
Password Cracking
eCrime and Internet Service Abuse +

Applied Cryptography
Combined Lecture

UIUC - Joshua Reynolds

Let U be the set of users

And let p be the user’s password

∀ui∈U,

 store {ui,Ci}

where Ci = Ep(Nonce)

P. Oechslin’s Attack

Ep(Nonce)

P. Oechslin’s Attack

Does it work with hashed passwords?

P. Oechslin’s Attack

Does it work with hashed passwords?

Ep(Nonce) vs. H(p)

P. Oechslin’s Attack

Ep(Nonce) vs. H(p)

1. Both take in a secret p and output a value

P. Oechslin’s Attack

Ep(Nonce) vs. H(p)

1. Both take in a secret p and output a value
2. Both make it cryptographically hard to recover p from that output value

P. Oechslin’s Attack

Ep(Nonce) vs. H(p)

1. Both take in a secret p and output a value indistinguishable from random
2. Both make it cryptographically hard to recover p

The attack will work on either method

We will use the H(k) notation today

Math
Let H() be a cryptographic hash function

Let P be the set of all possible passwords.

Let pi be a password from the set P.

Let hi = H(pi)

Let H be the set of the corresponding hi for all pi

|H| == |P|

Hash Table
For every pi in P:

Compute & Store hi

Time complexity to generate: Θ(|P|)

Time complexity to lookup: Θ(log(|P|))

Space complexity: Θ(|P|)

How big is |P| ?
Consider an exactly 7-character password with upper and lower case letters.

Permutation(48,7) = 587,068,342,272

How long would it take to generate every SHA-256 hash?

How big is |P| ?
Consider an exactly 7-character password with upper and lower case letters.

Permutation(48,7) = 587,068,342,272

200Gh = 200,000,000 hashes per second

P(48,7)/200Gh = ~50 Minutes on a $400 machine

How big is |P| ?
Consider an exactly 7-character password with upper and lower case letters.

Sha-256 hash = 32 bytes

32 bytes * |P| = 17 TB

Idea

Can we trade lookup time for storage reduction?

Hash Chains
Define a reduction function R that maps from hash-output space back into P.

For each chain, select a random pi from P as your starting point.

Chaini = [pi -> R(H(pi)) -> {repeat t times} -> final_value]

Repeat until you have coverage.

Reduction Function
Its input is the output of a hash function: 0x59ae5403928df849394...

Its output is a string that is a possible password: “a#2%33pq”

Simple example, treat the last 7 bytes of the hash as ascii.

Hash Chains

pi= “1234567”

Hash Chains

pi= “1234567” H(pi) = 0xaf39...

Hash Chains

pi= “1234567” R(H(pi) = “BasketB”H(pi) = 0xaf39...

Hash Chains

“1234567” R(H(t1) = “BasketB”H(pi) = 0xaf39...

t1 t2

Hash Chains

pi= “1234567” R(H(t1) = “BasketB”H(pi) = 0xaf39...

t1 t2

R(H(t2) = “FooBarz”

t3

Hash Chains

“1234567” R(H(t1) = “BasketB”H(pi) = 0xaf39...

t1 t2

R(H(t2) = “FooBarz”

t3

*If I store t1 then I can re-compute the whole chain.

*If I store tn (the last link) then I can check if any password is in the chain.

Hash Chains Lookup
Start with a hash - apply R() to it and see if it matches any of the stored end-links

Hash Chains Lookup
Start with a hash - apply R() to it and see if it matches any of the stored end-links

Keep applying R(H()) up to n times (the number of links in the hash chains) and
checking if the result matches any of your stored end-links

Hash Chains Lookup
Start with a hash - apply R() to it and see if it matches any of the stored end-links

Keep applying R(H()) up to n times (the number of links in the hash chains) and
checking if the result matches any of your stored end-links

If you find a match, the true password lies in that chain.

Hash Chains Lookup
Start with a hash - apply R() to it and see if it matches any of the stored end-links

Keep applying R(H()) up to n times (the number of links in the hash chains) and
checking if the result matches any of your stored end-links

If you find a match, the true password lies in that chain.

If you never see a match, your chains do not contain the answer.

Collisions
Hash chains collide when they contain duplicate values.

Once two chains have a duplicate value, all subsequent values must also be the
same. They will contain duplicate information.

The greater coverage of P you try to get, the more collisions will happen.

There can also be cycles within a single chain.

Choosing a Smart Reduction Function

-Avoid Cycles/Collision

-Map to likely values in P

-Different Reduction Function for each chain

Rainbow Tables
Build a series of unique reduction functions Ri applied at ti on the chain.

Collisions will diverge unless they are collisions in the exact same step on the
chain. Collisions are |R| times less likely to occur.

Salting
Hash(Password|Salt)

Dilutes the value of pre-computed tables

Why Not Just Ask Nicely?

Why Not Just Ask Nicely?
To: you@gmail.com

Re: Dan from Google - Your Account

Your google account has been {penalty} for {reasons}!

Sign in here to fix this urgent problem!

google.com

-Dan from Google Customer Support

Idea
Choose high-value accounts to crack.

Idea
Choose high-value accounts to crack.

Are you then safe if you are not a valuable target?

Idea
Choose high-value accounts to crack.

Are you then safe if you are not a valuable target?

Do you plan not to be a valuable target forever?

Another Idea
How good of random string generators are people?

Another Idea
How good of random string generators are people?

Please enter a password

-> afableyellow

Another Idea
How good of random string generators are people?

Please enter a password

-> afableyellow

Error: your password must contain at least 1 number and 1 special character

Another Idea
How good of random string generators are people?

Please enter a password

-> afableyellow

Error: your password must contain at least 1 number and 1 special character

-> afableyellow1!

Registration Complete

Smart Guessing
Dictionary words

Dictionary words with substitutions

Keyboard patterns

Patterns (like number and special char at the end)

Leaked Password Lists

517,238,891 Leaked Passwords

https://haveibeenpwned.com

Password Crackers
HashCat

JohnTheRipper

Ophcrack

Aircrack

DavidGrohl

Can we avoid the server ever seeing the password?

Can we avoid the server ever seeing the password?

ZK{(password): H = H(salt, password)}

Can we avoid the server ever seeing the password?

ZK{(password): H = H(salt, password)}

But you have to reveal the salt as a public parameter

Attackers can start working on cracking tables for individual accounts right now!

Preventing Pre-Computation (Jarecki et al. 2018)

Preventing Pre-Computation (Jarecki et al. 2018)

ZK{(pwd): H = H(H(pwd,H’(pwd)b), pwd)}

Preventing Pre-Computation (Jarecki et al. 2018)

ZK{(pwd): H = H(H(pwd,H’(pwd)b), pwd)}
b is known only to the verifier (server)

Xb can be obtained by anyone for any X

The real prover sends H’(pwd) and gets back H’(pwd)b

Preventing Pre-Computation (Jarecki et al. 2018)

ZK{(pwd): H = H(H(pwd,H’(pwd)b), pwd)}
b is known only to the verifier (server)

Xb can be obtained by anyone for any X

The real prover sends H’(pwd) and gets back H’(pwd)b

Attackers have to guess full entropy b before they can generate any lookup tables

