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Wireless Localization / Positioning
The process of obtaining a human or object’s location using wireless signals

Applications:

• Navigation: outdoors (GPS) and indoors (e.g., museum)

• Location based services: Tagging, Reminder, Ads

• Virtual Reality and Motion Capture

• Gestures, writing in the air

• Behavioral Analytics (Health, activities, etc.)

• Locating misplaced items (keys)

• Location based security

• Delivery drones



Wireless Localization Architecture.
• Device based: A device uses 

incoming signal from one or 
more “anchors” to determine its 
own location

• Network based: Anchors (or 
Access points) use the signal 
coming from device to 
determine its location



Wireless Localization

This Lecture: Focus on WiFi Localization

Future Lectures: Other wireless technologies



Method 1: RSSI Based Localization
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• Higher received power à Closer
• Lower received power à Farther

Use RSSI to estimate distance from APs! 
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Method 1: RSSI Based Localization
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Method 1: RSSI Based Localization

Trilateration



Method 1: RSSI Based Localization

distance

RSSI

Pros: 
Cons:

Very simple, no hardware modifications
Highly inaccurate!

For low RSSI, small error 
due to noise results in 
huge distance error!



Method 1: RSSI Based Localization
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RSSI

Pros: 
Cons:

Very simple, no hardware modifications!
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Does not work with multipath!
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Method 1: RSSI Based Localization
Solution: Fingerprinting 

Measure and records RSSI fingerprints at each location (war-driving)

Pros: 
Cons:

Works with multipath,
Changes in environment/movement è change RSSI!

No need to know AP locations!

Continuous training is needed. Lots of effort!



Method 2: AoA Based Localization

Triangulation

Measure Angle of Arrival (AoA) from device to each AP
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Method 2: AoA Based Localization
Measure Angle of Arrival (AoA) from device to each AP
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Method 2: AoA Based Localization
Measure Angle of Arrival (AoA) from device to each AP
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Ambiguity: ∃!% ≠ !#	|	ΔΦ% = ΔΦ#	mod	24
ΔΦ = ∠ℎ# − ∠ℎ% = 24	' cos ! /8 mod	24

To avoid ambiguity, we want: −4 ≤ ΔΦ ≤ 4
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Method 2: AoA Based Localization
Measure Angle of Arrival (AoA) from device to each AP
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"# = "% − ' cos !
We	want:
−3 ≤ ΔΦ ≤ 3

We	have:
−1 ≤ 		 		cos ! 				≤ 1

−23 '; ≤ 23 '; cos ! ≤ 23 ';
−23 '; ≤ 							ΔΦ						 ≤ 23 ';

Set: ' = ;/2 −3 ≤ 							ΔΦ								 ≤ 3

Rx1 Rx2



Method 2: AoA Based Localization
Measure Angle of Arrival (AoA) from device to each AP

Rx1 Rx2

!!

"/2

%& = %( − * cos !

Pros: 
Cons:

Simple!More accurate than RSSI,
Ambiguity: cos ! = cos −!

Does not work with multipath!
Error not linear with ! due to cos !
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Method 3: Antenna Arrays (ArrayTrack Paper)
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Method 3: Antenna Arrays (ArrayTrack Paper)
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Method 3: Antenna Arrays (ArrayTrack Paper)
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Method 3: Antenna Arrays (ArrayTrack Paper)
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Method 3: Antenna Arrays (ArrayTrack Paper)
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Method 3: Antenna Arrays (ArrayTrack Paper)
Which is the Line-of-Sight Path (Direct Path)? 

Strongest Path!
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Which is the Line-of-Sight Path (Direct Path)? 
Strongest Path!

Not always due to blockage!



Method 3: Antenna Arrays (ArrayTrack Paper)
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Which is the Line-of-Sight Path (Direct Path)? 
Strongest Path!

Not always due to blockage!

ArrayTrack: Leverage Mobility
• Line of sight path relatively stable with mobility
• Multipath reflection changes faster with mobility 
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Method 3: Antenna Arrays
Which is the Shortest Path (Direct Path)? 

Multipath Profile vs Time
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1/Δ" = 300012

Thus, for narrow band, convolving with the wireless channel reduces to multiplying by a single
complex number h and we can now write the received signal y(t) as:

y(t) = hx(t) + n(t).

• Wide Band Channel: For wide band we can approximate the wireless channel h(t) by a
multi-tap channel i.e. multiple delayed impulses as shown in Figure 5. For a k tap channel
the received signal y(t) can be written as:

y(t) =
i=k
∑

i=0

h(i)s(t− iτ)
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Figure 5: Time Domain Wide Band Channel h(t) (≈11 taps)

• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
flat. For wide band, H(f) results in different attenuation for different frequencies as shown
in Figure 6. The figure also shows that for narrow bands the channel can be approximated as
flat.

y(t) = h(t) ∗ s(t) + n(t) ⇔ Y (f) = H(f)S(f) +N

−80 −60 −40 −20 0 20 40 60 80
Frequency in MHz

Figure 6: Frequency Selective Fading for 100 MHz channel

• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).

802.11n bandwidth = 40012



Method 3: Antenna Arrays
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Multipath Profile vs AoAMultipath Profile vs Time
1. Use multipath profile as a filter to separate different paths

2. Estimate time of arrival of each path

3. Find the shortest path 
But How?

Thus, for narrow band, convolving with the wireless channel reduces to multiplying by a single
complex number h and we can now write the received signal y(t) as:

y(t) = hx(t) + n(t).

• Wide Band Channel: For wide band we can approximate the wireless channel h(t) by a
multi-tap channel i.e. multiple delayed impulses as shown in Figure 5. For a k tap channel
the received signal y(t) can be written as:

y(t) =
i=k
∑

i=0

h(i)s(t− iτ)

 0

 0.5

 1

 1.5

 2

 2.5

 0  10  20  30  40  50  60  70

|H
|2

Tap Index

Figure 5: Time Domain Wide Band Channel h(t) (≈11 taps)

• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
flat. For wide band, H(f) results in different attenuation for different frequencies as shown
in Figure 6. The figure also shows that for narrow bands the channel can be approximated as
flat.

y(t) = h(t) ∗ s(t) + n(t) ⇔ Y (f) = H(f)S(f) +N

−80 −60 −40 −20 0 20 40 60 80
Frequency in MHz

Figure 6: Frequency Selective Fading for 100 MHz channel

• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
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in Figure 6. The figure also shows that for narrow bands the channel can be approximated as
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
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flat.
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
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in Figure 6. The figure also shows that for narrow bands the channel can be approximated as
flat.

y(t) = h(t) ∗ s(t) + n(t) ⇔ Y (f) = H(f)S(f) +N
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Figure 6: Frequency Selective Fading for 100 MHz channel

• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).



Method 3: Antenna Arrays

0

30o

60o
90o

120o

150o

180o

Which is the Shortest Path (Direct Path)? 

Multipath Profile vs AoAMultipath Profile vs Time
1. Use multipath profile as a filter to separate different paths
2. Estimate time of arrival of each path 
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).

Thus, for narrow band, convolving with the wireless channel reduces to multiplying by a single
complex number h and we can now write the received signal y(t) as:

y(t) = hx(t) + n(t).

• Wide Band Channel: For wide band we can approximate the wireless channel h(t) by a
multi-tap channel i.e. multiple delayed impulses as shown in Figure 5. For a k tap channel
the received signal y(t) can be written as:

y(t) =
i=k
∑

i=0

h(i)s(t− iτ)

 0

 0.5

 1

 1.5

 2

 2.5

 0  10  20  30  40  50  60  70

|H
|2

Tap Index

Figure 5: Time Domain Wide Band Channel h(t) (≈11 taps)

• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).

Time Resolution still not enough Use OFDM
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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complex number h and we can now write the received signal y(t) as:

y(t) = hx(t) + n(t).
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y(t) =
i=k
∑

i=0

h(i)s(t− iτ)

 0

 0.5

 1

 1.5

 2

 2.5

 0  10  20  30  40  50  60  70

|H
|2

Tap Index

Figure 5: Time Domain Wide Band Channel h(t) (≈11 taps)

• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
flat. For wide band, H(f) results in different attenuation for different frequencies as shown
in Figure 6. The figure also shows that for narrow bands the channel can be approximated as
flat.
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
flat. For wide band, H(f) results in different attenuation for different frequencies as shown
in Figure 6. The figure also shows that for narrow bands the channel can be approximated as
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).

But this delay includes packet detection delay & processing 

delay, not just propagation delay!
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• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
flat. For wide band, H(f) results in different attenuation for different frequencies as shown
in Figure 6. The figure also shows that for narrow bands the channel can be approximated as
flat.
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
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in Figure 6. The figure also shows that for narrow bands the channel can be approximated as
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
flat. For wide band, H(f) results in different attenuation for different frequencies as shown
in Figure 6. The figure also shows that for narrow bands the channel can be approximated as
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
flat. For wide band, H(f) results in different attenuation for different frequencies as shown
in Figure 6. The figure also shows that for narrow bands the channel can be approximated as
flat.
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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• Frequency Selective Fading: Convolution with h(t) in the time domain results multipli-
cation with H(f) in the frequency domain. For narrow band, h(t) is an impulse and H(f) is
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in Figure 6. The figure also shows that for narrow bands the channel can be approximated as
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• Inter-Symbol-Interference: Multi-path results in inter-symbol-interference i.e. delayed
symbols interfere with the symbol being decoding. The effect is sever and results in decoding
errors for wide band since the symbol length is short and of the order of the delayed taps. The
next lecture will discuss how we deal with this problem using OFDM (Orthogonal Frequency
Division Multiplexing).
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Requires more hardware! 

No need for fingerprinting

Assumes device is sufficiently far such that 
wavefront is parallel

…
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Method 4: ToF Based Localization
Measure Time of Flight (ToF) from device to each AP

Distance = Time of flight × speed of travel

Measure ToF à Get distance à Trilateration



Method 4: ToF Based Localization
Measure Time of Flight (ToF) from device to each AP
Challenges:
• How do you know when signal was transmitted? 

• How about packet detection delay & processing delay?
- Use OFDM to correct for packet detection delay
- Estimate and calibrate for processing delay

Not Practical!



Method 4: ToF Based Localization
Measure Time of Flight (ToF) from device to each AP
Challenges:
• Accuracy limited by sampling rate (bandwidth)!

Δ" = Δ$	×	'
802.11n bandwidth = 40*+, Δ$ = 25/0 Δ" = 12.5	3

• Other systems than WiFi can get accurate ToF:
- UWB: Ultra-Wide Band
- FMCW: Frequency Modulated Carrier Wave

Not Supported in WiFi
(Will discuss in future lectures)



Method 5: TDoA Based Localization
Measure Time Difference of Arrival (TDoA) from 

device to AP’s antennas

ℎ" ∝ $%&'(
)*
+ ℎ' ∝ $%&'(

),
+

ΔΦ = ∠ℎ' − ∠ℎ"
2" − 2' = 3ΔΦ/26 = 2′

Equation of Hyperbola 
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− 8 − 8' ' + : − :' ' = 2′
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