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RFIDs



Machine-Generated Data

RFID will be a major source of such traffic

• “number of RFID tags sold globally is projected to 
rise from 12 million in 2011 to 209 billion in 2021.”

–McKinsey Big Data Report 2011

• In Oil & Gas – about 30% annual growth rate

• In Healthcare – $1.3B revenue annually



Can we use current wireless protocols 
for these low power networks?



RFID Constraints 
• No battery
• Ultra-low cost 
• Simple circuitry 

RFID Requirements
• Small form factor
• Massive scale 
• Lifetime 

RFIDs can’t perform typical wireless functions 
like carrier sense or rate adaptation

• Wireless protocols require power and computation



RFID Background

Cards Cards

E-ZPass
Retailing
Sensornet

125 kHz / 134 kHz

UHF:

• Achieves higher range (few meters v.s. cm)

• Uses backscatter communication instead of inductive coupling

13.56 MHz



Backscatter Communication

‘1’

‘0’

• A flashlight emits a beam of light

• The light is reflected by the mirror

• The intensity of the reflected beam can 
be associated with a logical “0” or “1”



Backscatter Communication



Reader shines an RF 
signal on nearby RFIDs

Tag reflects the reader’s signal 
using ON-OFF keying

Backscatter Communication



Backscatter Communication

RFIDs are synced by the reader's signal:
• Time synchronization
• Frequency synchronization



EPC Gen2 Standard – MAC

Slotted Aloha:
– Reader allocates Q time slots and transmits a query at the beginning 

of each time slot
– Each tag picks a random slot and transmits a 16-bit random number
– In each slot:

• RN16 decoded à Reader ACKs à Tags transmits 96-bit ID
• Collision à Reader moves on to next slot
• No reply à Reader moves on to next slot

Reader

Tag



EPC Gen2 – MAC

Inefficient:
– If reader allocates large number of slots à Too many empty slots
– If reader allocates small number of slots à Too many collisions

Reader

Tag



EPC Gen2 – MAC
• N RFID Tags & K Time slots
• Each tag picks a slot uniformly at random to transmit in. 

Probability that a tag transmits in a give slot:  ! = #
$

Probability that all tags transmit without collision: 

% = & ⋅ ! ⋅ 1 − ! *+#

To maximize %, set 

,%
,! = 0

→ & 1 − ! *+# − &! & − 1 1 − ! *+/ = 0
→ 1 − ! − !& + ! = 0
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EPC Gen2 – MAC
• N RFID Tags & K Time slots
• Each tag picks a slot uniformly at random to transmit in. 

Probability that a tag transmits in a give slot:  ! = #
$

Probability that all tags transmit without collision: 
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EPC Gen2 – MAC

Inefficient:
– If reader allocates large number of slots à Too many empty slots
– If reader allocates small number of slots à Too many collisions
– If reader knows number of tags = N à Allocate K=N slots à 37% efficiency 
– Downlink overhead 

Reader

Tag



EPC Gen2 – Rate Adaptation

- TDMA

- Fixed modulation: 1 bit/symbol ON-OFF keying (ASK)

- Miller-4 encoding

- No effective adaptation à message loss



Challenges of Backscatter

RFIDs cannot hear each other 
à Collisions 



Challenges of Backscatter

RFIDs cannot hear each other 
à Collisions 

Cannot adapt modulation to channel quality 
à Don’t exploit a good channel to send 

more bits per symbol
à Don’t react to a bad channel 



Network As a Node

Wireless Medium

ID = 1 ID = 2 ID = 4ID = 3 ID = 5 ID = NID = 6 ...

Collisions

Collision becomes a code across the virtual sender’s bits 
• Deals with collision by decoding collision-code
• Adapts the rate by making collision-code rateless



Network-As-a-Node 

Node 
Identification

Data 
Communication



The Node Identification Problem

Challenge: RFIDs cannot hear each other
à Collisions

Applications
• Inventory management
• Shopping cart

Each object has an ID
Reader learns IDs of nearby objects



Current Approach: Slotted Aloha

Collision

Node1 Node2

Few Time Slots OR Many Time Slots

ID 1 ID 2

Unreliable Inefficient

Node1 Node2

Time is divided into slots;
Each RFID transmits in a random slot



A million RFIDs in the Wal-Mart store

ID = 1 ID = 2 ID = 4ID = 3 ID = 5 ID = N...ID = 6



But only a few (e.g., 20) in the shopping cart

ID = 1 ...ID = 2 ID = 4ID = 3 ID = 5 ID = NID = 6



ID = 1 ...ID = 2 ID = 4ID = 3 ID = 5 ID = NID = 6

0 1 0 0 1 0 … 0

System is represented by a vector !
"# = 1 if node with ID =	'	is in cart



0 1 0 0 1 0 … 0

vector !

Ideally, want to compress !	and send it 
to the reader

But !	is distributed across all nodes!



0 1 0 0 1 0 … 0

! is Sparse

Use Compressive sensing to 
compress and send !

vector !



Compressive Sensing

Linear Equations: 
y = #x

• M equations and N unknowns: y%×' = #%×(x)×'

• Solve for: x

• If M<N à Cannot solve for x



Compressive Sensing
Compressive Sensing: y = #x

• If x has at most K << N non-zero entries: i.e. x	 is sparse 
à Can recover x from M << N measurements
à& = ' ( log,/(

• # must satisfy Restricted Isometry Property (RIP)
• E.g. Random 0/1 or +1/-1
• E.g. Fourier measurements ./01234/5

• x can be sparse in any domain 
• E.g. images are sparse in Wavelet and Fourier domains. 
• x = Φ	z and z is sparse à can recover x from y = #x = #Φz



• Virtual sender sends !
• Reader decodes " using a 

compressive sensing decoder

A Virtual Compressive Sensing Sender

= ×

% &'
&(
⋮
&*

0 1 1 1 0
0 0 1 0 ⋯ 1
1 1 1 0 1

.'

.(./

Compressive sensing matrix



Network can mix information using Collisions

Virtual sender mixes information in	"
= ×

%&
%'
⋮
%)

0 1 1 1 0
0 0 1 0 ⋯ 1
1 1 1 0 1

-&
-'-.



Network Compressive Sensing Using Collisions

= ×

#$ %$
%&
⋮
%(

0 1 1 1 0
0 0 1 0 ⋯ 1
1 1 1 0 1

,$
,&,-

#& #- #. #(

Node with ID =	0	transmits #0
Collisions mix on the air



Example: Cart has only ID 2 and ID 30

TX/RX

Reader

!" = 1
%" ID = 2

ID = 30

!&' = 1

%&'



The reader receives a collision:
! = #$%$ + #'(%'(

! = ×

%*
%$
⋮
%'(
⋮
%,

#* #$ ⋯ #'( ⋯ #,



The reader receives a collision:
! = #$%$ + #'(%'(

! = ×#* #$ ⋯ #'( ⋯ #,

#-
Reader uses a compressive sensing 

decoder to recover -	from !	

! =

0
%$
⋮
%'(
⋮
0



The reader receives a collision:
! = #$ℎ$&$ + #()ℎ()&()

! = ×#+ #$ ⋯ #() ⋯ #-

#	/0! =

0
ℎ$&$
⋮

ℎ()&()
⋮
0

Allows you to estimate the channel from 
each tag



Node Identification

Compared Schemes
- Network-based Compressive Sensing
- Framed Slotted Aloha (standard)
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Network compressive sensing improves efficiency 
of node identification by 5.5×

5.5× reduction in 
symbols needed 
for identification



Network-As-a-Node 

Node 
Identification

Data 
Communication



Data communication in RFID networks performs 
poorly because it lacks rate adaptation

RFIDs always send 1 bit/symbol 

Can’t exploit good channels to send more bits 
à Inefficiency

Can’t reduce rate in bad channels 
à Unreliability



• Nodes transmit messages and collide

• Reader collects collisions until it can decode 
• good channel à decode from few collisions
• worse channel à decode from more collisions

Adapts bit rate to channel quality without 
feedback

Network-Based Rate Adaptation



Collisions as a Distributed Code

b1

b2

b3

⁞

bK

y1 y1 = h1 b1 + h2 b2 + … + hK bK

Collisions naturally act like a linear code



b1

b2

b3

⁞

bK

y1

y2

y3

y1 = h1 b1 + h2 b2 + … + hK bK

⁞

y2 = h1 b1 + h2 b2 + … + hK bK

y3 = h1 b1 + h2 b2 + … + hK bK

But simply colliding is not a good code

Repetition Code à Bad Code!



Collisions as a Random Code

b1

b2

b3

⁞

bK

y1

y2

y3

y1 = h2 b2 + hK bK

⁞

y2 = h1 b1

y3 = h2 b2 + h3 b3 + hK bK



Collision as a Code

• Randomizing at each node

• 1 => transmits message

• 0 => remains silent
0

1

1

0

0

Time slot 1

Node 1

Time slot 2

Time slot 3

Time slot 4

Time slot 5

b1

b1



Collision as a Code

• Randomizing at each node
• transmits message if 1, remains silent if 0

0

1

1

0

0

Time slot 1

Node 1

Time slot 2

Time slot 3

Time slot 4

Time slot 5

0

0

1

1

0

Node 2

1

1

0

1

0

Node 3

1

0

1

0

1

Node 4



Collision as a Code

• Creating different linear combinations:

0

1

1

0

0

Time slot 1

Node 1

Time slot 2

Time slot 3

Time slot 4

Time slot 5

0

0

1

1

0

Node 2

1

1

0

1

0

Node 3

1

0

1

0

1

Node 4

y1 = h3 b3 + h4 b4



Collision as a Code

• Creating different linear combinations:

0

1
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Time slot 2
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Time slot 5
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Node 4

y1 = h3 b3 + h4 b4

y2 = h1 b1 + h3 b3



Collision as a Code

• Creating different linear combinations:

0
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Time slot 1

Node 1

Time slot 2

Time slot 3

Time slot 4

Time slot 5
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Node 4

y1 = h3 b3 + h4 b4

y2 = h1 b1 + h3 b3

y3 = h1 b1 + h2 b2 + h4 b4

y4 = h2 b2 + h3 b3

y5 = h4 b4



Collision as a Code

• Creating different linear combinations:

0

1

1

0

0

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

y    = × H   × b

Coding Matrix D



How to Decode?

• Received noisy symbols ! = "#$ +	n

• Possible solution: $ = ("#)-1 !
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How to Decode?

• Received noisy symbols ! = "#$ +	n

• Possible solution: $ = ("#)-1 !
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How to Decode?

• Received noisy symbols ! = "#$ +	n

• Possible solution: $ = ("#)-1 !

0

1

1

0

0

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

y    = × H   × b

Too complex to invert 
"	every time slot!



How Does the Reader Decode?

• Make code sparse  à Leverage ideas from LDPC

• Each symbol is a collision of a small random subset 
of the nodes’ bits

Belief Propagation 
enables the reader 
to decode quickly

b1

b2

b3

⁞

bK

y1

y2

y3

⁞



• Received noisy symbols ! = "#$ +	n

• Find binary vector $ that minimizes the 
deviation metric	( $ = "#$ − ! + 	

• Iterative Bit Flipping Decoder



Iterative Bit Flipping Example

b1

b2

b3

y1

y2

⁞

Example: 

b4



Iterative Bit Flipping Example

y1

y2

⁞

1

0

1

0

Example: Actual bits ! = [1 0 1 0]
Channels " = [2 3 4 2]



Iterative Bit Flipping Example

2

y1

y2

⁞

2

3

4

2

1

0

1

0

Example: Actual bits ! = [1 0 1 0]
Channels " = [2 3 4 2]



Iterative Bit Flipping Example

2

Example: Actual bits ! = [1 0 1 0]
Channels " = [2 3 4 2]
Received noisy symbols # = [6.7 2.6]

y1=6.7

y2=2.6

⁞

2

3

4

2

1

0

1

0



Iterative Bit Flipping Decoder

2b1

b2

b3

y1=6.7

y2=2.6

⁞
b4

2

3

4

2



!"# = 0
20

0

0

y1=6.7

y2=2.6

⁞
0

2

3

4

2

Iterative Bit Flipping Example
• Randomly initializing &'

!"( = 0

Minimize the )**+*
, − ,. (&'



!"# = 0
20

0
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y1=6.7

y2=2.6

⁞
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2

Iterative Bit Flipping Example

!"& = 0

'(

In what order should we flip the bits?



21

0

0

y1=6.7

y2=2.6

⁞
0

2

3

4

2

∆"##$#	= -30

Iterative Bit Flipping Example

&'( = 2

&'+ = 2

• If flipping bit 1
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Iterative Bit Flipping Example

!"# = 0

!"& = 3
∆)**+*	= -7

• If flipping bit 2
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Iterative Bit Flipping Example

!"# = 4

!"& = 0∆)**+*	= -38

• If flipping bit 3
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Iterative Bit Flipping Example

!"# = 0

!"& = 2

∆)**+*	= -7

• If flipping bit 4
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Iterative Bit Flipping Example

Flip bit that gives biggest reduction in Error 
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Iterative Bit Flipping Example

Flip bit that gives biggest reduction in Error 

∆"##$#	= -7

∆"##$#	= -38

∆"##$#	= -7

∆"##$#	= -30
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Iterative Bit Flipping Example

Flip bit that gives biggest reduction in Error 

∆"##$#	= -7

∆"##$#	= 38

∆"##$#	= -7

∆"##$#	= -30
Minimize the "##$#

& − &( )
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Iterative Bit Flipping Example

Update  ∆"	only for colliding nodes

∆"$$%$	= -7

∆"$$%$	= 38

∆"$$%$	= -7

∆"$$%$	= -30
&'( = 4

&'+ = 0
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Iterative Bit Flipping Example

Update  ∆"	only for colliding nodes

∆"$$%$	= -7

∆"$$%$	= 38

∆"$$%$	= -7

∆"$$%$	= -13
&'( = 4

&'+ = 0
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Iterative Bit Flipping Example

∆"##$#	= -7

∆"##$#	= 38

∆"##$#	= -7

∆"##$#	= -13
&'( = 4

&'+ = 0
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Iterative Bit Flipping Example

∆"##$#	= -7

∆"##$#	= 38

∆"##$#	= -7

∆"##$#	= 13
&'( = 6

&'+ = 2
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Iterative Bit Flipping Example

∆"##$# > &
'() = 6

'(, = 2

∆"##$# > &

∆"##$# > &

∆"##$# > &

• No further reduction in "##$# => Terminates
• ./ = 	1	0	1	0 = . (actual bits)



Evaluate Data Communication 

Compared schemes
1. Network-based Rate Adaptation
2. TDMA
3. CDMA
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message loss
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Evaluation Platforms
- RFID tag: passive stickers



Research Platforms
- RFID tag: computational RFIDs

- MSP430 Microcontroller

- 8KB RAM + 116KB Flash + 12 bit ADC/DAC 

- Sensors: 

- Accelerometer + temperature + voltage + external 
sensors 



Research Platforms
- Reader: Think magic/Impinj



Research Platforms
- Reader: software radio based Gen-2 reader



Conclusion
• Many applications for low power 

networks.
• Nodes need to be very simple (low cost, 

low power) à cannot have advanced 
functionalities

• Need new research ideas that can enable  
advanced protocol.
• What would you do if I give you so many 

RFIDs?


