ECE 588 Problem Set 3: Solution

Problem 1

a) We make use of the results in HW 1 to obtain the following *LOLP* vs. load table

load (MW)	LOLP	ln(LOLP)
400	0.000006	-12.024
500	0.000600	-7.4190
600	0.000894	-7.0200
700	0.001088	-6.8230
1000	0.030194	-3.5000
1100	0.049400	-3.0080
1200	0.058906	-2.8320
1600	1.000000	0.0000

Below we provide a plot of the ln(LOLP) vs. load.

b) We know from the lecture notes that

$$H(x) \triangleq P\{R < x\} = Ke^{\alpha x}$$

Consider the *LOLP* value at the load level of 1,200 MW. In order to determine α we make use of two arbitrary points:

$$x = 0$$
: $H(0) = Ke^{\alpha 0} = 0.058906$
 $x = -100$: $H(-100) = Ke^{\alpha(-100)} = 0.0494$

Therefore,

$$\frac{e^0}{e^{-100\alpha}} = \frac{0.058906}{0.049400} \Rightarrow \alpha = 0.00176$$

c) After adding the new 300 MW unit, we get a new table of LOLP vs. load values.

load (MW)	LOLP	ln(<i>LOLP</i>)
300	3*10 ⁻⁷	-15.02
400	6*10 ⁻⁶	-12.02
500	0.0000357	-10.24
600	0.0000504	-9.90
700	0.0000601	-9.72
800	0.0006244	-7.38
900	0.0009037	-7.01
1000	0.0025433	-5.97
1100	0.0035036	-5.65
1200	0.0039789	-5.53
1300	0.0316296	-3.45
1400	0.0498753	-3.00
1500	0.0589060	-2.83
1600	0.1059607	-2.24
1800	1.0000000	0.00

The modified *LOLP* vs. load curve is provided below.

From the lecture notes we have proved that the effective load carrying capability (ELCC) of a resource is given by

$$c_{eff} = \frac{1}{\alpha} \left\{ -\ell n \left[\left(1 - p \right) + p e^{-\alpha c} \right] \right\}$$

At a load level of 1,200 MW we have computed $\alpha = 0.00176$. Therefore, for c = 300 MW and p = 0.95 we obtain

$$c_{\rm eff} = 280.58~MW$$

d) With the application of the *DSM* program, for load levels greater then 1,100 *MW* we derive the new *LOLP* values as follows:

$$LOLP'(1100) = LOLP(1050) = 0.0494$$

 $LOLP'(1150) = LOLP(1100) = 0.0494$
 $LOLP'(1200) = LOLP(1150) = 0.058906$
 $LOLP'(1250) = LOLP(1200) = 0.058906$
 $LOLP'(1550) = LOLP(1500) = 0.058906$

When the load values are below 1100 MW, the LOLP values remain the same. Since we assume that the DSM program is 100% available, which implies that $p_{DSM} = 1.0$, then the ELCC of the DSM program is

Problem 2

The generation and load data for system A are given in lecture 3 (Markov Models for Reliability Evaluation) and 4 (Frequency and Duration Techniques) respectively. The generation data for system B are given in lecture 5 (Reliability of Two-Area Interconnections) and the load data for system B are given below

j	ℓ_j	$\boldsymbol{\alpha}_{_{j}}$	$\lambda_{\ell_{j^+}}(1/day)$	$\lambda_{\ell_{j-}}(1/day)$	$p_{j} = \alpha_{j} e \left(j \neq 0 \right)$
0	0	-	2	0	0.5
1	80	0.1	0	2	0.05
2	96	0.2	0	2	0.10
3	112	0.5	0	2	0.25
4	120	0.2	0	2	0.10

The availability table for system B is

k	available capacity x	$p_{_k}$	$P\left\{\sum_{i=1}^{3} A_{i} \leq x\right\}$
0	0	0.000064	0.000064
1	40	0.003072	0.003136
2	80	0.038400	0.041536
3	120	0.0737280	0.115309
4	160	0.8847360	1.000000

We compute the following representative values for the *two-area* interconnection example given in lecture 5. For system A as an isolated system we obtain

$$P\left\{\underline{R}^{A} = -100\right\} = P\left\{\sum_{i=1}^{4} \underline{A}_{i} = 0\right\} P\left\{\underline{L} = 100\right\} + P\left\{\sum_{i=1}^{4} \underline{A}_{i} = 50\right\} P\left\{\underline{L} = 150\right\}$$
$$= (0.0000026)(0.1 * 0.5) + (0.0002458)(0.2 * 0.5)$$
$$= 0.0000001 + 0.0000246 = 0.0000247$$

$$P\left\{\mathcal{R}^{A} \le -100\right\} = P\left\{\mathcal{R}^{A} = -100\right\} + P\left\{\mathcal{R}^{A} = -120\right\} + P\left\{\mathcal{R}^{A} = -140\right\} + P\left\{\mathcal{R}^{A} = -150\right\} = 0.0000259$$

For the frequency computation we define the set

$$S(-100) = \{i : R^A = r_i^A \le -100\}$$

then the frequency

$$\mathcal{F}\left\{\mathbb{S}\left(-100\right)\right\} = \mathcal{F}\left\{\mathbb{R}^{A} \le -100\right\} = \sum_{i \in \mathbb{S}\left(-100\right)} p_{i} * \left(\sum_{j \notin \mathbb{S}\left(-100\right)} \lambda_{ji}\right) = \\
= p_{-100}^{A} \left(0.079 + 2\right) + p_{-120}^{A} \left(0.105 + 2\right) \\
+ p_{-140}^{A} \left(0.105 + 2\right) + p_{-150}^{A} \left(2\right) + p_{-100}^{A} \left(0.105 + 2\right) \\
= 0.0000246 * 2.079 + 0.0000003 * 2.105 + \\
+ 0.0000007 * 2.105 + 0.0000003 * 2 \\
+ 0.0000001 * 2.105 = 0.0000541$$

For system B as an isolated system we obtain

$$P\left\{\bar{R}^{B} = 120\right\} = P\left\{\sum_{i=1}^{3} \bar{A}_{i}^{B} = 120\right\} P\left\{\bar{L} = 0\right\} = 0.0737280 * 0.5 = 0.036864$$

$$P\left\{\bar{R}^{B} \le 120\right\} = \sum_{r_{i}^{B} \le 120} P\left\{\bar{R}^{B} \le r_{i}^{B}\right\} = 0.557632$$

$$\mathcal{F}\left\{\underline{R}^{B} \leq 120\right\} = p_{120}^{B}\left(0.026301\right) + p_{80}^{B}\left(2\right) + p_{64}^{B}\left(2\right) + p_{48}^{B}\left(2\right) + p_{48}^{B}\left(2$$

For the interconnected systems A and B with *unconstrained* tie-line capacity we can derive the probabilities of any of the failure states as follows

 $P\left\{R^{A}=r_{i}^{A} \text{ and } R^{B}=r_{i}^{B}\right\}=P\left\{R^{A}=r_{i}^{A}\right\}P\left\{R^{B}=r_{i}^{B}\right\}$ due to statistical independence of the two areas. Hence,

$$P\left\{\mathcal{R}^{A} = -20 \text{ and } \mathcal{R}^{B} = 160\right\} = P\left\{\mathcal{R}^{A} = -20\right\} P\left\{\mathcal{R}^{B} = 160\right\}$$

= 0.0008847 * 0.442368 = 0.000391

Problem 3

i)
$$P\left\{\bar{R}^{A} < 0\right\} = P\left\{\bar{R}^{A^{0}} + \bar{A}^{AB} < 0\right\} = P\left\{\bar{R}^{A^{0}} + \bar{A}^{AB} < 0\right\} = P\left\{\bar{R}^{A^{0}} + \bar{A}^{AB} < 0\middle|\bar{A}_{t} = c_{t}\right\} p_{t} + P\left\{\bar{R}^{A^{0}} < 0\middle|\bar{A}_{t} = 0\right\} (1 - p_{t})$$

We know that

$$P\left\{ \tilde{R}^{A^0} < 0 \right\} = 0.0041052$$

and,

$$P\left\{R^{A^0} + A^{AB} < 0\right\} = \sum_{i,j} p_{ij}$$

with states $i, j \in \left\{ \tilde{R}^{A^0} + 50 < 0 \middle| \tilde{R}^{B} \ge 50 \right\} \cup \left\{ \tilde{R}^{A^0} + \tilde{R}^{B} < 0 \middle| 0 < \tilde{R}^{B} < 50 \right\} \cup \left\{ \tilde{R}^{A^0} < 0 \middle| \tilde{R}^{B} \le 0 \right\}$

From the table in slide 29, lecture 5 we obtain by adding all the values below the red staircase line plus the <u>values above the</u> staircase for $r_j^A \le -70$ (that give negative reserves when we add the 50 MW assistance from system B). Hence,

$$P\left\{R^{A^0} + A^{AB} < 0\right\} = 0.6031 \times 10^{-3}$$

Consequently,

$$P\left\{R^A < 0\right\} = 0.999\left(0.6031 \times 10^{-3}\right) + 0.001\left(0.0041052\right) = 0.000607$$

For $c_t = 100 MW$ we can derive in a similar way

$$P\left\{R^{A^0} + A^{AB} < 0\right\} = \sum_{i,j} p_{ij} = 0.000548$$

with states $i, j \in \left\{ \tilde{R}^{A^0} + 100 < 0 \middle| \tilde{R}^B \ge 100 \right\} \cup \left\{ \tilde{R}^{A^0} + \tilde{R}^B < 0 \middle| 0 < \tilde{R}^B < 100 \right\} \cup \left\{ \tilde{R}^{A^0} < 0 \middle| \tilde{R}^B \le 0 \right\}$ Therefore,

 $P\left\{R^A < 0\right\} = 0.999(0.000548) + 0.001(0.0041502) = 0.000552$

ii) For the frequency evaluation we proceed as follows

$$\mathcal{F}\left\{\underline{R}^{A} < 0\right\} = \mathcal{F}\left\{\underline{R}^{A} < 0 \middle| A_{i} = c_{i}\right\} p_{i} + \mathcal{F}\left\{\underline{R}^{A^{0}} < 0 \middle| A_{i} = 0\right\} \left(1 - p_{i}\right) + \lambda_{i} p_{i} \left(\sum_{i,j} p_{ij}\right)$$

$$with \ i, j \in \left\{\underline{R}^{A^{0}} + \underline{A}^{AB} \ge 0\right\} \cap \left\{\underline{R}^{A^{0}} < 0\right\}$$

For $c_{t} = 50 MW$:

$$\mathcal{F}\left\{\bar{R}^{A^{0}} < 0\right\} = \mathcal{F}\left\{\bar{R}^{A^{0}} \le -20MW\right\} = 0.0084239 \left(\text{ from table in slide 27}\right)$$

$$\sum_{i,j} p_{ij} = 0.0035573 \text{ for } i, j \in \left\{\bar{R}^{A} + \bar{A}^{AB} \ge 0\right\} \cap \left\{\bar{R}^{A^{0}} < 0\right\}$$

For the evaluation of the term $\mathscr{F}\left\{\mathcal{R}^A < 0 \middle| A_{_I} = 50\right\}$ we compute the following tables

$A_{j}^{AB}(MW)$ X	$p_{_{\mathcal{A}_{j}^{AB}}}$	$\mathscr{F}\left\{ \mathcal{R}^{A^0} < -A_j^{AB} \right\}$
50	0.631143	0.0002330
48	0.221184	0.0020727
40	0.093696	0.0020727
24	0.007373	0.0066093
8	0.018432	0.0084239
0	0.028172	0.0084239

The total frequency contribution of this case is given by

$$\sum_{i} p_{A_{j}^{AB}} \mathcal{F}\left\{\bar{R}^{A^{0}} < -A_{j}^{AB}\right\} = 0.001241$$

r_i^A	p_i^{A}	$\mathcal{F}\left\{A^{AB} < -r_i^A\right\}$
200 to 0	-	0
-20	0.0008847	0.0942699
-40	0.0022119	0.1091936
-50	0.0008970	0.7319554
-70 to -150	0.0001121	1

The total contribution of the second case is

$$\sum_i p_i^A \, \mathcal{F} \Big\{ \mathcal{A}^{AB} < -r_i^A \Big\} = 0.001094$$

$$\mathcal{F} \Big\{ \mathcal{R}^A < 0 \Big| \, A_i = 50 \Big\} = 0.001241 + 0.001094 = 0.002335$$
 Hence,

$$\mathcal{F}\left\{\underline{R}^A < 0\right\} = 0.002335(0.999) + 0.0084239(0.001) + (0.00274)(0.999)0.0035573 = 0.002351$$

For c_t =100 MW the first and last term of the frequency computation remain the same as in the previous case. For the second term, we follow the same procedure

A_{j}^{AB}	$p_{_{\mathcal{A}_{j}^{AB}}}$	$\mathcal{F}\left\{\mathbf{R}^{A^0} < -A_j^{AB}\right\}$
100	0.479232	0.0000021
80	0.063437	0.0001819
64	0.088474	0.0002330
48	0.221184	0.0020727
40	0.093696	0.0020727
24	0.007373	0.0066903
8	0.018432	0.0084239
0	0.028172	0.0084239

Therefore the total contribution is computed by the summation

$$\sum_{i} p_{\underline{A}_{j}^{AB}} \mathcal{F}\left\{\underline{R}^{A^{0}} < -A_{j}^{AB}\right\} = 0.001127$$

r_i^A	p_i^A	$\mathcal{F}\left\{\underline{A}^{AB} < -r_i^A\right\}$
200 to 0	-	0
-20	0.0008847	0.0942699
-40	0.0022119	0.1091936
-50	0.0008970	0.7319554
-70	0.0000246	0.9086114
-90	0.0000615	0.9590185
-100	0.0000247	0.9590185
-120 to -150	0.0000010	1

$$\sum_{i} p_{i}^{A} \mathcal{F} \left\{ \mathcal{A}^{AB} < -r_{i}^{A} \right\} = 0.001088$$

$$\mathcal{F} \left\{ \mathcal{R}^{A} < 0 \middle| A_{t} = 100 \right\} = 0.001127 + 0.001088 = 0.00215$$

Therefore,

$$\mathscr{F}\left\{\underline{\mathcal{R}}^{A}<0\right\}=0.00215\left(0.999\right)+0.0084239\left(0.001\right)+\left(0.00274\right)\left(0.999\right)0.0035573=0.002166$$

Problem 4

For the evaluation of the probability and frequency that system B fails, we follow exactly the same procedure as with system A. Therefore,

$$P\left\{ \underset{\sim}{R}^{B} < 0 \right\} = P\left\{ \underset{\sim}{R}^{B^{0}} + \underset{\sim}{A}^{BA} < 0 \middle| \underset{\sim}{A}_{t} = c_{t} \right\} p_{t} + P\left\{ \underset{\sim}{R}^{B^{0}} < 0 \middle| \underset{\sim}{A}_{t} = 0 \right\} \left(1 - p_{t}\right)$$

We can evaluate each term in $P\{R^B < 0\}$ as follows

$$P\left\{\underline{R}^{B^0} < 0\right\} = \sum_{i,j} p_{ij} \qquad \forall i, j \in \left\{r_j^B < 0\right\}$$

$$P\left\{\underline{R}^{B^0} + \underline{A}^{BA} < 0 \middle| \underline{A}_t = c_t\right\} = \sum_{i,j} p_{ij} \qquad \forall i, j \in \left\{r_i^A \ge c_t\right\} \cap \left\{r_i^A + r_j^B \ge 0\right\}$$

For the frequency evaluation, we know that system B fails

• if the tie line is operating, system B fails due to the fact that system B transitions into a state with $R^B < 0$ as a result of unit failures or a load increase in system B and system A provides insufficient assistance to restore area B into a positive margin state. For state j of system B, we can express the total frequency contribution of this situation as

$$p_{t} \sum_{i} p_{i}^{A} \mathcal{F}\left\{\underline{R}^{B^{0}} + r_{i}^{A} < 0\right\} \quad \forall i \in \left\{0 \le r_{i}^{A} = \underline{R}^{A} \le C_{t}\right\}$$

• If system B receives assistance from system A, but system A transitions to a state of lower reserves (outages of its units or increase in its load) corresponding to a state with $R^{B^0} < 0$, we express the frequency contribution of this case as

$$p_{t} \sum_{j} p_{j}^{B} \mathcal{F}\left\{ \mathbf{R}^{A} + \mathbf{r}_{j}^{B} < 0 \right\} \quad \forall j \in \left\{ \mathbf{r}_{j}^{B} < 0 \right\}$$

• If system B receives assistance from system A and the tie line fails, we can write the frequency contribution of this situation as

$$\lambda_{t} p_{t} \left(\sum_{i,j} p_{ij} \right) \quad \forall i, j \in \left\{ \underline{R}^{B^{0}} < 0 \right\} \cap \left\{ \underline{R}^{B^{0}} + \underline{A}^{BA} \ge 0 \right\} \quad with \quad 0 \le \underline{A}^{BA} \le C_{t}$$

1. If the tie line is not operating, system B fails if it transitions to a state with $R^{B^0} < 0$. We can write its frequency contribution as

$$\left(1-p_{_{t}}\right)\mathscr{F}\left\{ \tilde{R}^{_{B^{0}}}<0\right\}$$

The total failure frequency is expressed as the sum of the frequencies of all the previous cases. Therefore,

$$\mathscr{F}\left\{\underline{R}^{B}<0\right\}=p_{t}\left(\sum_{i}p_{i}^{A}\mathscr{F}\left\{\underline{R}^{B^{0}}+r_{i}^{A}<0\right\}+\sum_{j}p_{j}^{B}\mathscr{F}\left\{\underline{R}^{A}+r_{j}^{B}<0\right\}+\lambda_{t}\sum_{i,j}p_{ij}\right)+\left(1-p_{t}\right)\mathscr{F}\left\{\underline{R}^{B^{0}}<0\right\}$$