ECE 588
Problem Set 3: Solution

Problem 1

a) We make use of the results in HW 1 to obtain the following LOLP
vs. load table

load (MW) LOLP In(LOLP)
400 0.000006 -12.024
500 0.000600 -7.4190
600 0.000894 -7.0200
700 0.001088 -6.8230
1000 0.030194 -3.5000
1100 0.049400 -3.0080
1200 0.058906 -2.8320
1600 1.000000 0.0000
Below we provide a plot of the In(LOLP) vs. load.
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b) We know from the lecture notes that

H(x)=P{R<x}=Ke"
Consider the LOLP value at the load level of 1,200 MW. In order
to determine a we make use of two arbitrary points:

x=0: H(0) = Ke** =0.058906
x=-100: H(-100)= Ke"™ =0.0494
Therefore,
0
e' _0.058906 _ . o0

e 0.049400

¢) After adding the new 300 MW unit, we get a new table of LOLP
vs. load values.

load (MW) LOLP In(LOLP)

300 3%107 -15.02
400 6*10° -12.02
500 0.0000357 -10.24
600 0.0000504 9.90
700 0.0000601 9.72
800 0.0006244 -7.38
900 0.0009037 -7.01

1000 0.0025433 5.97
1100 0.0035036 -5.65
1200 0.0039789 -5.53
1300 0.0316296 -3.45
1400 0.0498753 -3.00
1500 0.0589060 -2.83
1600 0.1059607 -2.24
1800 1.0000000 0.00

The modified LOLP vs. load curve is provided below.



From the lecture notes we have proved that the effective load
carrying capability (ELCC) of a resource is given by

C ;= %{—En[(l — p) + pe"”]}

At a load level of 1,200 MW we have computed & =0.00176 .
Therefore, for ¢ =300 MW and p =0.95 we obtain

¢, =280.58 MW

d) With the application of the DSM program, for load levels greater
then 1,100 MW we derive the new LOLP values as follows:



When the load values are below 1100 MW, the LOLP values remain
the same. Since we assume that the DSM program is 100% available,

which implies that p, ., =1.0, then the ELCC of the DSM program is

¢, =50 MW
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Problem 2

The generation and load data for system A are given in lecture 3
(Markov Models for Reliability Evaluation) and 4 (Frequency and
Duration Techniques) respectively. The generation data for system B
are given in lecture 5 (Reliability of Two-Area Interconnections) and
the load data for system B are given below



J £, a, Ay (1 / day) A, (l/day) p,=0e (j # 0)

0 0 - 2 0 0.5

1 80 0.1 0 2 0.05

2 96 0.2 0 2 0.10

3 112 0.5 0 2 0.25

4 120 0.2 0 2 0.10

The availability table for system B is
k available 2
capacity x Py P{g 45 x}

0 0 0.000064 0.000064
1 40 0.003072 0.003136
2 80 0.038400 0.041536
3 120 0.0737280 0.115309
4 160 0.8847360 1.000000

We compute the following representative values for the two-area
interconnection example given in lecture 5. For system A as an
isolated system we obtain

P{R" =-100}= P{i 4 = O}P{g =100} + P{i A = SO}P{; =150}
i=1 i=1
= (0.0000026)(0.1*0.5) + (0.0002458)(0.2 % 0.5)
=0.0000001 +0.0000246 = 0.0000247

P{R'<-100}= P{R"=-100}+ P{R" =-120} + P{R" =140} + P{R" =150}

=0.0000259
For the frequency computation we define the set

$(-100)={i: R =r" <-100}
then the frequency



5{s(-100)} =g{R"* <-100}
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=p",(0.079+2)+ p* (0.105+2)

+p’, (0.105+2)+ p*_ (2)+ p*,, (0.105+2)

=0.0000246 *2.079 + 0.0000003 * 2.105 +
+0.0000007 *2.105 + 0.0000003 * 2
+0.0000001 * 2.105 = 0.0000541

For system B as an isolated system we obtain

P{R" =120} = P{i Al = 120}1){; =0} =0.0737280 % 0.5 = 0.036864
P{R* <120}= Y P{R’ <r"}=0.557632
5{R" <120} = p” (0.026301)+ p? (2)+ p* (2)+ p% (2) +

+p} (2) = 0.8857

For the interconnected systems A and B with unconstrained tie-line

capacity we can derive the probabilities of any of the failure states as
follows

P{I}A =r"and R® = riB} = P{I}A = rf}P{I}B = I;B} due to statistical
independence of the two areas. Hence,

P{R"=-20and R* =160} = P{R" = 20} P{R" =160}
= 0.0008847 * 0.442368 = 0.000391



Problem 3
i)
P{R"<0}=P{R"+4" <0}=

P{gA” +4" <04, = ct}pt +P{Ij’"° <0

4,=0}(1-p)

We know that
P{R" <0}=0.0041052
and,

P{B"° + A" < 0} =y p,
ij

with states i,j € {13”4" +50<0

R zso}u{g*‘" +R"<0/0<R" <50}U{3A° <0

13330}

From the table in slide 29, lecture 5 we obtain by adding all the
values below the red staircase line plus the values above the
staircase for r' <70 (that give negative reserves when we add the

50 MW assistance from system B). Hence,
P{R" + 4" <0} =0.6031x10"
Consequently,

P{R" <0} =0.999(0.6031x107)+0.001(0.0041052) = 0.000607

For ¢, =100 MW we can derive in a similar way

P{R"+ 4" <0}= p, =0.000548
i,j

with states i, j {Ij"o +100<O[R" > 100} U{Ij”‘“ +R <0< R" < 100} U {Ij"o <O[R"< 0}
Therefore,
P{R" <0} =10.999(0.000548)+0.001(0.0041502) = 0.000552

ii) For the frequency evaluation we proceed as follows



§{R'<0}={R"<0/4,=c}p, +${B”" < O‘A, = 0}(1—P,)+/1,P, [Zl’a]

with i, j e {R" + 4" 20} N{R* <0}

For ¢, =50 MW :

5{R" <0}=5{R" <-20MW | = 0.0084239 ( from table in slide 27)

Y. p, =0.0035573 fori, je{R*+ 4" 20}N{R" <0}
i

For the evaluation of the term § {13*‘ <0|At =50} we compute the

following tables

47 (MW) P 5{R" <-4"}

X ~J

30 0.631143 0.0002330
48 0.221184 0.0020727
40 0.093696 0.0020727
24 0.007373 0.0066093
8 0.018432 0.0084239
0 0.028172 0.0084239

The total frequency contribution of this case is given by

Y. p,. 5{R" <-4"}=0.001241
j 2

’;A P,A g{élAB < _’;A}
200 to 0 - 0
-20 0.0008847 0.0942699
-40 0.0022119 0.1091936
-50 0.0008970 0.7319554
-70 to -150 0.0001121 1

The total contribution of the second case is




> p8{4" <-r"}=0.001094

§{R"* <04, =50} = 0.001241+0.001094 = 0.002335

Hence,

g{R" <0} =10.002335(0.999)+0.0084239(0.001) + (0.00274)(0.999)0.0035573 = 0.002351

For ¢;=100 MW the first and last term of the frequency computation
remain the same as in the previous case. For the second term, we follow
the same procedure

AB A° AB
4,‘ p{‘;‘B 5{8 <_A,- }
100 0.479232 0.0000021
80 0.063437 0.0001819
64 0.088474 0.0002330
48 0.221184 0.0020727
40 0.093696 0.0020727
24 0.007373 0.0066903

8 0.018432 0.0084239

0 0.028172 0.0084239

Therefore the total contribution is computed by the summation

>Xp,.5 {13““ < —A;‘B} = 0.001127
~ Py

’/;A plA g{AAB <_r,-A}

200 to 0 - 0

-20 0.0008847 0.0942699

-40 0.0022119 0.1091936

-50 0.0008970 0.7319554

-70 0.0000246 0.9086114

-90 0.0000615 0.9590185

-100 0.0000247 0.9590185
-120 to -150 0.0000010 1




Y. p 8{4" <-r'}=0.001088

3{13/‘ < 0‘ A = 100} =0.001127+0.001088 = 0.00215

Therefore,

g{R" <0}=0.00215(0.999)+0.0084239(0.001) + (0.00274)(0.999)0.0035573 = 0.002166

Problem 4

For the evaluation of the probability and frequency that system B fails,
we follow exactly the same procedure as with system A. Therefore,

P{R" <0}=P{R" + 4" <0|4,=c }p,+ P{R" <0|4,=0}(1-p)
We can evaluate each term in P{I}B < 0} as follows

P{R" <0}=Y p, Vije{r <o}

P{IjB0 +A4™ <0‘4t =ct}=2pﬁ vi,je{r’ th}ﬂ{ri”‘ +r 20}
y

For the frequency evaluation, we know that system B fails
e if the tie line is operating, system B fails due to the fact that
system B transitions into a state with R” <0 as a result of

unit failures or a load increase in system B and system A
provides insufficient assistance to restore area B into a
positive margin state. For state j of system B, we can express
the total frequency contribution of this situation as

pIZpl_AéF{ISBO+I;A<0} ‘v’ie{OSrI_"=I~2"Sct}

e If system B receives assistance from system A, but system A
transitions to a state of lower reserves (outages of its units

or increase in its load) corresponding to a state with R" <0,
we express the frequency contribution of this case as



P,pr&’{g”‘+rf<0} ‘v’je{er<0}
J

e If system B receives assistance from system A and the tie
line fails, we can write the frequency contribution of this
situation as

ltpt(z,pij] Vi, je{R" <0}N{R" + 4™ 20} with 0< 4™ <c,

1. If the tie line is not operating, system B fails if it transitions to a
state with R” <0. We can write its frequency contribution as

(1-p,)8{R" <0}

The total failure frequency is expressed as the sum of the frequencies of
all the previous cases. Therefore,

5{1}3 <0}=pt(zpi"5{ljgo +r <0}+2pfé‘{l}" +r’ <0}+lt2pij]+(l—pt)5{ljﬂo <0
; j i



