
ECE 598HH: Advanced Wireless Networks and
Sensing Systems

Lecture 14: Backscatter Communications
Haitham Hassanieh

RFIDs

Machine-Generated Data

RFID will be a major source of such traffic

• “number of RFID tags sold globally is projected to
rise from 12 million in 2011 to 209 billion in 2021.”

–McKinsey Big Data Report 2011

• In Oil & Gas – about 30% annual growth rate

• In Healthcare – $1.3B revenue annually

Can we use current wireless protocols
for these low power networks?

RFID Constraints
• No battery
• Ultra-low cost
• Simple circuitry

RFID Requirements
• Small form factor
• Massive scale
• Lifetime

RFIDs can’t perform typical wireless functions
like carrier sense or rate adaptation

• Wireless protocols require power and computation

RFID Background

Cards Cards

E-ZPass
Retailing
Sensornet

125 kHz / 134 kHz

UHF:

• Achieves higher range (few meters v.s. cm)

• Uses backscatter communication instead of inductive coupling

13.56 MHz

Backscatter Communication

‘1’

‘0’

• A flashlight emits a beam of light

• The light is reflected by the mirror

• The intensity of the reflected beam can
be associated with a logical “0” or “1”

Backscatter Communication

Reader shines an RF
signal on nearby RFIDs

Tag reflects the reader’s signal
using ON-OFF keying

Backscatter Communication

Backscatter Communication

RFIDs are synced by the reader's signal:
• Time synchronization
• Frequency synchronization

EPC Gen2 Standard – MAC

Slotted Aloha:
– Reader allocates Q time slots and transmits a query at the beginning

of each time slot
– Each tag picks a random slot and transmits a 16-bit random number
– In each slot:

• RN16 decoded à Reader ACKs à Tags transmits 96-bit ID
• Collision à Reader moves on to next slot
• No reply à Reader moves on to next slot

Reader

Tag

EPC Gen2 – MAC

Inefficient:
– If reader allocates large number of slots à Too many empty slots
– If reader allocates small number of slots à Too many collisions

Reader

Tag

EPC Gen2 – MAC
• N RFID Tags & K Time slots
• Each tag picks a slot uniformly at random to transmit in.

Probability that a tag transmits in a give slot: ! = #
$

Probability that all tags transmit without collision:

% = & ⋅ ! ⋅ 1 − ! *+#

To maximize %, set

,%
,! = 0

→ & 1 − ! *+# − &! & − 1 1 − ! *+/ = 0
→ 1 − ! − !& + ! = 0

→ ! = 1
& → 1 = &

EPC Gen2 – MAC
• N RFID Tags & K Time slots
• Each tag picks a slot uniformly at random to transmit in.

Probability that a tag transmits in a give slot: ! = #
$

Probability that all tags transmit without collision:

% = & ⋅ ! ⋅ 1 − ! *+#

To maximize %, set , = &

%--./.01/2 = % = 1 − 1
&

*+#

%--./.01/2 ≤ lim
*→8

% = lim
9→8

1 − 1
&

*+#
= 1
0 = 0.37

EPC Gen2 – MAC

Inefficient:
– If reader allocates large number of slots à Too many empty slots
– If reader allocates small number of slots à Too many collisions
– If reader knows number of tags = N à Allocate K=N slots à 37% efficiency
– Downlink overhead

Reader

Tag

EPC Gen2 – Rate Adaptation

- TDMA

- Fixed modulation: 1 bit/symbol ON-OFF keying (ASK)

- Miller-4 encoding

- No effective adaptation à message loss

Challenges of Backscatter

RFIDs cannot hear each other
à Collisions

Challenges of Backscatter

RFIDs cannot hear each other
à Collisions

Cannot adapt modulation to channel quality
à Don’t exploit a good channel to send

more bits per symbol
à Don’t react to a bad channel

Network As a Node

Wireless Medium

ID = 1 ID = 2 ID = 4ID = 3 ID = 5 ID = NID = 6 ...

Collisions

Collision becomes a code across the virtual sender’s bits
• Deals with collision by decoding collision-code
• Adapts the rate by making collision-code rateless

Network-As-a-Node

Node
Identification

Data
Communication

The Node Identification Problem

Challenge: RFIDs cannot hear each other
à Collisions

Applications
• Inventory management
• Shopping cart

Each object has an ID
Reader learns IDs of nearby objects

Current Approach: Slotted Aloha

Collision

Node1 Node2

Few Time Slots OR Many Time Slots

ID 1 ID 2

Unreliable Inefficient

Node1 Node2

Time is divided into slots;
Each RFID transmits in a random slot

A million RFIDs in the Wal-Mart store

ID = 1 ID = 2 ID = 4ID = 3 ID = 5 ID = N...ID = 6

But only a few (e.g., 20) in the shopping cart

ID = 1 ...ID = 2 ID = 4ID = 3 ID = 5 ID = NID = 6

ID = 1 ...ID = 2 ID = 4ID = 3 ID = 5 ID = NID = 6

0 1 0 0 1 0 … 0

System is represented by a vector !
"# = 1 if node with ID =	'	is in cart

0 1 0 0 1 0 … 0

vector !

Ideally, want to compress !	and send it
to the reader

But !	is distributed across all nodes!

0 1 0 0 1 0 … 0

! is Sparse

Use Compressive sensing to
compress and send !

vector !

Compressive Sensing

Linear Equations:
y = #x

• M equations and N unknowns: y%×' = #%×(x)×'

• Solve for: x

• If M<N à Cannot solve for x

Compressive Sensing
Compressive Sensing: y = #x

• If x has at most K << N non-zero entries: i.e. x	 is sparse
à Can recover x from M << N measurements
à& = ' (log,/(

• # must satisfy Restricted Isometry Property (RIP)
• E.g. Random 0/1 or +1/-1
• E.g. Fourier measurements ./01234/5

• x can be sparse in any domain
• E.g. images are sparse in Wavelet and Fourier domains.
• x = Φ	z and z is sparse à can recover x from y = #x = #Φz

• Virtual sender sends !
• Reader decodes " using a

compressive sensing decoder

A Virtual Compressive Sensing Sender

= ×

% &'
&(
⋮
&*

0 1 1 1 0
0 0 1 0 ⋯ 1
1 1 1 0 1

.'

.(./

Compressive sensing matrix

Network can mix information using Collisions

Virtual sender mixes information in	"
= ×

%&
%'
⋮
%)

0 1 1 1 0
0 0 1 0 ⋯ 1
1 1 1 0 1

-&
-'-.

Network Compressive Sensing Using Collisions

= ×

#$ %$
%&
⋮
%(

0 1 1 1 0
0 0 1 0 ⋯ 1
1 1 1 0 1

,$
,&,-

#& #- #. #(

Node with ID =	0	transmits #0
Collisions mix on the air

Example: Cart has only ID 2 and ID 30

TX/RX

Reader

!" = 1
%" ID = 2

ID = 30

!&' = 1

%&'

The reader receives a collision:
! = #$%$ + #'(%'(

! = ×

%*
%$
⋮
%'(
⋮
%,

#* #$ ⋯ #'(⋯ #,

The reader receives a collision:
! = #$%$ + #'(%'(

! = ×#* #$ ⋯ #'(⋯ #,

#-
Reader uses a compressive sensing

decoder to recover -	from !	

! =

0
%$
⋮
%'(
⋮
0

The reader receives a collision:
! = #$ℎ$&$ + #()ℎ()&()

! = ×#+ #$ ⋯ #() ⋯ #-

#	/0! =

0
ℎ$&$
⋮

ℎ()&()
⋮
0

Allows you to estimate the channel from
each tag

Node Identification

Compared Schemes
- Network-based Compressive Sensing
- Framed Slotted Aloha (standard)

0

500

1000

1500

2000

4 8 12 16

Number of Tags

Nu
m

be
r o

f S
ym

bo
ls

to

Id
en

tif
y

No
de

s
Node Identification

0

500

1000

1500

2000

4 8 12 16

Node Identification

Number of Tags

Buzz

Slotted
Aloha

Nu
m

be
r o

f S
ym

bo
ls

to

Id
en

tif
y

No
de

s

Network compressive sensing improves efficiency
of node identification by 5.5×

5.5× reduction in
symbols needed
for identification

Network-As-a-Node

Node
Identification

Data
Communication

Data communication in RFID networks performs
poorly because it lacks rate adaptation

RFIDs always send 1 bit/symbol

Can’t exploit good channels to send more bits
à Inefficiency

Can’t reduce rate in bad channels
à Unreliability

• Nodes transmit messages and collide

• Reader collects collisions until it can decode
• good channel à decode from few collisions
• worse channel à decode from more collisions

Adapts bit rate to channel quality without
feedback

Network-Based Rate Adaptation

Collisions as a Distributed Code

b1

b2

b3

⁞

bK

y1 y1 = h1 b1 + h2 b2 + … + hK bK

Collisions naturally act like a linear code

b1

b2

b3

⁞

bK

y1

y2

y3

y1 = h1 b1 + h2 b2 + … + hK bK

⁞

y2 = h1 b1 + h2 b2 + … + hK bK

y3 = h1 b1 + h2 b2 + … + hK bK

But simply colliding is not a good code

Repetition Code à Bad Code!

Collisions as a Random Code

b1

b2

b3

⁞

bK

y1

y2

y3

y1 = h2 b2 + hK bK

⁞

y2 = h1 b1

y3 = h2 b2 + h3 b3 + hK bK

Collision as a Code

• Randomizing at each node

• 1 => transmits message

• 0 => remains silent
0

1

1

0

0

Time slot 1

Node 1

Time slot 2

Time slot 3

Time slot 4

Time slot 5

b1

b1

Collision as a Code

• Randomizing at each node
• transmits message if 1, remains silent if 0

0

1

1

0

0

Time slot 1

Node 1

Time slot 2

Time slot 3

Time slot 4

Time slot 5

0

0

1

1

0

Node 2

1

1

0

1

0

Node 3

1

0

1

0

1

Node 4

Collision as a Code

• Creating different linear combinations:

0

1

1

0

0

Time slot 1

Node 1

Time slot 2

Time slot 3

Time slot 4

Time slot 5

0

0

1

1

0

Node 2

1

1

0

1

0

Node 3

1

0

1

0

1

Node 4

y1 = h3 b3 + h4 b4

Collision as a Code

• Creating different linear combinations:

0

1

1

0

0

Time slot 1

Node 1

Time slot 2

Time slot 3

Time slot 4

Time slot 5

0

0

1

1

0

Node 2

1

1

0

1

0

Node 3

1

0

1

0

1

Node 4

y1 = h3 b3 + h4 b4

y2 = h1 b1 + h3 b3

Collision as a Code

• Creating different linear combinations:

0

1

1

0

0

Time slot 1

Node 1

Time slot 2

Time slot 3

Time slot 4

Time slot 5

0

0

1

1

0

Node 2

1

1

0

1

0

Node 3

1

0

1

0

1

Node 4

y1 = h3 b3 + h4 b4

y2 = h1 b1 + h3 b3

y3 = h1 b1 + h2 b2 + h4 b4

y4 = h2 b2 + h3 b3

y5 = h4 b4

Collision as a Code

• Creating different linear combinations:

0

1

1

0

0

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

y = × H × b

Coding Matrix D

How to Decode?

• Received noisy symbols ! = "#$ +	n

• Possible solution: $ = ("#)-1 !

0

1

1

0

0

1

1

1

0

1

0

1y = × H × b

How to Decode?

• Received noisy symbols ! = "#$ +	n

• Possible solution: $ = ("#)-1 !

0

1

1

0

0

0

1

1

1

1

0

1

1

0

1

0

y = × H × b

How to Decode?

• Received noisy symbols ! = "#$ +	n

• Possible solution: $ = ("#)-1 !

0

1

1

0

0

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

y = × H × b

Too complex to invert
"	every time slot!

How Does the Reader Decode?

• Make code sparse à Leverage ideas from LDPC

• Each symbol is a collision of a small random subset
of the nodes’ bits

Belief Propagation
enables the reader
to decode quickly

b1

b2

b3

⁞

bK

y1

y2

y3

⁞

• Received noisy symbols ! = "#$ +	n

• Find binary vector $ that minimizes the
deviation metric	($ = "#$ − ! + 	

• Iterative Bit Flipping Decoder

Iterative Bit Flipping Example

b1

b2

b3

y1

y2

⁞

Example:

b4

Iterative Bit Flipping Example

y1

y2

⁞

1

0

1

0

Example: Actual bits ! = [1 0 1 0]
Channels " = [2 3 4 2]

Iterative Bit Flipping Example

2

y1

y2

⁞

2

3

4

2

1

0

1

0

Example: Actual bits ! = [1 0 1 0]
Channels " = [2 3 4 2]

Iterative Bit Flipping Example

2

Example: Actual bits ! = [1 0 1 0]
Channels " = [2 3 4 2]
Received noisy symbols # = [6.7 2.6]

y1=6.7

y2=2.6

⁞

2

3

4

2

1

0

1

0

Iterative Bit Flipping Decoder

2b1

b2

b3

y1=6.7

y2=2.6

⁞
b4

2

3

4

2

!"# = 0
20

0

0

y1=6.7

y2=2.6

⁞
0

2

3

4

2

Iterative Bit Flipping Example
• Randomly initializing &'

!"(= 0

Minimize the)**+*
, − ,. (&'

!"# = 0
20

0

0

y1=6.7

y2=2.6

⁞
0

2

3

4

2

Iterative Bit Flipping Example

!"& = 0

'(

In what order should we flip the bits?

21

0

0

y1=6.7

y2=2.6

⁞
0

2

3

4

2

∆"##$#	= -30

Iterative Bit Flipping Example

&'(= 2

&'+ = 2

• If flipping bit 1

20

1

0

y1=6.7

y2=2.6

⁞
0

2

3

4

2

Iterative Bit Flipping Example

!"# = 0

!"& = 3
∆)**+*	= -7

• If flipping bit 2

20

0

1

y1=6.7

y2=2.6

⁞
0

2

3

4

2

Iterative Bit Flipping Example

!"# = 4

!"& = 0∆)**+*	= -38

• If flipping bit 3

20

0

0

y1=6.7

y2=2.6

⁞
1

2

3

4

2

Iterative Bit Flipping Example

!"# = 0

!"& = 2

∆)**+*	= -7

• If flipping bit 4

20

0

0

y1=6.7

y2=2.6

⁞
0

2

3

4

2∆"##$#	= -7

∆"##$#	= -38

∆"##$#	= -7

∆"##$#	= -30

Iterative Bit Flipping Example

Flip bit that gives biggest reduction in Error

20

0

0

y1=6.7

y2=2.6

⁞
0

2

3

4

2∆"##$#	= -7

∆"##$#	= -38

∆"##$#	= -7

∆"##$#	= -30

Iterative Bit Flipping Example

Flip bit that gives biggest reduction in Error

20

0

1

y1=6.7

y2=2.6

⁞
0

2

3

4

2

Iterative Bit Flipping Example

Flip bit that gives biggest reduction in Error

∆"##$#	= -7

∆"##$#	= -38

∆"##$#	= -7

∆"##$#	= -30

20

0

1

y1=6.7

y2=2.6

⁞
0

2

3

4

2

Iterative Bit Flipping Example

Flip bit that gives biggest reduction in Error

∆"##$#	= -7

∆"##$#	= 38

∆"##$#	= -7

∆"##$#	= -30
Minimize the "##$#

& − &()

20

0

1

y1=6.7

y2=2.6

⁞
0

2

3

4

2

Iterative Bit Flipping Example

Update ∆"	only for colliding nodes

∆"$$%$	= -7

∆"$$%$	= 38

∆"$$%$	= -7

∆"$$%$	= -30
&'(= 4

&'+ = 0

20

0

1

y1=6.7

y2=2.6

⁞
0

2

3

4

2

Iterative Bit Flipping Example

Update ∆"	only for colliding nodes

∆"$$%$	= -7

∆"$$%$	= 38

∆"$$%$	= -7

∆"$$%$	= -13
&'(= 4

&'+ = 0

20

0

1

y1=6.7

y2=2.6

⁞
0

2

3

4

2

Iterative Bit Flipping Example

∆"##$#	= -7

∆"##$#	= 38

∆"##$#	= -7

∆"##$#	= -13
&'(= 4

&'+ = 0

21

0

1

y1=6.7

y2=2.6

⁞
0

2

3

4

2

Iterative Bit Flipping Example

∆"##$#	= -7

∆"##$#	= 38

∆"##$#	= -7

∆"##$#	= 13
&'(= 6

&'+ = 2

21

0

1

y1=6.7

y2=2.6

⁞
0

2

3

4

2

Iterative Bit Flipping Example

∆"##$# > &
'() = 6

'(, = 2

∆"##$# > &

∆"##$# > &

∆"##$# > &

• No further reduction in "##$# => Terminates
• ./ = 	1	0	1	0 = . (actual bits)

Evaluate Data Communication

Compared schemes
1. Network-based Rate Adaptation
2. TDMA
3. CDMA

Reliability
M

es
sa

ge
 Lo

ss
 R

at
e

0%

10%

20%

30%

40%

50%

1 2 3Medium SNR
(5dB − 9dB)

High SNR
(10dB − 20dB)

Low SNR
(0dB − 4dB)

Reliability
M

es
sa

ge
 Lo

ss
 R

at
e

TDMA
27%

12%

0%
0%

10%

20%

30%

40%

50%

1 2 3Medium SNR
(5dB − 9dB)

High SNR
(10dB − 20dB)

Low SNR
(0dB − 4dB)

Reliability
M

es
sa

ge
 Lo

ss
 R

at
e

TDMA

CDMA
42%

16%

0%

27%

12%

0%
0%

10%

20%

30%

40%

50%

1 2 3Medium SNR
(5dB − 9dB)

High SNR
(10dB − 20dB)

Low SNR
(0dB − 4dB)

Reliability
M

es
sa

ge
 Lo

ss
 R

at
e

TDMA

CDMA

Our
Design

42%

16%

0%

27%

12%

0%0% 0% 0%
0%

10%

20%

30%

40%

50%

1 2 3Medium SNR
(5dB − 9dB)

High SNR
(10dB − 20dB)

Low SNR
(0dB − 4dB)

Buzz

Reliability
M

es
sa

ge
 Lo

ss
 R

at
e

TDMA

CDMA

Our
Design

0.57
bits/symbol

1.7
bits/symbol

3.2
bits/symbol

0%

10%

20%

30%

40%

50%

1 2 3Medium SNR
(5dB − 9dB)

High SNR
(10dB − 20dB)

Low SNR
(0dB − 4dB)

Network as a node adapts bit rate to eliminate
message loss

Buzz

Evaluation Platforms
- RFID tag: passive stickers

Research Platforms
- RFID tag: computational RFIDs

- MSP430 Microcontroller

- 8KB RAM + 116KB Flash + 12 bit ADC/DAC

- Sensors:

- Accelerometer + temperature + voltage + external
sensors

Research Platforms
- Reader: Think magic/Impinj

Research Platforms
- Reader: software radio based Gen-2 reader

Conclusion
• Many applications for low power

networks.
• Nodes need to be very simple (low cost,

low power) à cannot have advanced
functionalities

• Need new research ideas that can enable
advanced protocol.
• What would you do if I give you so many

RFIDs?

