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ABSTRACT
Private WANs are increasingly important to the operation of

enterprises, telecoms, and cloud providers. For example, B4,

Google’s private software-defined WAN, is larger and grow-

ing faster than our connectivity to the public Internet. In this

paper, we present the five-year evolution of B4. We describe

the techniques we employed to incrementally move from

offering best-effort content-copy services to carrier-grade

availability, while concurrently scaling B4 to accommodate

100x more traffic. Our key challenge is balancing the tension

introduced by hierarchy required for scalability, the parti-

tioning required for availability, and the capacity asymmetry

inherent to the construction and operation of any large-scale

network. We discuss our approach to managing this tension:

i)we design a custom hierarchical network topology for both

horizontal and vertical software scaling, ii) we manage in-

herent capacity asymmetry in hierarchical topologies using

a novel traffic engineering algorithm without packet encap-

sulation, and iii) we re-architect switch forwarding rules

via two-stage matching/hashing to deal with asymmetric

network failures at scale.

CCS CONCEPTS
• Networks → Network architectures; Routing proto-
cols; •Computer systems organization→Availability;
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1 INTRODUCTION
B4 [18] is Google’s private backbone network, connecting

data centers across the globe (Figure 1). Its software-defined

network control stacks enable flexible and centralized con-

trol, offering substantial cost and innovation benefits. In

particular, by using centralized traffic engineering (TE) to

dynamically optimize site to site pathing based on utilization

and failures, B4 supports much higher levels of utilization

and provides more predictable behavior.

B4’s initial scope was limited to loss-tolerant, lower avail-

ability applications that did not require better than 99%

availability, such as replicating indexes across data centers.

However, over time our requirements have become more

stringent, targeting applications with service level objectives

(SLOs) of 99.99% availability. Specifically, an SLO of X% avail-

ability means that both network connectivity (i.e., packet loss

is below a certain threshold) and promised bandwidth [25]

between any pair of datacenter sites are available X% of the

minutes in the trailing 30-day window. Table 1 shows the

classification of applications into service classes with the

required availability SLOs.

Matching the reported availability of carrier-grade net-

works initially appeared daunting. Given the inherent unre-

liability of long-haul links [17] as well as unavoidable down-

time associated with necessary management operations [13],

conventional wisdom dictates that this level of availability

requires substantial over-provisioning and fast local failure

recovery, e.g., within 50 milliseconds [7].

Complicating our push for better availability was the expo-

nential growth of WAN traffic; our bandwidth requirements

have grown by 100x over a five year period. In fact, this dou-

bling of bandwidth demand every nine months is faster than

all of the rest of our infrastructure components, suggesting

that applications derive significant benefits from plentiful

cluster to cluster bandwidth. This scalability requirement

spans multiple dimensions, including aggregate network ca-

pacity, the number of data center sites, the number of TE

paths, and network aggregate prefixes. Moreover, we must

achieve scale and availability without downtime for existing
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Service Application Avail.
Class Examples SLO

SC4

Search ads,

99.99%
DNS, WWW

SC3

Photo service

99.95%
backend, Email

SC2

Ads database

99.9%
replication

SC1

Search index

99%

copies, logs

SC0 Bulk transfer N/A

Figure 1: B4 global topology. Eachmarker indicates a site ormultiple sites
located in close geographical proximity. B4 consists of 33 sites as of Jan-
uary, 2018.

Table 1: Service classes, their applica-
tion examples, and the assigned avail-
ability SLO.

traffic. As a result, we have had to innovate aggressively and

develop novel point solutions to a number of problems.

In this paper, we present the lessons we learned from our

five-year experience in managing the tension introduced

by the network evolution required for achieving our avail-

ability and traffic demand requirements (§2). We gradually

evolve B4 into a hierarchical topology (§3) while develop-

ing a decentralized TE architecture and scalable switch rule

management (§4). Taken together, our measurement results

show that our design changes have improved availability by

two orders of magnitude, from 99% to 99.99%, while simulta-

neously supporting an increase in traffic scale of 100x over

the past five years (§6).

2 BACKGROUND AND MOTIVATION
In this section, we present the key lessons we learned from

our operational experience in evolving B4, the motivating

examples which demonstrate the problems of alternative de-

sign choices, as well as an outline of our developed solutions.

2.1 Flat topology scales poorly and hurts
availability

We learned that existing B4 site hardware topologies im-

posed rigid structure that made network expansion difficult.

As a result, our conventional expansion practice was to add

capacity by adding B4 sites next to the existing sites in a close

geographical proximity. However, this practice led to three

problems that only manifested at scale. First, the increasing

site count significantly slowed the central TE optimization

algorithm, which was operated at site-level topology. The

algorithm run time increased super-linearly with the site

count, and this increasing runtime caused extended periods

of traffic blackholing during data plane failures, ultimately

violating our availability targets. Second, increasing the site

count caused scaling pressure on limited space in switch

forwarding tables. Third, and most important, this practice

complicated capacity planning and confused application de-

velopers. Capacity planning had to account for inter-site

0%
25%
50%
75%

100%

5% 10% 15% 20%
C

u
m

u
la

ti
v
e

fr
a
ct

io
n
 o

f 
ti

m
e

Fraction of site-level links with >x% asymmetry

x=15
x=10

x=5

Figure 2: Fraction of site-level links with different
magnitude of capacity asymmetry in B4 between Oc-
tober 2017 and January 2018.
WAN bandwidth constraints when compute and storage ca-

pacity were available in the close proximity but behind a

different site. Developers went from thinking about regional

replication across clusters to having to understand the map-

ping of cluster to one of multiple B4 sites.

To solve this tension introduced by exponentially increas-

ing bandwidth demands, we redesign our hardware topology

to a hierarchical topology abstraction (details in Figure 4 and

§3). In particular, each site is built with a two-layer topology

abstraction: At the bottom layer, we introduce a “supern-

ode” fabric, a standard two-layer Clos network built from

merchant silicon switch chips. At the top layer, we loosely

connect multiple supernodes into a full mesh topology to

manage incremental expansion and inherent asymmetries

resulting from network maintenance, upgrades and natural

hardware/software failures. Based on our operational expe-

rience, this two-layer topology provides scalability, by hori-

zontally adding more supernodes to the top layer as needed

without increasing the site count, and availability, by verti-

cally upgrading a supernode in place to a new generation

without disrupting existing traffic.

2.2 Solving capacity asymmetry in
hierarchical topology

The two-layer hierarchical topology, however, also causes

challenges in TE. We find that capacity asymmetry is in-

evitable at scale due to inherent network maintenance, op-

eration, and data plane device instability. We design our

topology to have symmetric WAN capacity at the supernode
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Figure 3: Example of site-level topology abstraction
with two sites and two supernodes each. Assume
each link is annotated with its active capacity and
the ingress traffic is uniformly split between A1 and
A2. The subfigure labels show the maximum admissi-
ble traffic of the site-level link (A,B) subject to link
capacity constraints. (a) without sidelinks; (b) with
sidelinks.
level, i.e., all supernodes have the same outgoing configured

capacity toward other sites. However, Figure 2 shows that

6-20% of the site-level links in B4 still have > 5% capacity

asymmetry. We define capacity asymmetry of a site-level

link as (avg∀i (Ci ) − min∀i (Ci ))/avg∀i (Ci ), where Ci is the

total active capacity of each supernode i toward next site.

Moreover, we find that capacity asymmetry significantly

impedes the efficiency of our hierarchical topology—In about

17% of the asymmetric site-level links, we have 100% site-

level abstraction capacity loss because at least one supernode

completely loses connectivity toward another site. To under-

stand why capacity asymmetry management is critical in

hierarchical topologies, we first present a motivating exam-

ple. Figure 3a shows a scenario where supernodes A1 and A2

respectively have 10 and 2 units of active capacity toward

site B, resulting from network operation or physical link

failure. To avoid network congestion, we can only admit 4

units of traffic to this site-level link, because of the bottle-

necked supernode A2 which has lower outgoing capacity.

This indicates that 8 units of supernode-level capacity are

wasted, as they cannot be used in the site-level topology due

to capacity asymmetry.

To reduce the inefficiency caused by capacity asymme-

try, we introduce sidelinks, which interconnect supernodes

within a site in a full mesh topology. Figure 3b shows how the

use of sidelinks increases admissible traffic volume by 3x in

this example. The central controller dynamically rebalances

traffic within a site to accommodate asymmetric WAN link

failures using these sidelinks. Since supernodes of a B4 site

are located in close proximity, sidelinks, like other datacen-

ter network links, are much cheaper and significantly more

reliable than long-haul WAN links. Such heterogeneous link

cost/reliability is a unique WAN characteristic which moti-

vates our design. The flexible use of sidelinks with supernode-

level TE not only improves WAN link utilization but also

enables incremental, in-place network upgrade, providing

substantial up-front cost savings on network deployment.

Specifically, with non-shortest-path TE via sidelinks, dis-

abling supernode-level links for upgrade/maintenance does

not cause any downtime for existing traffic—It merely results

in a slightly degraded site-level capacity.

Evolving the existing site-level TE to a hierarchical TE

(site-level, and then supernode-level) turned out to be chal-

lenging. TE typically requires tunnel encapsulation (e.g.,

via MPLS label [34], IP-in-IP encapsulation [30], or VLAN

tag [3]), while off-the-shelf commodity switch chips can only

hash on either the inner or outer layer packet header. With

two layers of tunnel encapsulation, the packet header in

both the inner and outer layer has very low entropy, mak-

ing it impossible to enforce traffic splits. Another option

is to overwrite the MAC address on each packet as a tag

for supernode-level TE. However, we already reserve MAC

addresses for more efficient hashing (§5). To solve this, we

design and implement a novel intra-site TE algorithm (§4)

which requires no packet tagging/encapsulation. Moreover,

we find that our algorithm is scalable, by taking 200-700 mil-

liseconds to run at our target scale, and effective, by reducing

capacity loss due to topology abstraction to 0.6% on a typical

site-level link even in the face of capacity asymmetry.

A further challenge is that TE updates can introduce rout-

ing blackholes and loops.With pre-installed tunnels, steering

traffic from one tunnel to another is an atomic operation,
as only the ingress source node needs to be updated to en-

capsulate traffic into a different tunnel. However, removing

tunnel encapsulation complicates network updates. We find

that applying TE updates in an arbitrary order results in

more than 38% packet blackholing from forwarding loops in

2% of network updates (§6.3). To address this issue, earlier

work enables loop-free update with two-phase commit [31]

and dependency tree/forest based approach [28]. More re-

cently, Dionysus [21] models the network update as a re-

source scheduling problem and uses critical path scheduling

to dynamically find a feasible update schedule. However,

these efforts assume tunneling/version tagging, leading to

the previously described hashing problem for our hierarchi-

cal TE.We develop a simple dependency graph based solution

to sequence supernode-level TE updates in a provably black-

hole/loop free manner without any tunneling/tagging (§4.4).

2.3 Efficient switch rule management
Merchant silicon switches support a limited number ofmatch-

ing and hashing rules. Our scaling targets suggested that

we would hit the limits of switch matching rules at 32 sites

using our existing packet forwarding pipeline. On the other

hand, hierarchical TE requires many more switch hashing

entries to perform two-layer, fine-grained traffic splitting.

SWAN [16] studied the tradeoffs between throughput and

the switch hashing rule limits and found that dynamic tun-

neling requires much fewer hashing rules than a fixed tunnel

set. However, we find that dynamic tunneling in hierarchical
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TE still requires 8x more switch hashing rules than available

to achieve maximal throughput at our target scale.

We optimize our switch forwarding behavior with two

mechanisms (§5). First, we decouple flow matching rules

into two switch pipeline tables. We find this hierarchical,

two-phase matching mechanism increases the number of

supported sites by approximately 60x. Second, we decentral-

ize the path split rules into two-stage hashing across the edge

and the backend stage of the Clos fabric. We find this opti-

mization is key to hierarchical TE, which otherwise would

offer 6% lower throughput, quite substantial in absolute terms

at our scale, due to insufficient traffic split granularity.

3 SITE TOPOLOGY EVOLUTION
Table 2 summarizes how B4 hardware and the site fabric

topology abstraction have evolved from a flat topology to a

scalable two-stage hierarchy over the years. We next present

Saturn (§3.1), our first-generation network fabric, followed

by Jumpgate (§3.2), a new generation of site network fabrics

with improved hardware and topology abstraction.

3.1 Saturn
Saturn was B4’s first-generation network fabric, deployed

globally in 2010. As shown in Figure 4, the deployment con-

sisted of two stages: A lower stage of four Saturn chassis,

offering 5.12 Tbps of cluster-facing capacity, and an upper

stage of two or four Saturn chassis, offering a total of 3.2

Tbps and 6.4 Tbps respectively toward the rest of B4. The

difference between cluster and WAN facing capacity allowed

the fabric to accommodate additional transit traffic. For avail-

ability, we physically partitioned a Saturn site across two

buildings in a datacenter. This allowed Saturn sites to con-

tinue operating, albeit with degraded capacity, if outages

caused some or all of the devices in a single building to

become unreachable. Each physical rack contained two Sat-

urn chassis, and we designed the switch to rack mapping to

minimize the capacity loss upon any single rack failure.

3.2 Jumpgate
Jumpgate is an umbrella term covering two flavors of B4

fabrics. Rather than inheriting the topology abstraction from

Saturn, we recognize that the flat topology was inhibiting

scale, and so we design a new custom hierarchical network

topology in Jumpgate for both horizontal and vertical scaling

of site-level capacity without impacting the scaling require-

ments of control software. As shown in Figure 4, we intro-

duce the concept of a supernode as an intermediate topology

abstraction layer. Each supernode is a 2-stage folded-Clos

network. Half the ports in the lower stage are external-facing

and can be flexibly allocated toward peering B4 sites, cluster

fabrics, or other supernodes in the same site. We then build

a Jumpgate site using a full mesh topology interconnecting

supernodes. These intra-site links are called sidelinks. In addi-
tion, B4’s availability in Saturn was significantly reduced by

having a single control domain per site. We had a number of

outages triggered by a faulty domain controller that caused

widespread damage to all traffic passing through the affected

site. Hence, in Jumpgate we partition a site into multiple

control domains, one per supernode. This way, we improve

availability by reducing the blast radius of any domain con-

troller fault to traffic transiting a single supernode.

We present two generations of Jumpgate where we im-

prove availability by partitioning the site fabric into increas-

ingly more supernodes and more control domains across

generations, as shown in Figure 4. This new architecture

solves the previously mentioned network expansion prob-

lem by incrementally adding new supernodes to a site with

flexible sidelink reconfigurations. Moreover, this architec-

ture also facilitates seamless fabric evolution by sequentially

upgrading each supernode in place from one generation to

the next without disrupting traffic in other supernodes.

Jumpgate POP (JPOP): Strategically deploying transit-

only sites improves B4’s overall availability by reducing the

network cable span between datacenters
1
. Transit sites also

improve site-level topology “meshiness,” which improves

centralized TE’s ability to route around a failure. Therefore,

we develop JPOP, a low-cost configuration for lightweight

deployment in the transit POP sites supporting only transit

traffic. Since POP sites are often constrained by power and

physical space, we develop JPOP with high bandwidth den-

sity 16x40G merchant silicon (Figure 4), requiring a smaller

number of switch racks per site.

Stargate: We globally deprecate Saturn with Stargate, a
large network fabric to support organic WAN traffic demand

growth in datacenters. A Stargate site consists of up to four

supernodes, each a 2-stage folded-Clos network built with

32x40G merchant silicon (Figure 4). Stargate is deployed in

datacenters and can provide up to 81.92 Tbps site-external

capacity that can be split among WAN, cluster and sidelinks.

Compared with Saturn, Stargate improves site capacity by

more than 8x to keep up with growing traffic demands. A

key for this growth is the increasing density of forwarding

capacity in merchant silicon switch chips, which enables

us to maintain a relatively simple topology. The improved

capacity allows Stargate to subsume the campus aggrega-

tion network. As a result, we directly connect Stargate to

Jupiter cluster fabrics [32], as demonstrated in Figure 5. This

architecture change simplifies network modeling, capacity

planning and management.

4 HIERARCHICAL TRAFFIC
ENGINEERING

In this section, we start with two straw-man proposals for

the capacity asymmetry problem (§4.1). We solve this prob-

lem by evolving from flat TE into a hierarchical TE archi-

tecture (§4.2) where a scalable, intra-site TE algorithm is

1
long-span intercontinental cables are more vulnerable, and Layer 1 protec-

tion is typically cost prohibitive
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Fabric Deployed Location Switch #Chassis #Switches per Site Capacity #Switch Racks #Control
Name Year Type Chip per Site Supernode per Site Domains

Saturn 2010 Datacenter 24x10G 6 or 8 N/A

5.12/6.4T (WAN); 5.12T (cluster)

4 1

2.56/5.12T (inter-chassis)

JPOP 2013 POP 16x40G 20 24 10.24T (WAN/sidelinks) 4 2

Stargate 2014 Datacenter 32x40G 192 48 81.92T (WAN/cluster/sidelinks) 8 4

Table 2: B4 fabric generations. All the fabrics are built with merchant silicon switch chips.

Saturn site 10.24 Tbps 
for WAN 

and 
sidelinks

JPOP site

S1

S0

...x8

......

16x40G

8x40G

8x40G

5.12 Tbps to external

x16

JPOP supernode

5.12/ 6.4 Tbps to WAN

5.12 Tbps to cluster

288x10G
chassis

Stargate site

S1S0 81.92 Tbps
for WAN, 
cluster 

and sidelinksS2 S3

...x16

......

32x40G

16x40G

20.48 Tbps to external

x32

Stargate supernode

16x40G

2.56/ 5.12 
Tbps 

internal

Figure 4: B4 fabric topology evolution from flat Saturn topology to hierarchical Jumpgate topology with a new
intermediate topology abstraction layer called a “supernode.”

Cluster network …

Campus network 

WAN

…

…

Stargate site

…

Saturn site

BGP BGP

BGP BGP

Intra-site 
TE

BGP BGP

Figure 5: Stargate subsumes campus aggregation net-
work.
developed to maximize site-level link capacity (§4.3). Finally,

we present a dependency-graph based algorithm to sequence

the supernode-level rule updates (§4.4). Both algorithms are

highly scalable, blackhole and loop free, and do not require

packet encapsulation/tagging.

4.1 Motivating Examples
Managing capacity asymmetry in hierarchical topologies re-

quires a supernode-level load balancing mechanism to maxi-

mize capacity at the site-level topology abstraction. Addition-

ally, we need the solution to be fast, improving availability

by reducing the window of blackholing after data plane fail-

ures, and efficient, achieving high throughput within the

hardware switch table limits. Finally, the solution must not

require more than one layer of packet encapsulation. We

discuss two straw-man proposals:

Flat TE on supernodes does not scale. With a hierarchi-

cal topology, one could apply TE directly to the full supernode-

level topology. In this model, the central controller uses IP-

in-IP encapsulation to load balance traffic across supernode-

level tunnels. Our evaluation in indicates that supporting

high throughput with this approach leads to prohibitively

high runtime, 188x higher than hierarchical TE, and it also

requires a much larger switch table space (details in §6). This

approach is untenable because the complexity of the TE prob-

lem grows super-linearly with the size of the topology. For

example, suppose that each site has four supernodes, then a

single site-to-site path with three hops can be represented

by 4
3 = 64 supernode-level paths.

Supernode-level shortest-path routing is inefficient against
capacity asymmetry. An alternative approach combines

site-level TE with supernode-level shortest path routing.

Such two-stage, hierarchical routing achieves scalability and

requires only one layer of encapsulation. Moreover, short-

est path routing can route around complete WAN failure

via sidelinks. However, it does not properly handle capacity

asymmetry. For example, in Figure 3b, shortest path routing

cannot exploit longer paths via sidelinks, resulting in sub-

optimal site-level capacity. One can tweak the cost metric

of sidelinks to improve the abstract capacity between site A

and B. However, changing metrics also affects the routing for

other site-level links, as sidelink costs are shared by tunnels

towards all nexthop sites.

4.2 Hierarchical TE Architecture
Figure 6 demonstrates the architecture of hierarchical TE. In

particular, we employ the following pathing hierarchy:

• Flow Group (FG) specifies flow aggregation as a ⟨Source

Site, Destination Site, Service Class⟩ tuple, where we cur-

rently map the service class to DSCPmarking in the packet
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switch

Backend  
switch

e1 e2 e3 e4

b2 SSG: Switch-level routing (old) 
Two-stage load balancing over 

backend switches;
use shortest path routing with  
capacity-based weighted cost 

multipathing (WCMP)

TG: Site-level TE 
(old) 

IP-in-IP encapsulation; 
heuristic to split per 
service class traffic 

across site-level 
tunnels for high 

utilization and fairness

TSG: Supernode-level TE (new) 
No encapsulation;

use progressive waterfill to manage 
capacity asymmetry via sidelinks; 

loop-free and blackhole-free route 
update across supernodes

Figure 6: Example of hierarchical TE where the
supernode-level TE is newly developed to handle ca-
pacity asymmetry via sidelinks.
header. For scalability, the central controller allocates paths

for each FG.

• Tunnel Group (TG) maps an FG to a collection of tunnels

(i.e., site-level paths) via IP-in-IP encapsulation. We set

the traffic split with a weight for each tunnel using an

approximately max-min fair optimization algorithm (§4.3

in [18]).

• Tunnel Split Group (TSG), a new pathing abstraction, spec-

ifies traffic distribution within a tunnel. Specifically, a TSG
is a supernode-level rule which controls how to split traffic

across supernodes in the self-site (other supernodes in the

current site) and the next-site (supernodes in the tunnel’s

next site).

• Switch Split Group (SSG) specifies traffic split on each

switch across physical links. The domain controller calcu-

lates SSGs.

We decouple TG and TSG calculations for scalability. In

particular, the TG algorithm is performed on top of a site-

level abstract topology which is derived from the results

of TSG calculations. TSG calculation is performed using

only topology data, which is unaffected by TG algorithm

results. We outline the hierarchical TE algorithm as follow-

ing steps. First, the domain controller calculates supertrunk

(supernode-level link) capacity by aggregating the capacity

of active physical links and then adjusting capacity based on

fabric impairments. For example, the supernode Clos fabric

may not have full bisection bandwidth because of failure or

maintenance. Second, using supertrunk capacities, the cen-

tral controller calculates TSGs for each outgoing site-level

link. When the outgoing site-level link capacity is symmetric

across supernodes, sidelinks are simply unused. Otherwise,

the central controller generates TSGs to rebalance traffic

arriving at each site supernode via sidelinks to match the

outgoing supertrunk capacity. This is done via a fair-share

allocation algorithm on a supernode-level topology includ-

ing only the sidelinks of the site and the supertrunks in the

site-level link (§4.3). Third, we use these TSGs to compute

the effective capacity for each link in the site-level topology,

which is in turn consumed by TG generation (§4.3 in [18]).

Fourth, we generate a dependency-graph to sequence TE

ops in a provably blackhole-free and loop-free manner (§4.4).

Finally, we program FGs, TGs, and TSGs via the domain

controllers, which in turn calculate SSGs based on the intra-

domain topology and implement hierarchical splitting rules

across two levels in the Clos fabric for scalability (§5).

4.3 TSG Generation
Problem statement: Supposing that the incoming traf-

fic of a tunnel is equally split across all supernodes in the

source site, calculate TSGs for each supernode within each

site along the tunnel such that the amount of traffic admitted

into this tunnel is maximized subject to supertrunk capac-

ity constraints. Moreover, an integer is used to represent

the relative weight of each outgoing supertrunk in the TSG

split. The sum of the weights on each TSG cannot exceed a

threshold, T , because of switch hashing table entry limits.

Examples: We first use examples of TSG calculations for

fine-grained traffic engineering within a tunnel. In Figure 7a,

traffic to supernodes Bi is equally split between two supern-

odes to the next tunnel site, C1 and C2. This captures a com-

mon scenario as the topology is designed with symmetric

supernode-level capacity. However, capacity asymmetrymay

still occur due to data-plane failures or network operations.

Figure 7b demonstrates a failure scenario where B1 com-

pletely loses connectivity to C1 and C2. To route around the

failure, the TSG on B1 is programmed to only forward to B2.

Figure 7c shows a scenario where B2 has twice the capacity

toward C relative to B1. As a result, the calculated TSG for

B1 has a 2:1 ratio for the split between the next-site (C2) and

self-site (B2). For simplicity, the TSG at the next site C does

not rebalance the incoming traffic.

We calculate TSGs independently for each site-level link.

For our deployments, we assume balanced incoming traf-

fic across supernodes as we observed this assumption was

rarely violated in practice. This assumption allows TSGs to

be reused across all tunnels that traverse the site-level link,

enables parallel TSG computations, and allows us to imple-

ment a simpler solution which can meet our switch hardware

limits. We discuss two rare scenarios where our approach

can lead to suboptimal TSG splits. First, Figure 7d shows a

scenario where B1 loses connectivity to both next site and

self site. This scenario is uncommon and has happened only

once, as the sidelinks are located inside a datacenter facility

and hence much more reliable than WAN links. In this case,
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Figure 7: Example of TSG functionality under different failure scenarios. The traffic presented here is encapsu-
lated into a tunnel A → B → C, and TSGs control how traffic is split at the supernode level (Ai , Bi , and Ci ). Each
supertrunk is assumed to have capacity c, and the figure label (TC) indicates the maximum tunnel capacity with
the given TSG configuration.
the site-level link (B,C) is unusable. One could manually

recover the site-level link capacity by disabling B1 (making

all its incident links unusable), but it comes at the expense

of capacity from B1 to elsewhere. Second, Figure 7e shows a

scenario with two consecutive asymmetric site-level links

resulting from concurrent failure. Because TSG calculation

is agnostic to incoming traffic balance at site B, the tunnel
capacity is reduced to 9c/4, 25% lower than the optimal split-

ting where B1 forwards half of its traffic toward self-site (B2)

to accommodate the incoming traffic imbalance between

B1 and B2, as shown in Figure 7f. Our measurements show

that this failure pattern happens rarely: to only 0.47% of

the adjacent site-level link pairs on average. We leave more

sophisticated per-tunnel TSG generation to future work.

TSG generation algorithm: Wemodel the TSG calculation

as an independent network flow problem for each directed

site-level link. We first generate a graphGTSG where vertices

include the supernodes in the source site of the site-level

link (Si , 1 ≤ i ≤ N ) and the destination site of the site-level

link (D). We then add two types of links to the graph. First,

we form a full mesh among the supernodes in the source

site: (∀i, j , i : Si ↔ S j ). Second, links are added between

each supernode in the source site and the destination site:

(∀i : Si ↔ D). We associate the aggregate capacity of the

corresponding supertrunks to each link. Subsequently, we

generate flows with infinite demand from each supernode

Si toward the target site D and try to satisfy this demand

by using two kinds of pathing groups (PG) with one hop

and two hop paths respectively. We use a greedy exhaustive

waterfill algorithm to iteratively allocate bottleneck capacity

in a max-min fair manner. We present the TSG generation

pseudo code in Algorithm 1.

Theorem 4.1. The generated TSGs do not form any loop.

Proof. Assume the generated graph has K + 1 vertices:
Si (0 ≤ i ≤ K − 1), each represents a supernode in the

Definitions:
GTSG = (V , E): directed graph where vertices include:

• supernodes Si on source site S = {Si | 1 ≤ i ≤ N }.

• destination site D
C(u, v): capacity of link (u, v) : ∀(u, v) ∈ E
Result:
TSG(u, v): fraction of incoming traffic at u that should be

forwarded to v

CRemaining(u, v) := C(u, v) : ∀(u, v) ∈ E
Loop

▷ weight: fraction of flows allocated on link
weiдht (u, v) := 0 : ∀(u, v) ∈ E
f rozen_f low := NULL
foreach Si ∈ S do

PG
2−hop (Si ) := {[(Si , v), (v, D)] | v ∈

S, CRemaining(Si , v) > 0, CRemaining(v, D) > 0}

if CRemaining(Si , D) > 0 then
weiдht (Si , D) += 1

else if PG
2−hop (Si ) , {} then

foreach path P ∈ PG
2−hop (Si ) do

foreach (u, v) ∈ P do
weiдht (u, v) += 1

|PG
2−hop (Si )|

else
▷ Stop allocation when any flow failed
to find path with remaining capacity

f rozen_f low := Si
break

if f rozen_f low , NULL then break;
E′ = {(u, v) ∈ E | weiдht (u, v) > 0}

f air_share(u, v) :=
CRemaining(u,v )

weiдht (u,v )
: ∀(u, v) ∈ E′

▷ BFS: Bottleneck fair share is given by the
link which offers minimum fair share

BFS := min(u,v )∈E′ f air_share(u, v)
foreach (u, v) ∈ E′ do

CRemaining(u, v) -= BFS ×weiдht (u, v)

foreach (u, v) ∈ E do

TSG(u, v) =
C (u,v )−CRemaining(u,v )∑

(u,v′)∈E (C (u,v ′)−CRemaining(u,v ′))

Algorithm 1: TSG generation
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source site, and D represents the destination site. Given the

pathing constraint imposed in step (1), each flow can only

use either the one-hop direct path (Si→D) or two-hop paths

(Si→S j,i→D), while the one-hop direct path is strictly pre-

ferred over two-hop paths. Assume a loop with ℓ > 1 hops

are formed with forwarding sequence, without loss of gener-

ality: <S0, S1, ..., Sℓ−1, S0>. Note that the loop cannot contain
destination vertex D. Given the pathing preference and the

loop sequence, the link (Si ,D) must be bottlenecked prior to

(Si+1,D), and (Sℓ−1,D) must be bottlenecked prior to (S0,D).
We observe that bottleneck sequences form a loop, which is

impossible given that the algorithm only bottlenecks each

link once. □

4.4 Sequencing TSG Updates
We find that applying TSG updates in an arbitrary order

could cause transient yet severe traffic looping/blackholing

(§6.3), reducing availability. Hence, we develop a scalable

algorithm to sequence TSG updates in a provably blackhole-

/loop-free manner as follows.

TSG sequencing algorithm: Given the graph GTSG and

the result of the TSGs described in §4.3, we create a depen-
dency graph as follows. First, vertices in the dependency

graph are the same as that inGTSG . We add a directed link

from Si to S j if S j appears in the set of next hops for Si in
the target TSG configuration. An additional directed link

from Si to D is added if Si forwards any traffic directly to

the next-site in the target TSG configuration. According to

Theorem 4.1, this dependency graph will not contain a loop

and is therefore a directed acyclic graph (DAG) with an ex-

isting topological ordering. We apply TSG updates to each

supernode in the reverse topological ordering, and we show

that the algorithm does not cause any transient loops or

blackholes during transition as follows. Note that this de-

pendency based TSG sequencing is similar to how certain

events are handled in Interior Gateway Protocol (IGP), such

as link down, metric change [11] and migrations [33].

Theorem 4.2. Assuming that neither the original nor the
target TSG configuration contains a loop, none of the interme-
diate TSG configurations contains a loop.

Proof. At any intermediate step, each vertex can be con-

sidered either resolved, in which the represented supernode

forwards traffic using the target TSG, or unresolved, in which

the traffic is forwarded using the original TSG. The vertex

D is always considered resolved. We observe that the loop

cannot be formed among resolved vertices, because the tar-

get TSG configuration does not contain a loop. Similarly, a

loop cannot be formed among unresolved vertices, since the

original TSG configuration is loop-free. Therefore, a loop can

only be formed if it consists of at least one resolved vertex

and at least one unresolved vertex. Thus, the loop must con-

tain at least one link from a resolved vertex to an unresolved

vertex. However, since the vertices are updated in the reverse

ACL

DSCP & cluster 
prefix match

(a) Before

HighPri VRFHighPri VRF

DSCP and
ingress port match

...
...

Cluster prefix 
match

Per-VRF LPMVFP

(b) After
Figure 8: Decoupling FG match into two stages.

topological ordering of the dependency graph, it is impossi-

ble for a resolved vertex to forward traffic to an unresolved

vertex, and therefore a loop cannot be formed. □

Theorem 4.3. Consider a flow to be blackholing if it crosses
a down link using a given TSG configuration. Assuming that
the original TSG configuration may contain blackholing flows,
the target TSG configuration is blackhole-free, and the set of
down links is unchanged, none of the intermediate TSG config-
urations causes a flow to blackhole if it was not blackholing in
the original TSG configuration.

Proof. See the definition of resolved/unresolved vertex in

the proof of Theorem 4.2. Assume a flow Si → D is black-

holing at an intermediate step during the transition from

the original to the target TSG. Assume that this flow was

not blackholing in the original TSG. Therefore, at least one

transit vertex for this flow must have been resolved, and the

blackhole must happen on or after the first resolved vertex.

However, since the resolved vertices do not forward traffic

back to unresolved vertices, the backhole can only happen

in resolved vertices, which contradicts our assumption. □

5 EFFICIENT SWITCH RULE
MANAGEMENT

Off-the-shelf switch chips impose hard limits on the size of

each table. In this section, we show that FG matching and

traffic hashing are two key drivers pushing us against the

limits of switch forwarding rules to meet our availability and

scalability goals. To overcome these limits, we partition our

FG matching rules into two switch pipeline tables to support

60x more sites (§5.1). We further decouple the hierarchical

TE splits into two-stage hashing across the switches in our

two-stage Clos supernode (§5.2). Without this optimization,

we find that our hierarchical TE would lose 6% throughput

as a result of coarser traffic splits.

5.1 Hierarchical FG Matching
We initially implemented FG matching using Access Control

List (ACL) tables to leverage their generic wildcard matching

capability. The number of FG match entries was bounded by

the ACL table size:

sizeACL ≥ numSites × numPref ixes/Site × numServiceClasses

given the ACL table size limit (sizeACL = 3K), the number of

supported service classes (numServiceClasses = 6, see Table 1)

and the average number of aggregate IPv4 and IPv6 cluster
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Stage Traffic Split
Before After

Ingress edge switches TG, TSG TG

(to backend) SSG TSG (part 1)

Backend switches TSG (part 2)

(to egress edge switches) SSG

Table 3: Decoupling traffic splitting rules across edge
and backend switches.

prefixes per site (numPref ixes/Site ≥ 16), we anticipated

hitting the ACL table limit with ∼ 32 sites.

Hence, we partition FG matching into two hierarchical

stages, as shown in Figure 8b. We first move the cluster pre-

fix matches to Longest Prefix Match (LPM) table, which is

much larger than the ACL table, storing up to several hun-

dreds of thousands of entries. Even though the LPM entries

cannot directly match DSCP bits for service class support,

LPM entries can match against Virtual Routing Forwarding

(VRF) label. Therefore, we match DSCP bits via the Virtual

Forwarding Plane (VFP) table, which allows the matched

packets to be associated with a VRF label to represent its

service class before entering the LPM table in switch pipeline.

We find this two-stage, scalable approach can support up to

1,920 sites.

This optimization also enables other useful features. We

run TE as the primary routing stack and BGP/ISIS routing as

a backup. In face of critical TE issues, we can disable TE at

the source sites by temporarily falling back to BGP/ISIS rout-

ing. This means that we delete the TE forwarding rules at the

switches in the ingress sites, so that the packets can fallback

to match lower-priority BGP/ISIS forwarding rules with-

out encapsulation. However, disabling TE end-to-end only

for traffic between a single source-destination pair is more

challenging, as we must also match cluster-facing ingress

ports. Otherwise, even though the source site will not en-

capsulate packets, unencapsulated packets can follow the

BGP/ISIS routes and later be incorrectly encapsulated at

transit site where TE is still enabled towards the given desti-

nation. Adding ingress port matching was only feasible with

the scalable, two-stage FG match.

5.2 Efficient Traffic Hashing By
Partitioning

With hierarchical TE, the source site is responsible for im-

plementing TG, TSG and SSG splits. In the original design,

we collapsed the hierarchical splits and implemented them

on only ingress edge switches. However, we anticipated ap-

proaching the hard limits on switch ECMP table size:

sizeECMP ≥ numSites × numPathinдClasses × numTGs

× numTSGs × numSSGs

where numPathinдClasses = 3 is the number of aggregated

service classes which share common pathing constraints,

numTGs = 4 is the tunnel split granularity, numTSGs = 32 is

the per-supernode split granularity, and numSSGs = 16 splits

across 16 switches in Stargate backend stage. To support up

to 33 sites, we would need 198K ECMP entries while our

switches support up to only sizeECMP = 14K entries, after

excluding 2K BGP/ISIS entries. We could down-quantize the

traffic splits to avoid hitting the table limit. However, we

find the benefit of TE would decline sharply due to the poor

granularity of traffic split.

We overcome per-switch table limitations by decoupling

traffic splitting rules across two levels in the Clos fabric, as

shown in Table 3. First, the edge switches decide which tun-

nel to use (TG split) and which site the ingress traffic should

be forwarded to (TSG split part 1). To propagate the decision

to the backend switches, we encapsulate packets into an IP

address used to specify the selected tunnel (TG split) and

mark with a special source MAC address used to represent

the self-/next-site target (TSG split part 1). Based on the tun-

nel IP address and source MAC address, backend switches

decide the peer supernode the packet should be forwarded

to (TSG split part 2) and the egress edge switch which has

connectivity toward the target supernode (SSG split). To fur-

ther reduce the required splitting rules on ingress switches,

we configured a link aggregation group (LAG) for each edge

switch toward viable backend switches. For simplicity, we

consider a backend switch is viable if the switch itself is

active and has active connections to every edge switch in

the supernode.

6 EVALUATION
In this section, we present our evaluation of the evolved

B4 network. We find that our approaches successfully scale

B4 to accommodate 100x more traffic in the past five years

(§6.1) while concurrently satisfying our stringent availability

targets in every service class (§6.2). We also evaluate our

design choices, including the use of sidelinks in hierarchical

topology, hierarchical TE architecture, and the two-stage

hashing mechanism (§6.3) to understand their tradeoffs in

achieving our requirements.

6.1 Scale
Figure 9 demonstrates that B4 has significant growth across

multiple dimensions. In particular, aggregate B4 traffic was

increased by two orders of magnitude in the last five years,

as shown in Figure 9a. On average, B4 traffic has doubled

every nine months since its inception. B4 has been delivering

more traffic and growing faster than our Internet-facing

WAN. A key growth driver is that Stargate subsumed the

campus aggregation network (§3.2) and started offering huge

amounts of campus bandwidth in 2015.

Figure 9b shows the growth of B4 topology size as the

number of sites and control domains. These two numbers

matched in Saturn-based B4 (single control domain per site)

and have started diverging since the deployment of JPOP

fabrics in 2013. To address scalability challenges, we consid-

erably reduced the site count by deprecating Saturn fabrics
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Figure 9: B4 scaling metrics over a five-year span. (a) Total amount of traffic normalized to the minimum value;
traffic is aggregated across byte counters on B4’s cluster-facing ports. (b) Number of B4 domains and sites. (c)
Number of FGs per site. (d) Number of TGs per site. (e) Number of transit tunnels per site. The numbers are
averaged and grouped into daily buckets. For per-site numbers (c-e), the largest value is presented across all the
sites. JPOP: JPOP deployment period; SG: Stargate deployment period.
with Stargate in 2015. Ironically, this presented scaling chal-

lenges during the migration period because both Saturn and

Stargate fabrics temporarily co-existed at a site.

Figure 9c shows the number of FGs per source site has

increased by 6x in the last five years. In 2015, we stopped

distributing management IP addresses for switch and su-

pertrunk interfaces. These IP addresses cannot be aggregated

with cluster prefixes, and removing these addresses helped

reduce the number of FGs per site by ∼ 30%.

B4 supports per service class tunneling. The initial feature

was rolled out with two service classes in the beginning of

2013 and resulted in doubling the total number of TGs per

site as shown in Figure 9d. After that, the TG count continues

to grow with newly deployed sites and more service classes.

The maximum number of transit tunnels per site is con-

trolled by the central controller’s configuration. This con-

straint helps avoid installing more switch rules than avail-

able but also limits the number of backup tunnels which are

needed for fast blackhole recovery upon data plane failure.

In 2016, improvements to switch rule management enabled

us to install more backup tunnels and improve availability

against unplanned node/link failure.

6.2 Availability
We measure B4 availability at the granularity of FG via two

methodologies combined together:

Bandwidth-based availability is defined as the bandwidth

fulfillment ratio given by Google Bandwidth Enforcer [25]:

allocation

min{demand,approval}

wheredemand is estimated based on short-term historical us-

age, approval is the approved minimum bandwidth per SLO

contract, and allocation is the current bandwidth admitted

by bandwidth enforcement, subject to network capacity and

fairness constraints. This metric alone is insufficient because

of bandwidth enforcement reaction delay and the inaccuracy

of bandwidth estimation (e.g., due to TCP backoff during

congestion).

Connectivity-based availability complements the limi-

tations of bandwidth fulfillment. A network measurement

system is used to proactively send probes between all cluster

pairs in each service class. The probing results are grouped

into B4 site pairs using 1-minute buckets, and the availability

for each bucket is derived as follows:{
1, loss_rate ≤ α

10
−β×(loss_rate−α ), otherwise

where α = 5% is a sensitivity threshold which filters out most

of the transient losses while capturing the bigger loss events

which affect our availability budget. Beyond the threshold,

availability decreases exponentially with a decay factor β =
2% as the traffic loss rate increases. The rationale is that

most inter-datacenter services run in a parallel worker model

where blackholing the transmission of any worker can dis-

proportionately affect service completion time.

Availability is calculated by taking the minimum between

these two metrics. Figure 10 compares the measured and

target availability in each service class. We see that initially

B4 achieved lower than three nines of availability at 90th

percentile flow across several service classes. At this time,

B4 was not qualified to deliver SC3/SC4 traffic other than

probing packets used for availability measurement. However,

we see a clear improvement trend in the latest state: 4− 7x in
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Figure 11: Capacity loss due to capacity asymmetry in
hierarchical topology. The loss is normalized to the ag-
gregate capacity at supernode-level. Only asymmetric
site-level links are included. The data is collected from
21,921 topology events occurring in May 2017.
SC1/SC2 and 10−19x in SC3/SC4. As a result, B4 successfully

achieves our availability targets in every service class.

6.3 Design Tradeoffs
Topology abstraction: Figure 11 demonstrates the impor-

tance of sidelinks in hierarchical topology. Without sidelinks,

the central controller relies on ECMP to uniformly split traf-

fic across supernodes toward the next site in the tunnel. With

sidelinks, the central controller uses TSGs to minimize the

impact of capacity loss due to hierarchical topology by re-

balancing traffic across sidelinks to match the asymmetric

connectivity between supernodes. In the median case, ab-

stract capacity loss reduces from 3.2% (without sidelinks) to

0.6% (with sidelinks+TSG). Moreover, we observe that the

abstract capacity loss without sidelinks is 100% at 83-rd per-

centile because at least one supernode has lost connectivity

toward the next site. Under such failure scenarios, the vast

majority of capacity loss can be effectively alleviated with

sidelinks.

Hierarchical TEwith two-stage hashing: Figure 12 quan-
tifies the tradeoff between throughput and runtime as a func-

tion of TE algorithm and traffic split granularity. We compare
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Figure 12: Hierarchical TE with two-stage hashing
takes only 2-4 seconds to run and achieves high
throughputwhile satisfying switch hashing limit. The
experiment uses topology and traffic usage snapshots
sampled from a one-month trace in January 2018.
our new hierarchical TE approach with flat TE, which di-

rectly runs a TE optimization algorithm (§4.3 in [18]) on the

supernode-level topology. To evaluate TE-delivered capacity

subject to the traffic split granularity limit, we linearly scale

the traffic usage of each FG measured in Jan 2018, feed the

adjusted traffic usage as demand to both flat and hierarchical

TE, and then feed the demands, topology and TE pathing to a

bandwidth allocation algorithm (see §5 in [25]) for deriving

the maximum achievable throughput based on the max-min

fair demand allocations.

We make several observations from these results. First,

we find that hierarchical TE takes only 2-3 seconds to run,

188 times faster than flat TE. TSG generation runtime is

consistently a small fraction of the overall runtime, ranging

from 200 to 700 milliseconds. Second, when the maximum

traffic split granularity is set to 1, both hierarchical and flat

TE perform poorly, achieving less than 91% and 46% of their

maximum throughput. The reason is simple: Each FG can

only take the shortest available path
2
, and the lack of suffi-

cient path diversity leaves many links under-utilized, espe-

cially for flat TE as we have exponentially more links in the

supernode-level graph. Third, we see that with our original

8-way traffic splitting, hierarchical TE achieves only 94% of

2
The shortest available path is the shortest path on the residual topology
where the bandwidth allocated to FGs in higher-priority service classes is

excluded.
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Figure 13: Performance with and without TSG sequencing using 17,167 TSG ops that require updating more than
one supernode in August, 2017.
its maximum throughput. By moving to two-stage hashing,

we come close to maximal throughput via 128-way TG and

TSG split granularity while satisfying switch hashing limits.

TSG sequencing: We evaluate the tradeoffs with and with-

out TSG sequencing using a one-month trace. In this ex-

periment, we exclude 17% of TSG ops which update only

one supernode. Figure 13a shows that TSG sequencing takes

only one or two “steps” in > 99.7% of the TSG ops. Each step

consists of one or multiple TSG updates where their relative

order is not enforced. Figure 13b compares the end-to-end

latency of TSG ops with and without sequencing. We ob-

serve a 2x latency increase at 99.7th percentile, while the

worst case increase is 2.63x. Moreover, we find that the run-

time of the TSG sequencing algorithm is negligible relative

to the programming latency. Figure 13c shows the capacity

available at each intermediate state during TSG ops. With-

out TSG sequencing, available capacity drops to zero due to

blackholing/looping in ∼ 3% of the cases, while this number

is improved by an order of magnitude with sequencing. Fig-

ure 13d demonstrates that without sequencing, more than

38% of the ingress traffic would be discarded due to the

forwarding loop formed in > 2% of the intermediate states

during TSG ops.

7 OPERATIONAL EXPERIENCE AND
OPEN PROBLEMS

In this section, we summarize our experiences learned from

production B4 network as well as several open problems that

remain active areas of work.

Management workflow simplification: Before the evo-

lution, we rely on ECMP to uniformly load-balance traffic

across Saturn chassis at each stage (§3.1), and therefore the

traffic is typically bottlenecked by the chassis which has

the least amount of outgoing capacity. In this design, the

admissible capacity of a Saturn site drops significantly in

the presence of capacity asymmetry resulting from failure

or disruptive network operation
3
. Consequently, we had

3
Operations like controller software upgrades are not considered disruptive

as they are hitless by design: No packet loss and no reduction in capacity.

to manually account for the capacity loss due to capacity

asymmetry for disruptive network operations in order to en-

sure the degraded site capacity still meets the traffic demand

requirements. Jumpgate’s improved handling of asymmetry

using sidelinks and TSGs has reduced the need for man-

ual interaction, as the TE system can automatically use the

asymmetric capacity effectively.

By virtue of Jumpgate’s multiple independent control do-

mains per site (§3.2), we now restrict operations to modify

one domain at a time to limit potential impact. To assess a

change’s impact on network availability, we perform impact

analysis accounting for the projected capacity change, poten-

tial network failures, and other maintenance coinciding with

the time window of network operation. We tightly couple

our software controller with the impact analysis tool to ac-

curately account for potential abstraction capacity loss due

to disruptive network operations. Depending on the results,

a network operation request can be approved or rejected.

To minimize potential impact on availability, we develop

a mechanism called “drain” to shift traffic away from certain

network entities before a disruptive change in a safe manner

which prevents traffic loss. With the scale of B4, it is imprac-

tical for network operators and Site Reliability Engineers to

use command-line interface (CLI) to manage each domain

controller. Consequently, drain operations are invoked by

management tools which orchestrate network operations

through management RPCs exposed by the controllers.

Sidelink capacity planning: Sidelinks form a full mesh

topology among supernodes to account for WAN capacity

asymmetry caused by physical failure, network operation,

and striping inefficiency. Up to 16% of B4 site capacity is ded-

icated to sidelinks to ensure that our TSG algorithm can fully

utilize WAN capacity against common failure patterns. How-

ever, determining the optimal sidelink capacity that should

be deployed to meet bandwidth guarantees is a hard provi-

sioning problem that relies on long-term demand forecasting,

cost estimates and business case analysis [5]. We are actively

working on a log-driven statistical analysis framework that

will allow us to plan sidelink capacity while minimizing costs

in order to meet our network availability requirements.
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Imbalance ingress traffic handling: Our TSG algorithm

assumes balanced incoming traffic across supernodes in a

site (§4.3). This assumption simplifies our design and more

importantly, it allows us tomeet our switch hardware require-

ments at scale—Tunnels that shared the same site-level link

use a common set of TSG rules programmed in switch for-

warding tables. Comparing with per-tunnel TSG allocation,

which requires > 1K TSG rules and exceeds our hardware

rule limit, our TSG algorithm requires up to N TSG rules,

where N ≈ 6 is the number of peering site. However, it does

not handle imbalance of ingress traffic. We plan to study

alternative designs such as computing TSGs for each pair

of adjacent site-level links. This design will handle ingress

traffic imbalance based on capacity asymmetry observed in

the upstream site-level link, while requiring a slightly higher

number of TSG rules (N Û(N − 1) = 30) in switch hardware.

8 RELATEDWORK
Software-defined WAN: Several companies have also ap-

plied SDN to inter-datacenter connections, such as Facebook

Express Backbone [20], Microsoft SWAN [16], Viptela [1],

and VMWare VeloCloud [2]. All of these products employ

a logically centralized SDN control platform. Hence, we be-

lieve that our experiences in evolving B4’s control/data plane

abstractions for availability and scalability can be applied to

these efforts as well.

Decentralized, hierarchical network abstractions: We

decouple site-level topology, TE architecture and switch for-

warding rule management with hierarchical abstractions.

The concept of hierarchical routing has been widely adopted

historically (e.g., [24]), and several decentralized, hierarchi-

cal SDN routing architectures have been proposed more

recently (e.g., Fabric [8] and Recursive SDN [29]). At a high

level, B4 is built upon these concepts, and the novelty of our

work lies in managing the practical challenges faced when

applying these well-known concepts to a globally deployed

software-defined WAN at massive scale. In particular, we

propose efficient TE abstractions to achieve high availability

at scale despite capacity asymmetry.

TEandWANresource scheduling: Tempus [22] performs

online temporal scheduling to minimize completion time of

bulk transfers. Pretium [19] couples WAN TE with dynamic

pricing to achieve efficient network usage. SOL [14] casts

network problems, including TE, into a novel path-based

optimization formulation. FFC [26] proactively minimizes

congestion under data/control plane faults by embedding

fault tolerance constraints into the TE formulation. These

novel ideas are complementary and can be leveraged to im-

prove B4’s control and data plane.

Networkupdate and switch rulemanagement: A signif-

icant volume of work on consistent network update ensures

properties such as packet connectivity, loop freedom, packet

coherence, and capacity loss in SDN [6, 10, 12, 16, 18, 21, 27,

28, 31] and IGP routing [11, 33]. Unlike these efforts, our

TSG sequencing solves a restricted use case using a simple,

scalable mechanism without requiring any packet tagging.

Moreover, we decouple switch matching and hashing rules

into stages across forwarding tables and switches. The idea

of decoupling forwarding rules has been used in several

previous works to minimize the number of rules (e.g., One

big switch abstraction [23]) and optimize update speed (e.g.,

BGP Prefix Independent Convergence [4] and SWIFT [15]).

Our work is unique in unveiling the operational challenges

faced in scaling the switch rule management for enabling

hierarchical TE in a large scale SDN WAN.

9 CONCLUSION
This paper presents our experience in evolving B4 from a

bulk transfer, content copy network targeting 99% availabil-

ity to one that supports interactive network services requir-

ing 99.99% availability, all while simultaneously increasing

the traffic volume by a hundredfold over five years. We de-

scribe our lessons in managing the tension introduced by

network expansion required for growing traffic demands,

the partitioning of control domains for availability, and the

capacity asymmetry inevitable in any large-scale network.

In particular, we balance this tension by re-architecting B4

into a hierarchical topology while developing decentralized

TE algorithms and switch rule management mechanisms to

minimize the impact of capacity asymmetry in the hierar-

chical topology. We believe that a highly available wide area

network with plentiful bandwidth offers unique benefits to

many cloud services. For example, we can enable synchro-

nous replication with transactional semantics on the serving

path through services like Spanner [9] and analytics over

massive data sets without having huge processing power

co-located with all of the data in the same cluster (i.e., data

can be reliably fetched across clusters on demand). On the

other hand, the increasing availability requirements and the

continuous push to ever-larger scale drive us to continue

improving B4 beyond four nines of availability.

ACKNOWLEDGMENT
We acknowledge Ashby Armistead, Farhana Ashraf, Gilad

Avidov, Arda Balkanay, Harsha Vardhan Bonthalala, Emilie

Danna, Charles Eckman, Alex Goldhammer, Steve Gribble,

Wenjian He, Luis Alberto Herrera, Mahesh Babu Kavuri,

Chip Killian, Santa Kunchala, Steven Leung, John Mccul-

lough, Marko Milivojevic, Luly Motomura, Brian Poynor,

Suchitra Pratapagiri, Nagarushi Rao, Arjun Singh, Sankalp

Singh, Puneet Sood, Rajababru Thatikunta, David Wetherall,

Ming Zhang, Junlan Zhou, and many others for their signifi-

cant contributions to the evolution of B4. We also thank our

shepherd Changhoon Kim, anonymous reviewers, Nandita

Dukkipati, Dennis Fetterly, Rebecca Isaacs, Jeff Mogul, Brad

Morrey, and Dina Papagiannaki for their valuable feedback.

86



SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, et al.

REFERENCES
[1] 2017. Viptela Inc. http://viptela.com/. (2017).

[2] 2018. VeloCloud Networks, Inc. http://www.velocloud.com/. (2018).

[3] IEEE Standard 802.1Q. 2011. IEEE standard for local and metropolitan

area networks–media access control (MAC) bridges and virtual bridged

local area networks. (2011).

[4] Ed. A. Bashandy, C. Filsfils, and P. Mohapatra. 2018. BGP Prefix Inde-

pendent Convergence. IETF Internet Draft. (2018).

[5] Ajay Kumar Bangla, Alireza Ghaffarkhah, Ben Preskill, Bikash Koley,

Christoph Albrecht, Emilie Danna, Joe Jiang, and Xiaoxue Zhao. 2015.

Capacity Planning for the Google Backbone Network. In International
Symposium on Mathematical Programming (ISMP’15).

[6] Sebastian Brandt, Klaus-Tycho Foerster, and Roger Wattenhofer. 2016.

On Consistent Migration of Flows in SDNs. In INFOCOM’16.
[7] Deborah Brungard, Malcolm Betts, Satoshi Ueno, Ben Niven-Jenkins,

and Nurit Sprecher. 2009. Requirements of an MPLS transport profile.

RFC 5654. (2009).

[8] Martin Casado, Teemu Koponen, Scott Shenker, and Amin

Tootoonchian. 2012. Fabric: A Retrospective on Evolving SDN. In

HotSDN’12.
[9] James C. Corbett, Jeffrey Dean,Michael Epstein, Andrew Fikes, Christo-

pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-

pher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak,

Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David

Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-

sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and

DaleWoodford. 2012. Spanner: Google’s Globally-distributed Database.

In OSDI’12.
[10] Klaus-Tycho Foerster, Ratul Mahajan, and Roger Wattenhofer. 2016.

Consistent Updates in Software Defined Networks: On Dependencies,

Loop Freedom, and Blackholes. In IFIP Networking’16.
[11] Pierre Francois and Olivier Bonaventure. 2005. Avoiding Transient

Loops during IGP convergence in IP Networks. In INFOCOM’05.
[12] Soudeh Ghorbani andMatthewCaesar. 2012. Walk the Line: Consistent

Network Updates with Bandwidth Guarantees. In HotSDN’12.
[13] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and

Amin Vahdat. 2016. Evolve or Die: High-Availability Design Principles

Drawn from Google’s Network Infrastructure. In SIGCOMM’16.
[14] Victor Heorhiadi, Michael K. Reiter, and Vyas Sekar. 2016. Simplifying

Software-defined Network Optimization Using SOL. In NSDI’16.
[15] Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent

Vanbever. 2017. SWIFT: Predictive Fast Reroute. In SIGCOMM’17.
[16] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay

Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving High

Utilization with Software-driven WAN. In SIGCOMM’13.
[17] Gianluca Iannaccone, Chen-nee Chuah, RichardMortier, Supratik Bhat-

tacharyya, and Christophe Diot. 2002. Analysis of Link Failures in an

IP Backbone. In ACM SIGCOMMWorkshop on Internet Measurment’02.
[18] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon

Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan

Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin Vah-

dat. 2013. B4: Experience with a Globally-deployed Software Defined

WAN. In SIGCOMM’13.
[19] Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Brendan Lucier, and

Ishai Menache. 2016. Dynamic Pricing and Traffic Engineering for

Timely Inter-Datacenter Transfers. In SIGCOMM’16.
[20] Mikel Jimenez and Henry Kwok. 2017. Building Express Backbone:

Facebook’s New Long-haul Network. https://code.facebook.com/posts/

1782709872057497/. (2017).

[21] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul

Mahajan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. 2014.

Dynamic scheduling of Network Updates. In SIGCOMM’14.
[22] Srikanth Kandula, Ishai Menache, Roy Schwartz, and Spandana Raj

Babbula. 2014. Calendaring for Wide Area Networks. In SIGCOMM’14.

[23] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. 2013.

Optimizing the "One Big Switch" Abstraction in Software-defined

Networks. In CoNEXT’13.
[24] L. Kleinrock and F. Kamoun. 1977. Hierarchical Routing for Large Net-

works, Performance Evaluation and Optimization. Computer Networks
1, 3 (January 1977), 155–174.

[25] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil

Kasinadhuni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing Ai,

Björn Carlin, Mihai Amarandei-Stavila, Mathieu Robin, Aspi Sigan-

poria, Stephen Stuart, and Amin Vahdat. 2015. BwE: Flexible, Hier-

archical Bandwidth Allocation for WAN Distributed Computing. In

SIGCOMM’15.
[26] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang,

and David Gelernter. 2014. Traffic Engineering with Forward Fault

Correction. In SIGCOMM’14.
[27] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wat-

tenhofer, and David Maltz. 2013. zUpdate: Updating Data Center

Networks with Zero Loss. In SIGCOMM’13.
[28] Ratul Mahajan and Roger Wattenhofer. 2013. On Consistent Updates

in Software Defined Networks. In HotNets’13.
[29] James McCauley, Zhi Liu, Aurojit Panda, Teemu Koponen, Barath

Raghavan, Jennifer Rexford, and Scott Shenker. 2016. Recursive SDN

for Carrier Networks. SIGCOMM Comput. Commun. Rev. 46, 4 (Dec.
2016), 1–7.

[30] Charles E. Perkins. 1996. IP Encapsulation within IP. RFC 2003. (1996).

[31] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and

David Walker. 2012. Abstractions for Network Update. In SIG-
COMM’12.

[32] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-

tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie

Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,

Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015.

Jupiter Rising: A Decade of Clos Topologies and Centralized Control

in Google’s Datacenter Network. In SIGCOMM’15.
[33] Laurent Vanbever, Stefano Vissicchio, Cristel Pelsser, Pierre Francois,

and Olivier Bonaventure. 2011. Seamless Network-wide IGP Migra-

tions. In SIGCOMM’11.
[34] Arun Viswanathan, Eric C. Rosen, and Ross Callon. 2001. Multiprotocol

Label Switching Architecture. RFC 3031. (2001).

87

http://viptela.com/
http://www.velocloud.com/
https://code.facebook.com/posts/1782709872057497/
https://code.facebook.com/posts/1782709872057497/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Flat topology scales poorly and hurts availability
	2.2 Solving capacity asymmetry in hierarchical topology
	2.3 Efficient switch rule management

	3 Site Topology Evolution
	3.1 Saturn
	3.2 Jumpgate

	4 Hierarchical Traffic Engineering
	4.1 Motivating Examples
	4.2 Hierarchical TE Architecture
	4.3 TSG Generation
	4.4 Sequencing TSG Updates

	5 Efficient Switch Rule Management
	5.1 Hierarchical FG Matching
	5.2 Efficient Traffic Hashing By Partitioning

	6 Evaluation
	6.1 Scale
	6.2 Availability
	6.3 Design Tradeoffs

	7 Operational Experience And Open Problems
	8 Related Work
	9 Conclusion 
	References

