ECE 515/ME 540 (Control System Theory and Design) – Homework 5

Due: Thursday, October 17 at 2pm

Problem 1. Consider the following LTI model:

$$\dot{x} = \begin{bmatrix} -7 & -2 & 6 \\ 2 & -3 & -2 \\ -2 & -2 & 1 \end{bmatrix} x + \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} -1 & -1 & 2 \\ 1 & 1 & -1 \end{bmatrix} x$$

Check controllability using:

- a) the controllability matrix.
- b) the rows of $\overline{B} = M^{-1}B$, where M is chosen such that $M^{-1}AM$ is diagonal.
- c) the Hautus-Rosenbrock condition.

You may use a calculator, MATLAB, or another computational device, but be sure you would know how to do this manually if needed.

Problem 2. Let A be an $n \times n$ matrix and B be an $n \times r$ matrix, both with real entries. Suppose (A, B) is controllable. Prove or disprove the following statements. (If the statement is false, then producing a counterexample will suffice.)

- a) The pair (A^2, B) is controllable.
- b) Let $k(\cdot)$ be a known n-dimensional function, piecewise continuous in t. Consider the model:

$$\dot{x} = Ax + Bu + k(t)$$

This model is controllable, in the sense that for any initial state x_0 and any target final state x_f , there exists a control $u(\cdot)$ that directs the system from x_0 to x_f in finite time.

- c) Given that the model $\dot{x} = Ax + Bu$ has the initial condition $x(0) = x_0 \neq 0$, it is possible to find a piecewise continuous control, defined on $[0, \infty)$, such that the model is brought to rest at t = 1, i.e. x(t) = 0 for all $t \geq 1$.
- d) Suppose the model starts at x(0) = 0; there exists a piecewise continuous control which will bring the state to $x_f \in \mathbb{R}^n$ by time $t \ge 1$ and maintain that value $x(t) = x_f$ for all $t \ge 1$.

Problem 3. Define the operator A as follows:

$$\mathcal{A}(u) = \int_{t_0}^{t_f} \phi(t_f, \tau) B(\tau) u(\tau) d\tau$$

The domain of \mathcal{A} is the set of all piecewise continuous time functions on $[t_0, t_f]$. The co-domain is \mathbb{R}^n .

- a) Compute the adjoint A^* .
- b) Compute the composition $V = A \circ A^*$. Note $V : \mathbb{R}^n \to \mathbb{R}^n$, so V should be a $n \times n$ matrix. What is the relationship with V and the controllability Grammian W? Adapt Theorem 5.2.2 from the reader to a statement about V.