ECE 598HH: Advanced Wireless Networks and Sensing Systems

Lecture 6: Rate Adaptation & Soft Information Haitham Hassanieh

Modulation Schemes

Choice of Modulation

- Signal power normalized to 1
- Gaussian noise with std. dev. σ
- $SNR = 10 \log_{10} 1/\sigma^2 = -20 \log_{10} \sigma$

Choice of Modulation

BER vs SNR

 $Data\ Rate = Bandwidth \times Bits/sample \times Code\ Rate$

 $Capacity = Bandwidth \times \log_2(1 + SNR)$

Throughput: number of bits correctly received per second

 $Throughput \leq Data Rate < Capacity$

6

Throughput vs SNR BPSK (1 megabit/s) QPSK (2 megabit/s) QAM-16 (4 megabits/s) QAM-64 (6 megabits/s) Throughput (Megabits per Second) Not possible possible in practice? Council implement every this in hardware.

Rate Adaptation

Choose the best modulation and coding scheme that maximizes the throughput that can be supported by the channel.

Challenges:

- Few modulation and coding rates supported by standards/hardware → must choose for discrete set
- TX does not know the channel and noise at the RX before choosing the modulation & coding.

How to measure channel quality in Practice?

- Loss Rate:
 - keep track of ACKs received.
 - channel can change drastically!
- Throughput:
 - Success of a bitrate used \rightarrow maximizes exactly what we want.

- Average over window? -> lenge window => goodestimeted

small window => badestimate.

- SNR:
 - Hard to measure
 - 802.11 gives us RSSI (Not very correlated with SNR)
- Probe Packets

Rate adaptation is hard

- Channel changes quickly
- Any metric:
 - Good estimate

 Need many samples to average
 - Small number of sample before the channel changes. → > > be & chinate.
- Cannot tell difference:
 - Bad Channel & Noise: Reduce bit rate
 - Interference: Do not reduce bit rate

Hidden Terminals

RTS/CTS and Hidden Terminals

Robust Rate Adaptation Algorithm

- Measure loss rate over 100ms window
 - Long enough to get good measurement
 - Short enough that the channel does not change.

RTS/CTS has high overhead

- Adaptively uses RTS & CTS
 - Loss without RTS/CTS → more RTS/CTS
 - Loss with RTS/CTS → reduce RTS/CTS usage.

Problem:

- Fate sharing among bits
- After FEC, even 1 bit error in packet
- Checksum:

If it passes \rightarrow accept packet.

If it fails \rightarrow drop entire packet.

- Huge waste because most bits are correct.

Solution:

- Accept packets with errors and try to correct them.
- Ask sender to retransmit the incorrect bits.

- How to tell which bits might have errors?
 - Soft values can be used a confidence measure
 - PHY layer can say:
 - "looks more like a 1 bit"
 - "looks more like a 0 bit"

BPSK Example

Soft Value: 0.6

- How far it is from two accepted values of 0 and 1 bits.
- Confidence metric: inverse of soft value.

- Soft Value is up to us to define
 - We are never sure the bits are in error
 - We are just hopping that our guess is reasonably correct.
- PPR uses Hamming distance:
 - Zigbee: low power, low complexity
 - Maps 4 bits to 32 bit code words (2⁴ values to 2³² values)
 - Hamming distance: number of flipped bits between received code word and closest code word.

Retransmit bits that are in error

* 10 bits for each wrong bit

* PBR: Ask los a range of bits.

Bit errors are due to:

Scenario: Laptop in a Dead Spot

Scenario: Laptop in a Dead Spot

Solution: Cross-Layer Approach

- Allow the layers to collaborate instead of acting separately
- PHY layer delivers partially correct packets
- Network layer combines correct bits across different access points to obtain correct packet

Solution: Network cooperates with physical layer

- Physical layer already estimates a confidence in its 0-1 decision
- If we expose this information to the network layer, we can compare bits in packets received at different APs

Assign to each bit the value that corresponds to a higher confidence

Experiment: Packet Delivery vs. Poor Coverage

Fraction of Packets Delivered

Average Bit Errors

Experiment: Packet Delivery vs. Poor Coverage

Fraction of Packets Delivered

Average Bit Errors

Experiment: Packet Delivery vs. Poor Coverage

Fraction of Packets Delivered

