the stored end-links

Keep applying R(H()) up to n times (the number of links in the hash chains) and 
checking if the result matches any of your stored end-links

If you find a match, the true password lies in that chain.

If you never see a match, your chains do not contain the answer.



Collisions
Hash chains collide when they contain duplicate values.

Once two chains have a duplicate value, all subsequent values must also be the 
same. They will contain duplicate information.

The greater coverage of P you try to get, the more collisions will happen.

There can also be cycles within a single chain.



Choosing a Smart Reduction Function

-Avoid Cycles/Collision

-Map to likely values in P

-Different Reduction Function for each chain



Rainbow Tables
Build a series of unique reduction functions Ri applied at ti on the chain.

Collisions will diverge unless they are collisions in the exact same step on the 
chain. Collisions are |R| times less likely to occur. 



Salting
Hash( Password|Salt )

Dilutes the value of pre-computed tables
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Why Not Just Ask Nicely?
To: you@gmail.com

Re: Dan from Google - Your Account

Your google account has been {penalty} for {reasons}!

Sign in here to fix this urgent problem!

<a href=evil.com>google.com</a>

-Dan from Google Customer Support
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Idea
Choose high-value accounts to crack.

Are you then safe if you are not a valuable target?

Do you plan not to be a valuable target forever? 
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Another Idea
How good of random string generators are people?

Please enter a password

-> afableyellow

Error: your password must contain at least 1 number and 1 special character

-> afableyellow1!

Registration Complete



Smart Guessing
Dictionary words

Dictionary words with substitutions

Keyboard patterns

Patterns (like number and special char at the end)

Leaked Password Lists



517,238,891 Leaked Passwords

https://haveibeenpwned.com



Password Crackers
HashCat

JohnTheRipper

Ophcrack

Aircrack

DavidGrohl
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Can we avoid the server ever seeing the password?

ZK{(password): H = H(salt, password)}

But you have to reveal the salt as a public parameter

Attackers can start working on cracking tables for individual accounts right now!
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Preventing Pre-Computation (Jarecki et al. 2018)

ZK{(pwd): H = H(H(pwd,H’(pwd)b), pwd)}
b is known only to the verifier (server)

Xb can be obtained by anyone for any X

The real prover sends H’(pwd) and gets back  H’(pwd)b

Attackers have to guess full entropy b before they can generate any lookup tables


