# ECE 598HH: Advanced Wireless Networks and Sensing Systems

#### Lecture 14: Wireless Sensing Part 3 Haitham Hassanieh





\*Slides Courtesy of Mingmin Zhao

**Previous Lectures** 

**WiVi:** Sensing humans through walls with WiFi

WiTrack: Accurately Localizing humans through walls

**RF-Capture:** Capturing human figure through walls

Vital Ratio: Extracting vital signs (Breathing rate and heart rate)

#### This Lecture

**EQ-Radio:** Detecting emotions from wireless signals

# **RF-Sleep:** Detecting sleep stages from wireless signals

# Can you tell people's emotions even if they don't show up on their faces?

Smart Homes that adapt to our mood







Did I get the Job? .... No



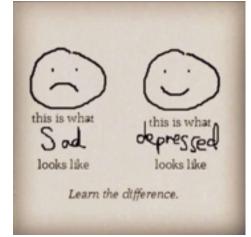
Does my advisor like my work?



Advisor

Graduate student

Combating Depression

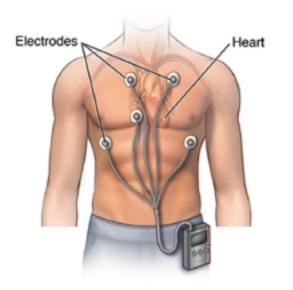


Is the date going well!



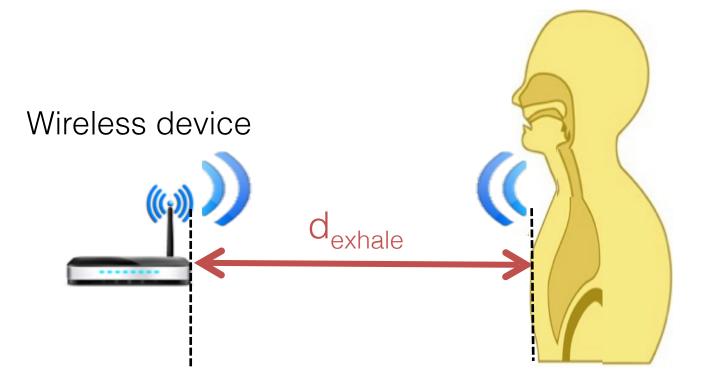
#### Existing approaches measure vital signs

• Use ECG to get very accurate heartbeats

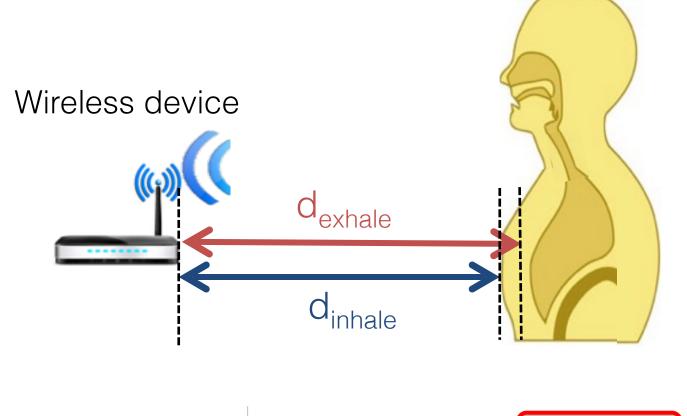


#### Use wireless reflections off the human body

#### Use wireless reflections off the human body

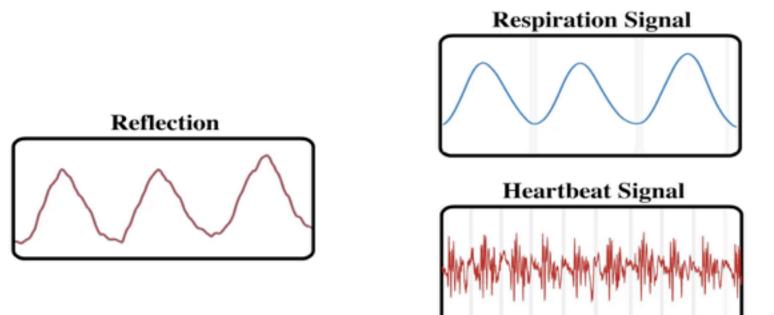


# Solution: Use the phase of the wireless reflection



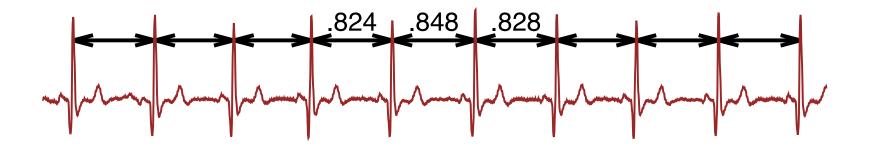
Wireless wave has a • Chest Motion chistance • Heartbeats alsvavletengetblistance

### Emotion recognition using wireless signals



## Key challenge: Inter-Beat Interval (IBI)

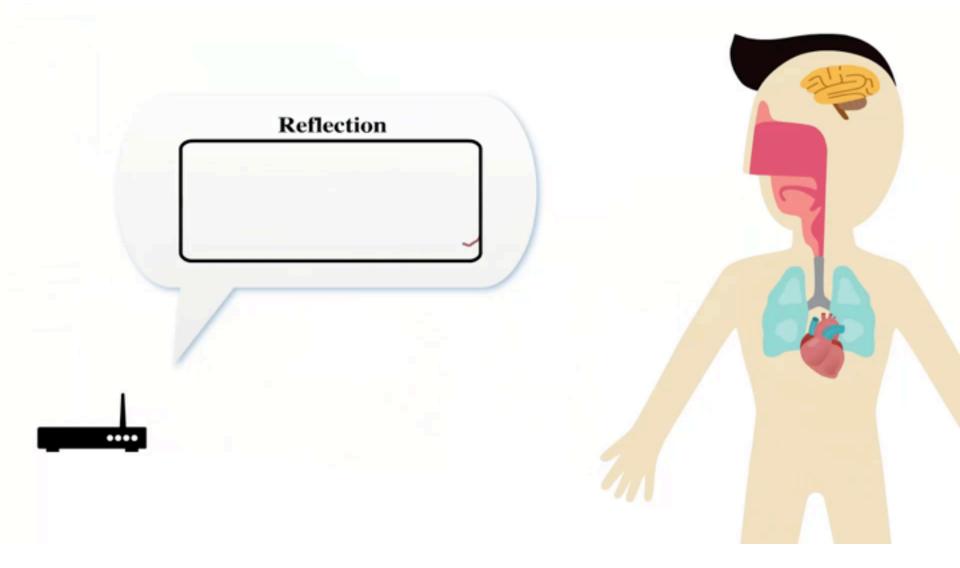
• Emotion recognition needs accurate measurements of the length of every single heartbeat



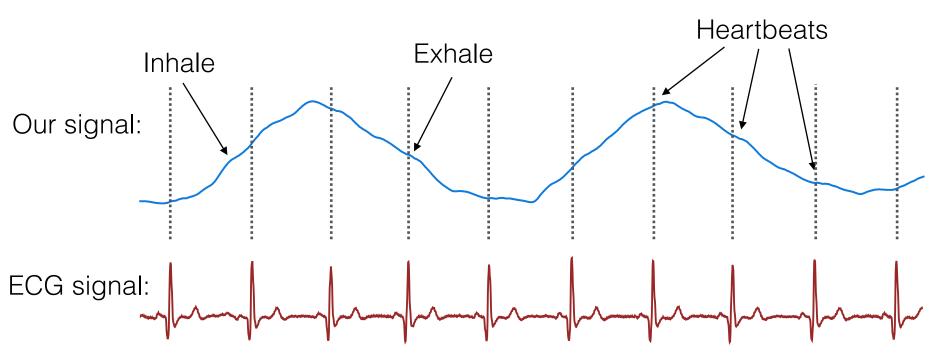
We need to extract IBI with accuracy over 99%

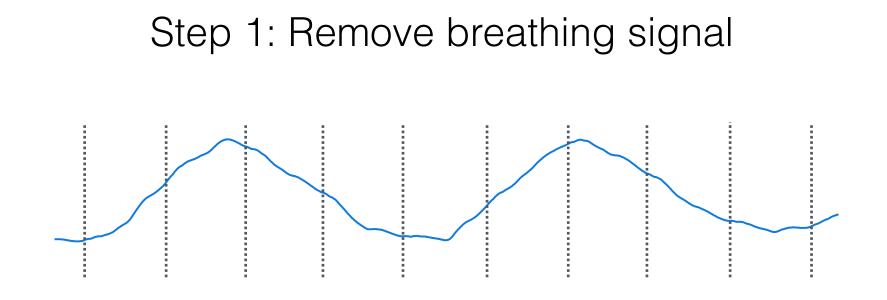
## Input signal

#### Wireless reflection of the human body



## Input signal

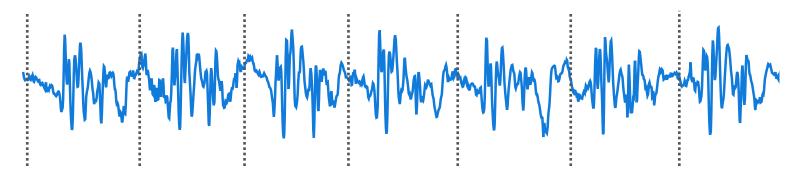




- Breathing masks heartbeats
- We use acceleration filter
  - Heartbeat involves rapid contraction of muscle
  - Breathing is slow and steady

# Heartbeat signal

Output of acceleration filter



• ECG signal



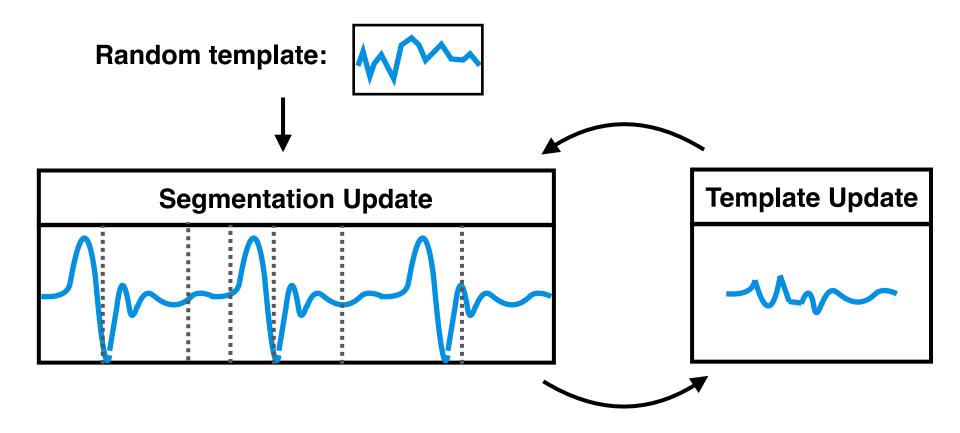
# Heartbeat signal

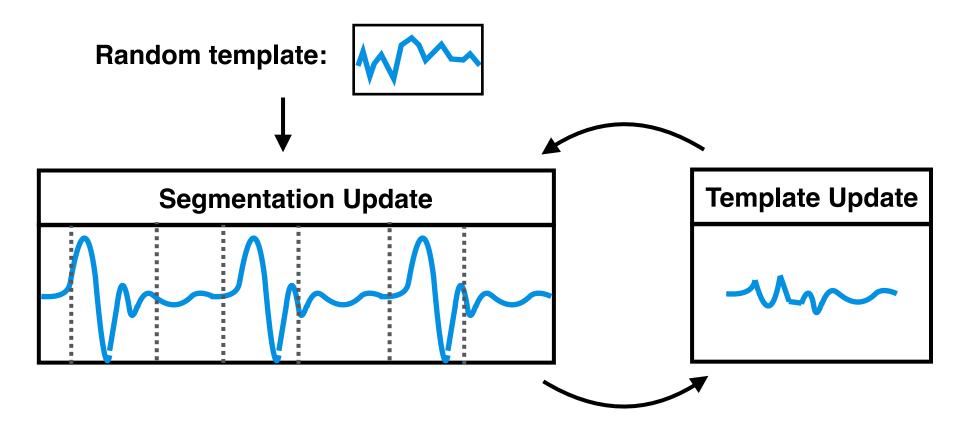
• Other typical examples:

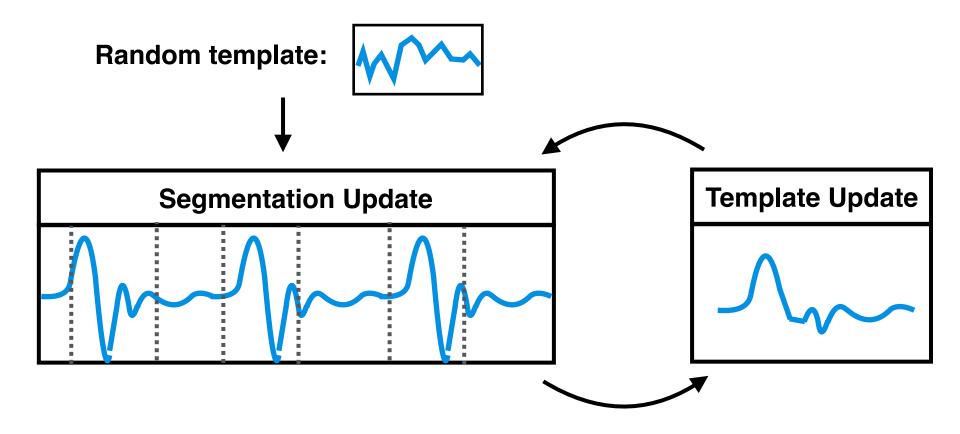
How to segment the signal into individual heartbeats?

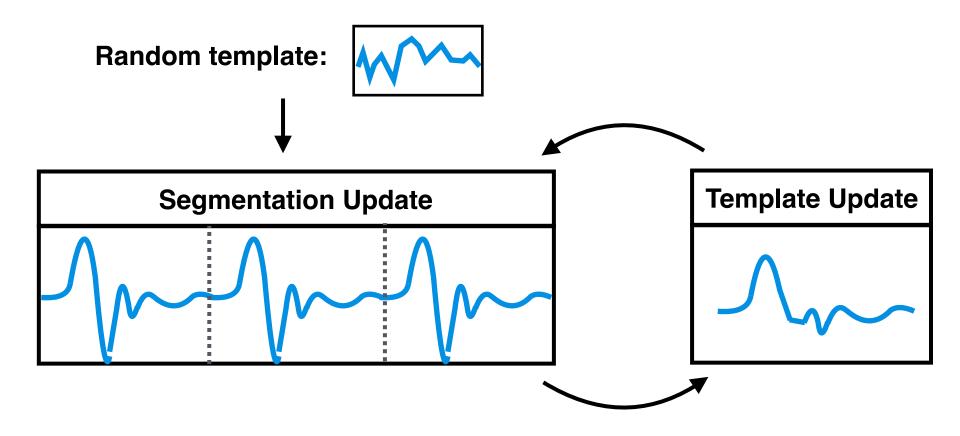
Manday, And allo Line Line and Mill Markey and Madding and all Miles and March And

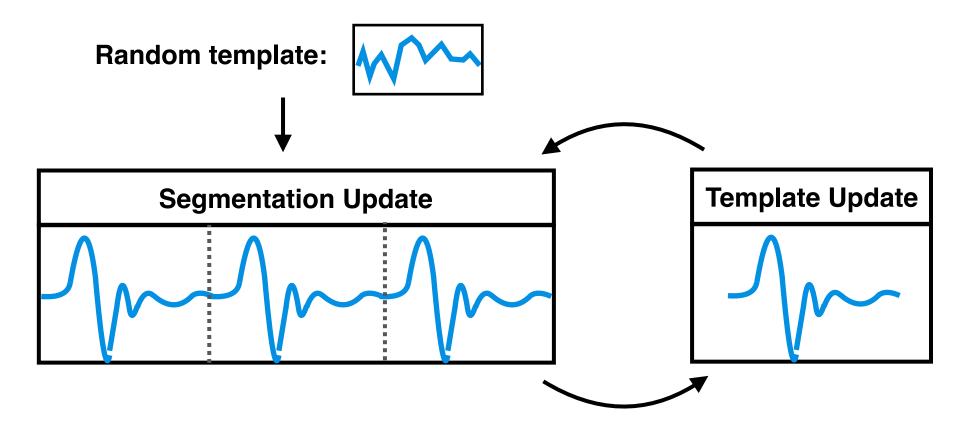
- Intuition: heartbeat repeats with certain shape (template)
- If we can somehow discover the template, then we can segment into individual heartbeats





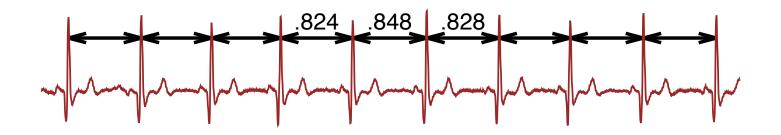






# Caveat: Shrinking & Expanding

• IBI are not always the same



- Template subject to shrink and expanding
  - Linear warping

# Algorithm

Need to recover both segmentation and template

• Joint optimization: minimize  $\sum_{\substack{S,\mu\\segmentation}} \|s_i - \omega(\mu, |s_i|)\|^2$ segmentation template warping

Segmentation Update  

$$S^{l+1} = \arg \min_{S} \sum_{s_i \in S} \|s_i - \omega(\mu^l, |s_i|)\|^2$$
  
(dynamic programming)

#### Template Update

$$\mu^{l+1} = \arg\min_{\mu} \sum_{s_i \in S^{l+1}} \|s_i - \omega(\mu, |s_i|)\|^2$$
(weighted least squares)

# Algorithm

Need to recover both segmentation and template

• Joint optimization: minimize  $\sum_{\substack{S,\mu\\segmentation}} \|s_i - \omega(\mu, |s_i|)\|^2$ segmentation template warping

Segmentation Update  

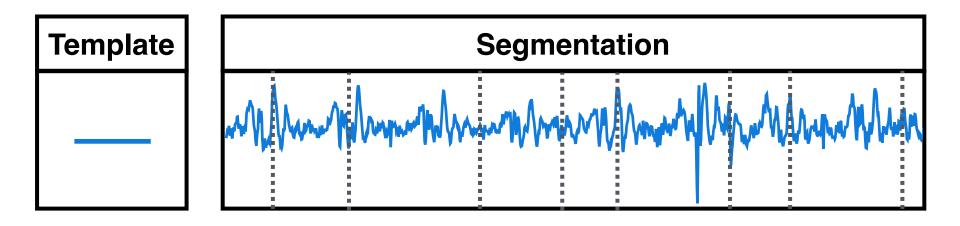
$$S^{l+1} = \arg \min_{S} \sum_{s_i \in S} \|s_i - \omega(\mu^l, |s_i|)\|^2$$
  
(dynamic programming)

#### Template Update

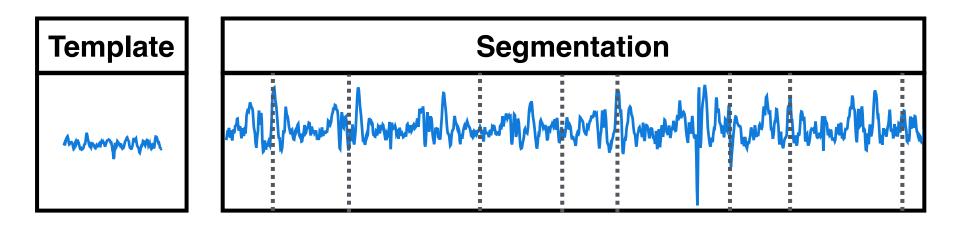
$$\mu^{l+1} = \arg\min_{\mu} \sum_{s_i \in S^{l+1}} \|s_i - \omega(\mu, |s_i|)\|^2$$
(weighted least squares)



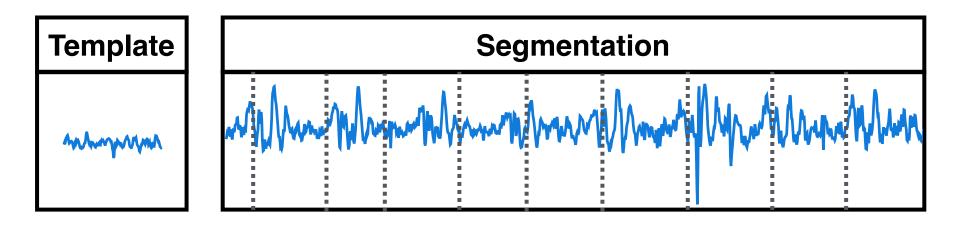
Iteration 1:



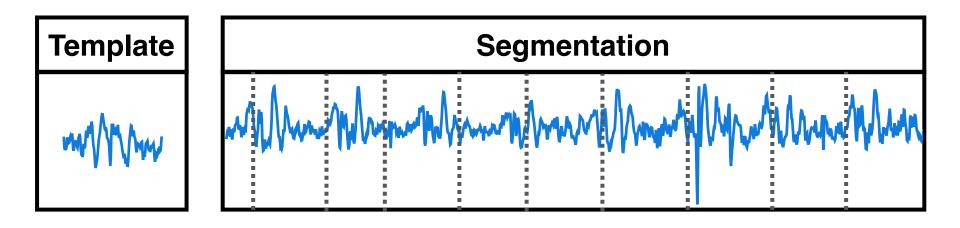
Iteration 2:



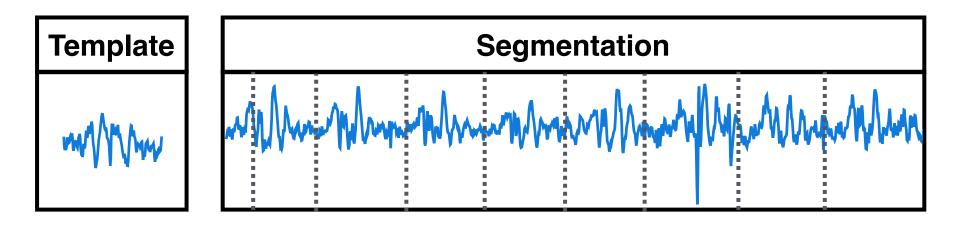
Iteration 2:



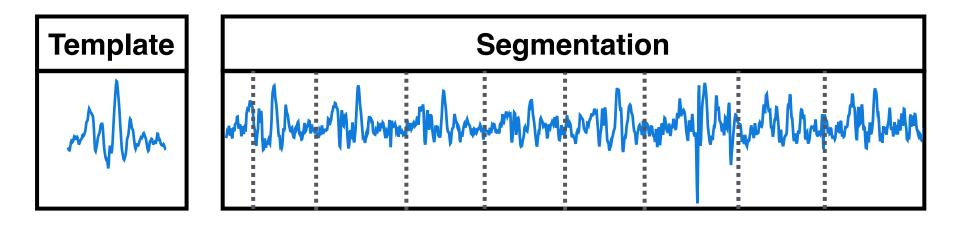
Iteration 3:



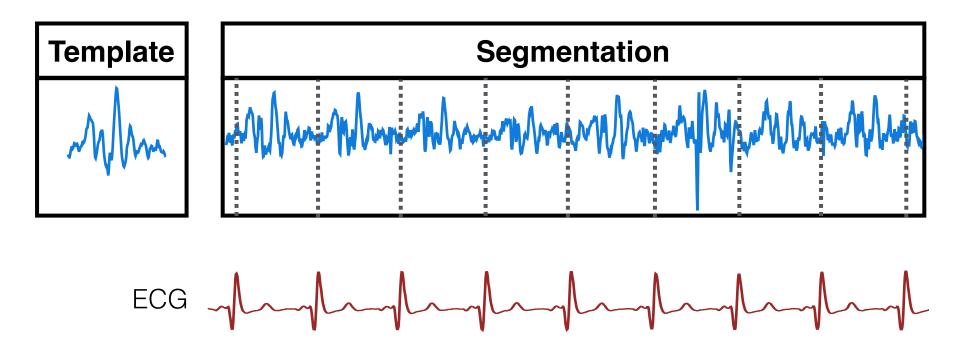
Iteration 3:



Iteration 7:



Iteration 7:



#### From vital signs to emotions

Physiological Features for Emotion Recognition

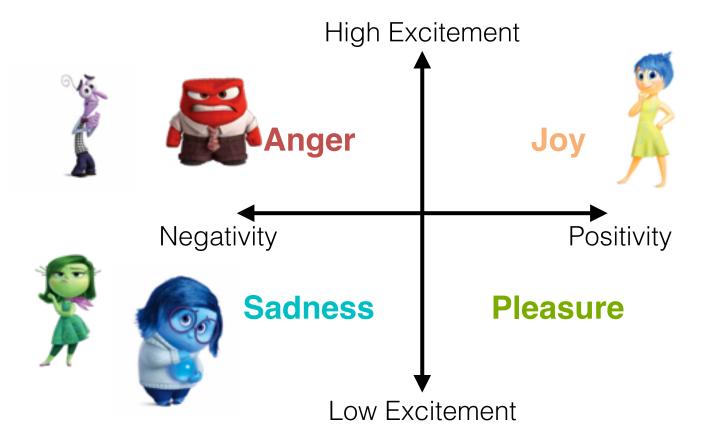
- 37 Features similar to ECG-based methods
  - Variability of IBI
  - Irregularity of breathing

# **Emotion Classification**

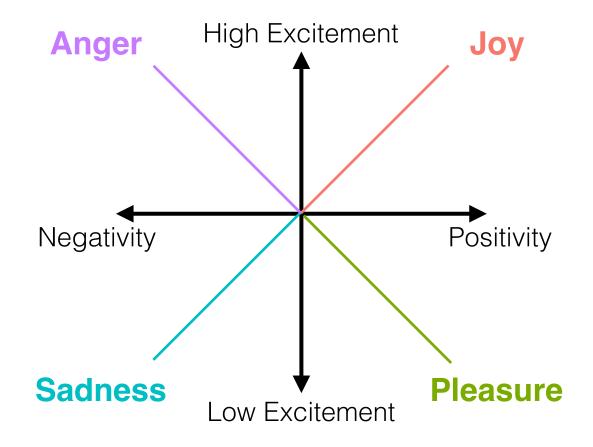
- Recognize emotion using physiological features
- Used L1-SVM classifier
  - select features and train classifier at the same time

# **Emotion Model**

- Standard 2D emotion model
- Classify into anger, sadness, pleasure and joy

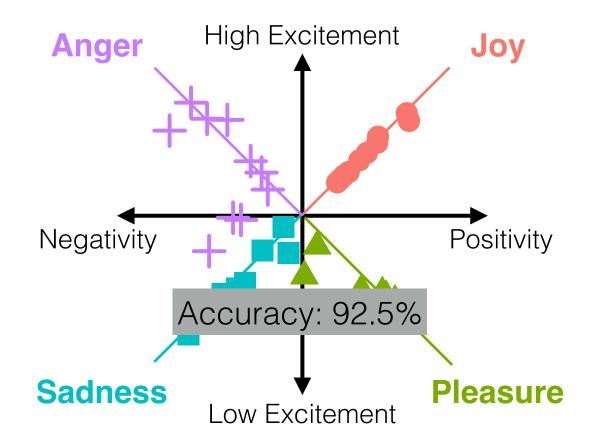


## Does it detect emotion accurately?



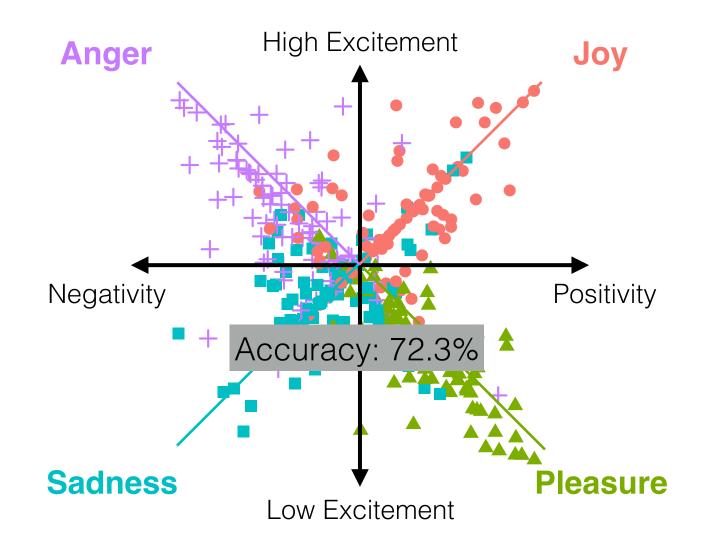
# Person-dependent Classification

• Train and test on the same person

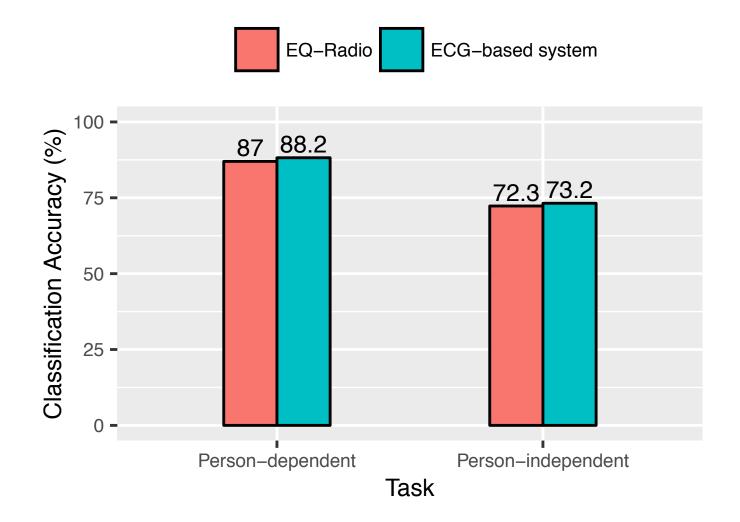


# Person-independent Classification

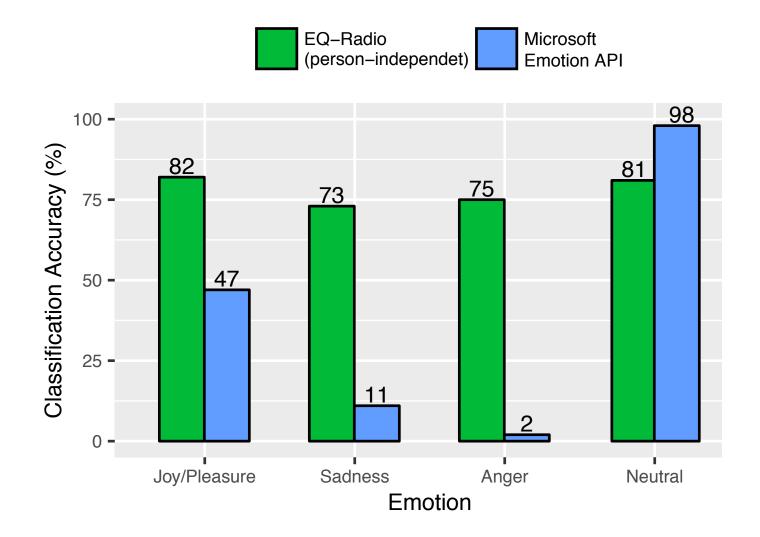
• Train and test on the different person



# Comparison with ECG-based system

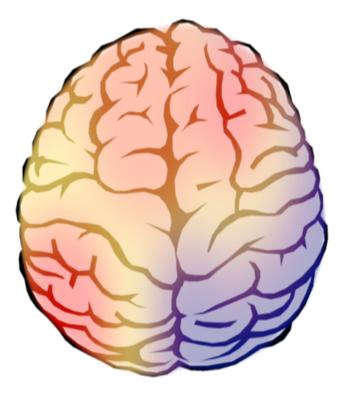


## Comparison with Image-based system



## Learning Sleep Stages from Radio Signals

## Background





Time

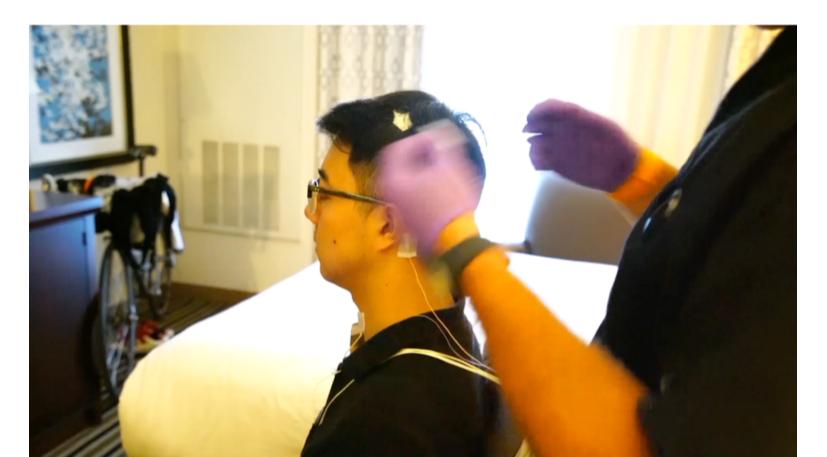


## **Understanding Diseases with Sleep Stages**

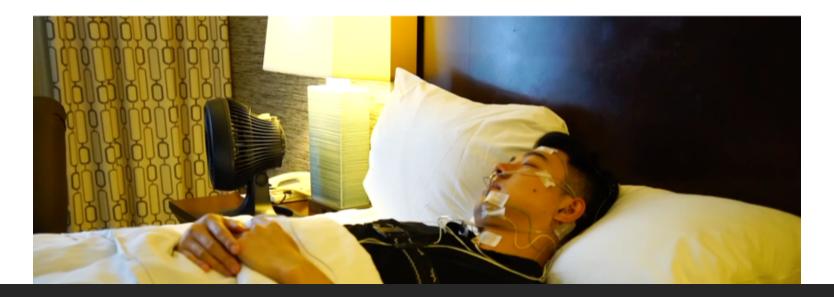


## But, monitoring sleep stages is difficult ... done in hospital with many electrodes on the body

## Sleep Lab



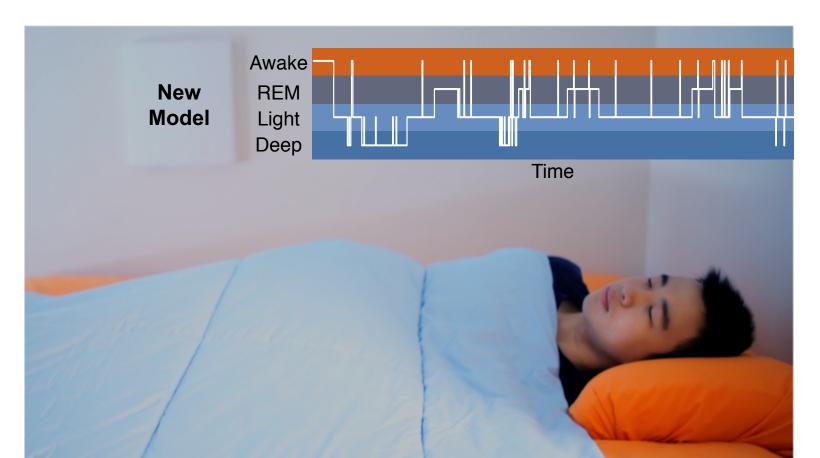
## Sleep Lab



#### Can we do it in bedroom without any electrodes?



## **RF-Based Sleep Staging**





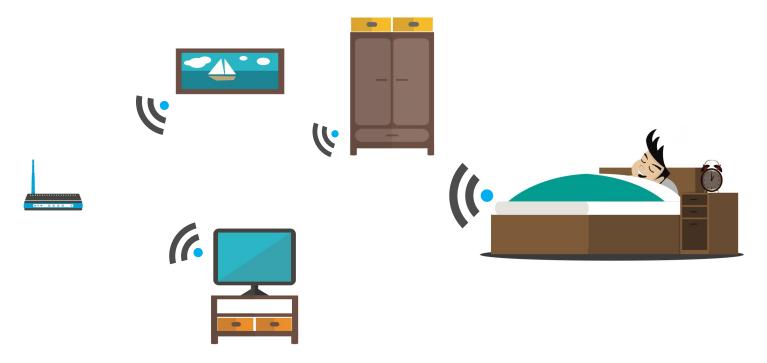


RF signals reflect off body and change with physiological signals

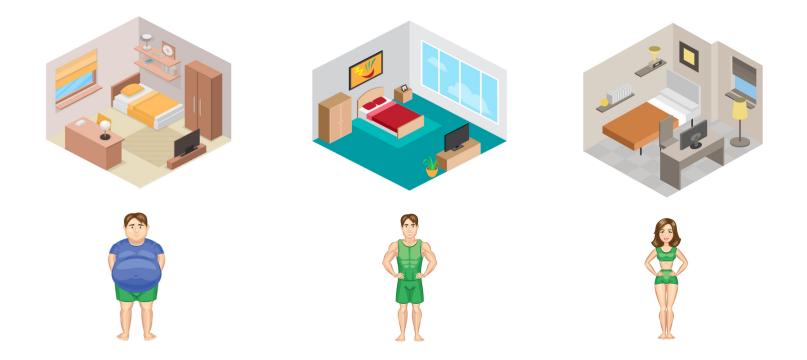
# Our objective: High accuracy on par with sleep lab, but in one's bedroom and without electrodes on the body

## Key Challenge

# RF reflections are highly dependent on the **measurement conditions** and the **individuals**.

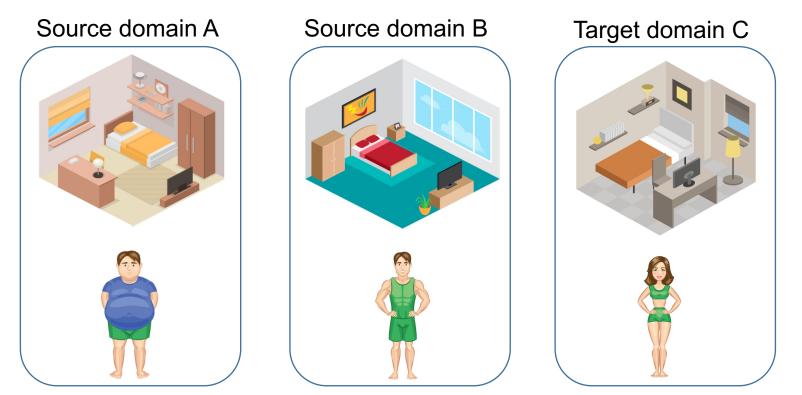


#### Need to remove such extraneous information!



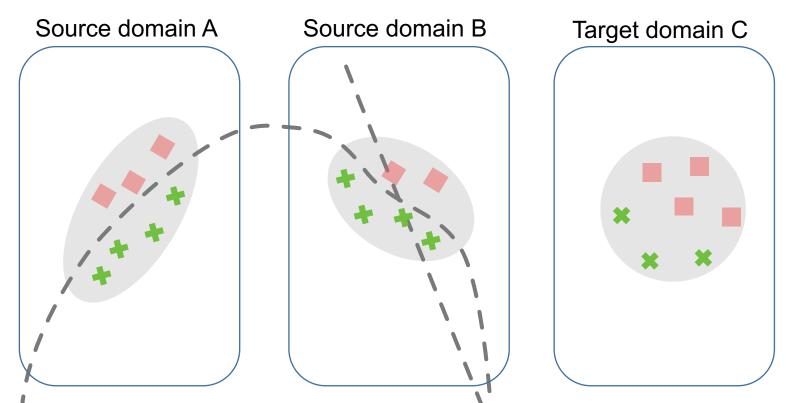
## **Multi-Source Domain Adaptation**

domain = measurement condition + individual

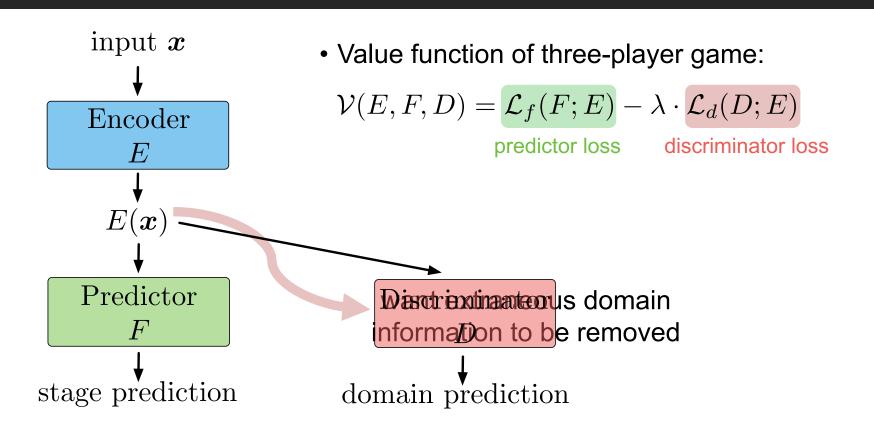


## **Multi-Source Domain Adaptation**

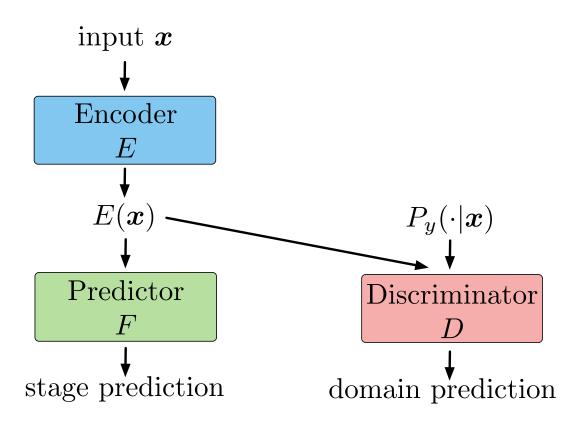
domain = measurement condition + individual



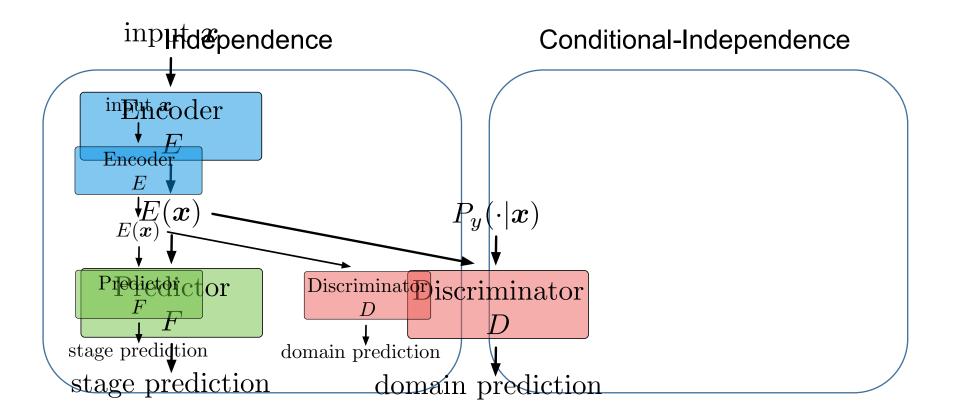
#### Problem: Discriminator removes both extraneous and useful information



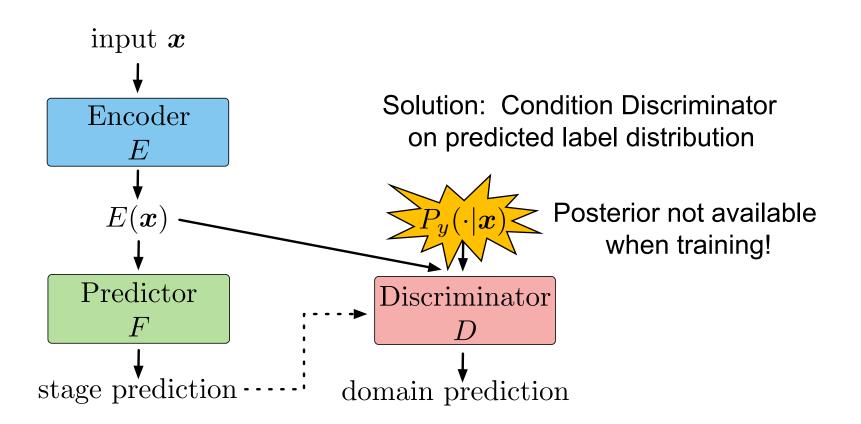
### **Conditional Adversary**



## Role of Adversary



#### Does it work?



## It Works

**Theorem** (informal): Given enough capacity, the encoder at equilibrium discards all extraneous information specific to domains, while retaining the relevant information for the predictive task.

## Evaluation

- 25 different bedrooms and 100 nights
- Ground-truth: FDA-approved EEG-based sleep profiler provides sleep stage labels
- ~90k 30-sencond pairs of RF measurements and corresponding sleep stages



## Accuracy

Labelling sleep stages is

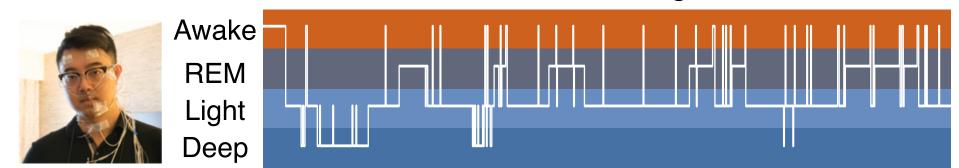
subjective

83%

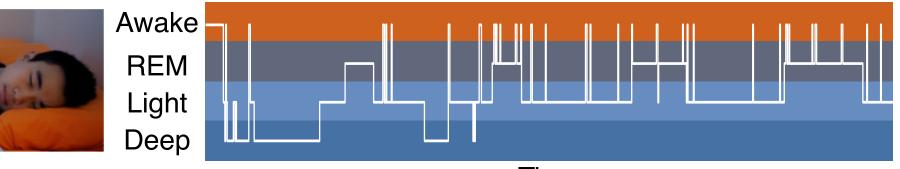
Accuracy of sleep lab Inter-rater agreement: 83% Our accuracy 79.8% (Tested on new subjects not in training, i.e., new domains)

Previous solutions: 64%

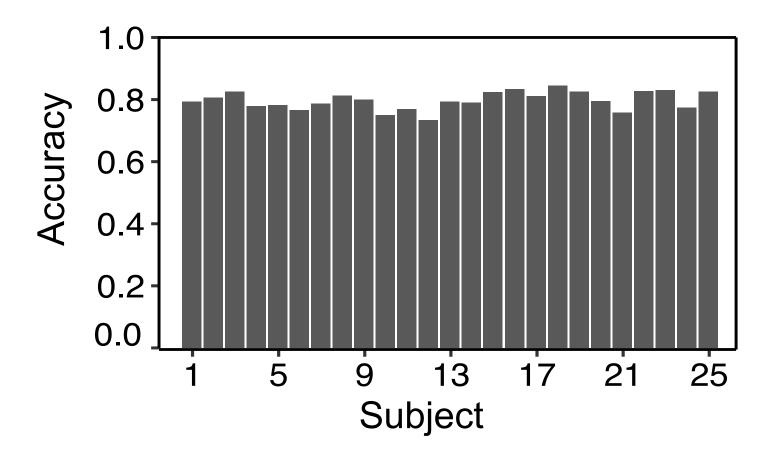
## Representative Example Acc = 80% Ground-truth using EEG



**RF-Sleep Prediction** 



## Accuracy for Different Subjects (Domains)



#### Learning sleep stages from wireless signals







