Packet Transactions: High-Level Programming for
Line-Rate Switches

Anirudh Sivaraman', Alvin Cheungi, Mihai Budiu®*, Changhoon Kim®, Mohammad Alizadeh!, Hari Balakrishnan],
George Varghese™, Nick McKeown*, Steve Licking®
IMIT CSAIL, *University of Washington, ¥VMWare Research, "Barefoot Networks, **Microsoft Research, *Stanford University

ABSTRACT

Many algorithms for congestion control, scheduling, net-
work measurement, active queue management, and traffic
engineering require custom processing of packets in the data
plane of a network switch. To run at line rate, these data-
plane algorithms must be implemented in hardware. With
today’s switch hardware, algorithms cannot be changed, nor
new algorithms installed, after a switch has been built.

This paper shows how to program data-plane algo-
rithms in a high-level language and compile those programs
into low-level microcode that can run on emerging pro-
grammable line-rate switching chips. The key challenge is
that many data-plane algorithms create and modify algorith-
mic state. To achieve line-rate programmability for stateful
algorithms, we introduce the notion of a packet transaction:
a sequential packet-processing code block that is atomic and
isolated from other such code blocks.

We have developed this idea in Domino, a C-like imper-
ative language to express data-plane algorithms. We show
with many examples that Domino provides a convenient way
to express sophisticated data-plane algorithms, and show
that these algorithms can be run at line rate with modest es-
timated chip-area overhead.

CCS Concepts

*Networks — Programmable networks;

Keywords

Programmable switches; stateful data-plane algorithms

*Work done when employed at Barefoot Networks.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

SIGCOMM ’16, August 22 - 26, 2016, Florianopolis , Brazil

© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4193-6/16/08. .. $15.00

DO http://dx.doi.org/10.1145/2934872.2934900

1. INTRODUCTION

Network switches in modern datacenters, enterprises, and
service-provider networks perform many tasks in addition
to standard packet forwarding. The set of requirements for
switches has only increased with time as network operators
seek greater control over performance. Performance may be
improved using both data-plane and control-plane mecha-
nisms. This paper focuses on data-plane algorithms. These
algorithms process and transform packets, reading and writ-
ing state in the switch. Examples include active queue man-
agement [38, 47, 51], scheduling [58], congestion control
with switch feedback [45, 60], network measurement [63,
37], and data-plane traffic engineering [21].

An important requirement for data-plane algorithms is
the ability to process packets at the switch’s line rate: 10—
100 Gbit/s on 10-100 ports. Therefore, these algorithms
are typically implemented using dedicated hardware. Hard-
ware designs are rigid and not reconfigurable in the field.
Thus, implementing and deploying a new algorithm, or even
modifying a deployed one, requires an investment in new
hardware—a time-consuming and expensive proposition.

This rigidity affects many stakeholders adversely: ven-
dors [2, 4, 6] building network switches with merchant-
silicon chips [10, 11, 16], network operators deploying these
switches [41, 54, 56], and researchers developing new data-
plane algorithms [21, 37, 45, 60].

To run new data-plane algorithms after a switch has been
built, researchers and companies have attempted to build
programmable switches for many years, starting from efforts
on active networks [61] to network processors [14] to soft-
ware routers [8, 46]. All these efforts sacrificed performance
for programmability, typically running an order of magni-
tude (or worse) slower than hardware line rates. Unfortu-
nately, this reduction in performance has meant that these
systems are rarely deployed in production networks.

Programmable switching chips [3, 13, 19] competitive in
performance with state-of-the-art fixed-function chips [10,
11, 16] are now becoming available. These chips imple-
ment a few low-level hardware primitives that can be con-
figured by software into a processing pipeline, and are field-
reconfigurable. Building a switch with such a chip is attrac-
tive because it does not compromise on data rates [28].

In terms of programmability, these chips today allow the
network operator to program packet parsing and forwarding,

http://dx.doi.org/10.1145/2934872.2934900

i.e., a programmer can program the set of protocol formats
to be matched and the set of actions to be executed when
matching packet headers in a match-action table. Languages
such as P4 [27] are emerging as a way to express such match-
action processing in a hardware-independent manner.

There is a gap between this form of programmability and
the needs of data-plane algorithms. By contrast to packet
forwarding, which doesn’t modify state in the data plane,
many data-plane algorithms create and modify algorithmic
state in the switch as part of packet processing.

For such algorithms, programmability must directly cap-
ture the algorithm’s intent without requiring the algorithm
to be shoehorned into hardware primitives like a sequence
of match-action tables. Indeed, the ability to directly cap-
ture an algorithm’s intent pervades programming models for
many other networking devices, e.g., software routers [46],
network processors [36], and network endpoints [5].

By studying the requirements of data-plane algorithms
and the constraints of line-rate hardware, we introduce a
new abstraction to program and implement data-plane algo-
rithms: a packet transaction (§3). A packet transaction is a
sequential code block that is atomic and isolated from other
such code blocks, with the semantics that any visible state is
equivalent to a serial execution of packet transactions across
packets in the order of packet arrival. Packet transactions
let the programmer focus on the operations needed for each
packet without worrying about other concurrent packets.

Packet transactions have an all-or-nothing guarantee: all
packet transactions accepted by the packet transactions com-
piler will run at line rate, or be rejected. There is no “slip-
pery slope” of running network algorithms at lower speeds
as with network processors or software routers: when com-
piled, a packet transaction runs at line rate, or not at all. Per-
formance is not just predictable, but guaranteed.

In realizing packet transactions, we make three new con-
tributions. First, Banzai, a machine model for programmable
line-rate switches (§2). Banzai models two important con-
straints (§2.4) for stateful line-rate operations: the inability
to share state between different packet-processing units, and
the requirement that any switch state modifications be vis-
ible to the next packet entering the switch. Based on these
constraints, we introduce afoms to represent a programmable
switch’s packet-processing units.

Second, Domino, a new domain-specific language (DSL)
for data-plane algorithms, with packet transactions at its core
(§3). Domino is an imperative language with C-like syntax,
to our knowledge the first to offer such a high-level program-
ming abstraction for line-rate switches.

Third, a compiler from Domino packet transactions to a
Banzai target (§4). The Domino compiler extracts codelets
from transactions: code fragments, which if executed atomi-
cally, guarantee a packet transaction’s semantics. It then uses
program synthesis [59] to map codelets to atoms, rejecting
the transaction if the atom cannot execute the codelet.

We evaluate expressiveness by programming a variety of
data-plane algorithms (Table 3) in Domino and compare
with P4. We find that Domino provides a more concise
and natural programming model for stateful data-plane algo-

rithms. Next, because no existing programmable switch sup-
ports the set of atoms required for our data-plane algorithms,
we design a set of compiler targets for these algorithms
based on Banzai (§5.2). We show that these targets are fea-
sible in a 32-nm standard-cell library with < 2% cost in
area relative to a 200 mm? baseline switching chip [40]. Fi-
nally, we compile data-plane algorithms written in Domino
to these targets (§5.3) to show how a target’s atoms deter-
mine the algorithms it can support. We conclude with sev-
eral lessons for programmable switch design (§5.4).

Code for the Domino compiler, the Banzai machine
model, and the code examples listed in Table 3 is available
at http://web.mit.edu/domino.

2. A MACHINE MODEL FOR LINE-
RATE SWITCHES

Banzai is a machine model for programmable line-rate
switches that serves as the compiler target for Domino. Ban-
zai is inspired by recent programmable switch architectures
such as Barefoot Networks’ Tofino [3], Intel’s FlexPipe [13],
and Cavium’s XPliant Packet Architecture [19]. Banzai ab-
stracts these architectures and extends them with stateful
processing units to implement data-plane algorithms. These
processing units, called atoms, model atomic operations that
are natively supported by a programmable line-rate switch.

2.1 Background: Programmable switches

Packets arriving at a switch (top half of Figure 1) are
parsed by a programmable parser that turns packets into
header fields. These header fields are first processed by an
ingress pipeline consisting of match-action tables arranged
in stages. Processing a packet at a stage may modify its
header fields, through match-action rules, as well as some
persistent state at that stage, e.g., packet counters. After
the ingress pipeline, the packet is queued. Once the sched-
uler dequeues the packet, it is processed by a similar egress
pipeline before it is transmitted.

To reduce chip area, there is only one ingress and one
egress pipeline. This single pipeline is shared across all
switch ports and handles aggregate traffic belonging to all
ports, at all packet sizes. For instance, a 64-port switch with
a line rate of 10 Gbit/s per port and a minimum packet size of
64 bytes needs to process around a billion packets per sec-
ond, after accounting for minimum inter-packet gaps [28].
Equivalently, the pipeline runs at 1 GHz, and pipeline stages
process a packet every clock cycle (1 ns). We assume one
packet per clock cycle throughout the paper, and for con-
creteness, a 1 GHz clock frequency.

Having to process a packet every clock cycle in each stage
constrains the operations that can be performed on each
packet. In particular, any packet operation that modifies state
visible to the next packet must finish execution in a single
clock cycle (§2.3 shows why). Because of this restriction,
programmable switching chips provide a small set of pro-
cessing units or primitives for manipulating packets and state
in a stage, unlike software routers. These primitives deter-
mine which algorithms run on the switch at line rate.

http://web.mit.edu/domino

The architecture of a programmable switch

Ingress pipeline Queues Egress pipeline
Match-action table Match-action table Match-action table Match-action table
Parser — — 1111 S S
Match ~ Action
Bits @ Headers] Headers eaders 1 Headers Headers Transmit
JE— ' —| M . o0 o — —_— —_— o0 e —
| — — —| T [— — —
- —_— e 3 —_— —| 1110 | — _— —_—
.i . \\ . J 1T — —
/ The Banzai machine model
State Circuit State Circuit State Circuit
Packet Packet Packet
Header Header Header
S IR s [0] [N on [0
® ® ®
® — ® — 000 ®
e o)
\ Stage 1 Stage 2 Stage N y

Figure 1: Banzai models the ingress or egress pipeline of a programmable switch. An atom corresponds to an action in a
match-action table. Internally, an atom contains local state and a digital circuit modifying this state. Figure 2 details an atom.

The challenge for us is to develop primitives that allow
a broad range of data-plane algorithms to be implemented,
and to build a compiler to map a user-friendly description of
an algorithm to the primitives provided by a switch.

2.2 The Banzai machine model

Banzai (the bottom half of Figure 1) models the ingress
or egress switch pipeline. It models the computation within
a match-action table in a stage (i.e., the action half of the
match-action table), but not how packets are matched (e.g.,
direct or ternary). Banzai does not model packet parsing and
assumes that packets arriving to Banzai are already parsed.

Concretely, Banzai is a feed-forward pipeline' consist-
ing of a number of stages executing synchronously on every
clock cycle. Each stage processes one packet every clock
cycle and hands it off to the next. Unlike a CPU pipeline,
which occasionally experiences pipeline stalls, Banzai’s
pipeline is deterministic, never stalls, and always sustains
line rate. However, relative to a CPU pipeline, Banzai is re-
stricted in the operations it supports (§2.4).

2.3 Atoms: Banzai’s processing units

An atom is an atomic unit of packet processing supported
natively by a Banzai machine, and the atoms within a Banzai
machine form its instruction set. Each pipeline stage in Ban-
zai contains a vector of atoms. Atoms in this vector modify

't is hard to physically route backward-flowing wires that
would be required for feedback.

mutually exclusive sections of the same packet header in par-
allel in every clock cycle, and process a new packet header
every clock cycle.

In addition to packet headers, atoms may modify persis-
tent state on the switch to implement stateful data-plane al-
gorithms. To support such algorithms at line-rate, the atoms
for a Banzai machine need to be substantially richer (Ta-
ble 4) than the simple RISC-like stateless instruction sets for
programmable switches today [28]. We explain why below.

Suppose we need to atomically increment a switch
counter to count packets. One approach is hardware support
for three simple single-cycle operations: read the counter
from memory in the first clock cycle, add one in the next,
and write it to memory in the third. This approach, however,
does not provide atomicity. To see why, suppose packet A
increments the counter from 0 to 1 by executing its read, add,
and write at clock cycles 1, 2, and 3 respectively. If packet B
issues its read at time 2, it will increment the counter again
from O to 1, when it should be incremented to 2.

Locks over the shared counter are a potential solution.
However, locking causes packet B to wait during packet
A’s increment, and the switch no longer sustains the line
rate of one packet every clock cycle. CPUs employ micro-
architectural techniques such as operand forwarding for this
problem. But these techniques still suffer pipeline stalls,
which prevents line-rate performance from being achieved.

Banzai provides an atomic increment operation at line rate
with an atom to read a counter, increment it, and write it
back in a single stage within one clock cycle. It uses the

same approach of reading, modifying, and writing back to
implement other stateful atomic operations at line rate.

Unlike stateful atomic operations, stateless atomic oper-
ations are easier to support with simple packet-field arith-
metic. Consider, for instance, the operation pkt.f1 =
pkt.f2 + pkt.f3 - pkt.f4. This operation does not
modify any persistent switch state and only accesses packet
fields. It can be implemented atomically by using two atoms:
one atom to add fields 2 and f3 in one pipeline stage, and an-
other to subtract f4 from the result in the next. An instruction
set designer can provide simple stateless instructions operat-
ing on a pair of packet fields. These instructions can then be
composed into larger stateless operations, without designing
atoms specifically for each stateless operation.

Representing atoms. An atom is represented by a body
of sequential code that captures the atom’s behavior. It
may also contain internal state local to the atom. An atom
completes execution of this entire body of code, modifying
a packet and any internal state before processing the next
packet. The designer of a programmable switch would de-
velop these atoms, and expose them to a switch compiler as
the programmable switch’s instruction set, e.g., Table 4.
Using this representation, a switch counter that wraps
around at a value of 100 can be written as the atom:?

if (counter < 99)
counter++;

else
counter = 0;

Similarly, a stateless operation like setting a packet field
to a constant value can be written as the atom:

pkt.field = value;

2.4 Constraints for line-rate operation

Memory limits. State in Banzai is local to each atom. It
can neither be shared by atoms within a stage, nor atoms
across stages. This is because building multi-ported memo-
ries accessible to multiple atoms is technically challenging
and consumes additional chip area. However, state can be
read into a packet header in one stage, for subsequent use
by a downstream stage’. But, the Banzai pipeline is feed-
forward, so state can only be carried forward, not backward.

Computational limits. Atoms need to execute atomically
from one packet to the next, so any state internal to the atom
must be updated before the next packet arrives. Because
packets may be separated by as little as one clock cycle, we
mandate that atom bodies finish execution within one clock
cycle, and constrain atom bodies to do so.

We constrain atom bodies by defining atom templates
(§4.3). An atom template is a program with configurable
parameters that terminates within a clock cycle and specifies

2We use p.x to represent field x within a packet p and x to
represent a state variable x that persists across packets.
3Figure 3b shows an example. last_time is read into
pkt.last_time in stage 2, for subsequent use by stage 3.

the atom’s behavior. An example is an ALU with a restricted
set of primitive operations (Figure 2a).

X constant

‘p—“‘p:LL\—y bit choice = ?7?;

Adder Subtractor int constant = ??;
if (choice) {
Add Result Sub Result X = X + constant;
} else {
choice X = X - constant;
3

o X (b) Atom template

(a) Circuit for the atom
Figure 2: An atom and its template. The atom above can add
or subtract a constant from a state variable x based on two

configurable parameters, constant and choice.

Resource limits. We also limit the number of atoms in
each stage (pipeline width) and the number of stages in the
pipeline (pipeline depth). This is similar to limits on the
number of stages, tables per stage, and memory per stage in
programmable switch architectures [43].

2.5 What can Banzai not do?

Banzai is a good fit for data-plane algorithms that modify
a small set of packet headers and carry out small amounts
of computation per packet. Data-plane algorithms like deep
packet inspection and WAN optimization require a switch
to parse and process the packet payload as well—effectively
parsing a large “header” consisting of each byte in the pay-
load. This is challenging at line rates of 1 GHz, and such
algorithms are best left to CPUs [52]. Some algorithms re-
quire complex computations, but not on every packet, e.g., a
measurement algorithm that periodically scans a large table
to perform garbage collection. Banzai’s atoms model small
operations that occur on every packet, and are unsuitable for
such operations that span many clock cycles.

3. PACKET TRANSACTIONS

A programmer programs a data-plane algorithm by writ-
ing it as a packet transaction in Domino (Figure 3a). The
Domino compiler then compiles this transaction to an atom
pipeline for a Banzai machine (Figure 3b). We first describe
packet transactions in greater detail by walking through an
example (§3.1). Next, we discuss language constraints in
Domino (§3.2) informed by line-rate switches. We then dis-
cuss triggering packet transactions (§3.3) and handling mul-
tiple transactions (§3.4).

3.1 Domino by example

We use flowlet switching [57] as our running example.
Flowlet switching is a load-balancing algorithm that sends
bursts of packets, called flowlets, from a TCP flow on a ran-
domly chosen next hop, provided the bursts are separated by
a large enough time interval to ensure packets do not arrive
out of order at a TCP receiver. For ease of exposition, we

|| #define NUM_FLOWLETS 8000
2 || #define THRESH 5
3 || #define NUM_HOPS 10

5 || struct Packet {

6 int sport;

7 int dport;

8 int new_hop;

9 int arrival;

10 int next_hop;

1 int id; // array index

2}

14|l int last_time [NUM_FLOWLETS]
51| int saved_hop [NUM_FLOWLETS]

{03;
{03};

17 || void flowlet(struct Packet pkt) {

) pkt.dport)
NUM_FLOWLETS;

18 pkt.new_hop = hash3(pkt.sport,

19 pkt.dport,

20 pkt.arrival)
21 % NUM_HOPS;

23 pkt.id = hash2(pkt.sport,

5 %
27 if (pkt.arrival - last_time[pkt.id]
28 > THRESH)

29 { saved_hop[pkt.id] = pkt.new_hop; }
31 last_time[pkt.id] = pkt.arrival;

32 pkt.next_hop = saved_hop[pkt.id];

(a) Flowlet switching written in Domino

rStage 1 \
, pkt.new_hop =
pkt.id = hash3(
pkt.sport,
hash2(pkt.sport, pkt.dport,
pkt.dport) pkt.arrival)

% NUM_HOPS;

% NUM_FLOWLETS;
L

Stage 2

pkt.last_time = last_time[pkt.id];
last_time[pkt.id] = pkt.arrival;
1

Stage 3

th.tmp = pkt.arrival - pkt.Iast_tim%
X

Stage 4 v

(pkt.tmp2 = pkt.tmp > THRESH;)

Stage 5 '

pkt.saved_hop = saved_hop[pkt.id];

saved_hop[pkt.id] = pkt.tmp2 ?
pkt.new_hop :
pkt.saved_hop;

Stage 6 v
pkt.next_hop = pkt.tmp2 ?
pkt.new_hop :
kt.saved_hop;
\ pisaved hor) __J

(b) 6-stage Banzai pipeline for flowlet switching. Con-
trol flows from top to bottom. Stateful atoms are in grey.

Figure 3: Programming flowlet switching in Domino

use only the source and destination ports in the hash function
that randomly computes the next hop for flowlet switching.
Figure 3a shows flowlet switching in Domino and demon-
strates its core language constructs. All packet processing
happens in the context of a packet transaction (the func-
tion flowlet starting at line 17). The function’s argument
type Packet declares the fields in a packet (lines 5-12)* that
can be referenced by the function body (lines 18-32). The
function body can also modify persistent switch state using
global variables (e.g., last_time and saved_hop on lines 14
and 15, respectively). The function body may use intrinsics
such as hash2 on line 23 to directly access hardware accel-
erators on the switch such as hash generators. The Domino
compiler uses an intrinsic’s signature to analyze read/write
dependencies (§4.2), but otherwise considers it a blackbox.

Packet transaction semantics. Semantically, the program-
mer views the switch as invoking the packet transaction seri-
ally in the order in which packets arrive, with no concur-
rent packet processing. Put differently, the packet trans-
action modifies the passed-in packet argument and runs to
completion, before starting on the next packet. These se-

A field is either a packet header, e.g., source port (sport)
and destination port (dport), or packet metadata (id).

mantics allow the programmer to program under the illusion
that a single, extremely fast, processor is serially executing
the packet processing code for all packets. The programmer
doesn’t worry about parallelizing the code within and across
pipeline stages to run at line rate.

3.2 The Domino language

Domino’s syntax (Figure 4) is similar to C, but with sev-
eral constraints (Table 1). These constraints are required for
deterministic performance. Memory allocation, unbounded
iteration counts, and unstructured control flow cause variable
performance, which may prevent an algorithm from achiev-
ing line rate. Additionally, within a Domino transaction,
each array can only be accessed using a single packet field,
and repeated accesses to the same array are allowed only if
that packet field is unmodified between accesses.

For example, all read and write accesses to last_time
use the index pkt.id. pkt.id is not modified during the
course of a single transaction execution (single packet); it
only changes between executions (packets). This restriction
on arrays mirrors restrictions on the stateful memories at-
tached to atoms (§2.4), which require multiple ports to sup-
port distinct read and write addresses every clock cycle.

No iteration (while, for, do-while).

No unstructured control flow (goto, break, continue).

No heap, dynamic memory allocation, or pointers.

At most one location in each array is accessed by a single

execution of a transaction.

No access to unparsed portions of the packet (payload).
Table 1: Restrictions in Domino

l € literals v € variables bop € binary ops wuop € unary ops

e € expressions = e.f|l|v]|ebope|uopeleld.f]]

fler,e2,...)
s € statements = e=¢|if (e) {s}else{s}|s; s

t € packettxns = name(v){s}

d € packetdecls = {vi,vo,...}

sv € state var inits = wv=e|sv; sv
p € Domino programs = {d;sv;t}

Figure 4: Domino grammar. Type annotations (void, struct,
int, and Packet) are elided for simplicity.

3.3 Triggering packet transactions

Packet transactions specify how to process packet headers
and state. To specify when to run packet transactions, pro-
grammers use guards: predicates on packet fields that trig-
ger a transaction if a packet matches the guard. For example,
(pkt.tcp_dst_port == 80) would trigger heavy-hitter de-
tection [63] on packets with TCP destination port 80.

Guards can be realized using an exact match in a match-
action table, with the actions being the atoms compiled
from a packet transaction. Guards can take various forms,
e.g., exact, ternary, longest-prefix, and range-based matches,
depending on the matches supported by the match-action
pipeline. Because guards map straightforwardly to the match
key in a match-action table, we focus only on compiling
packet transactions in this paper.

3.4 Handling multiple transactions

So far, we have discussed a single packet transaction cor-
responding to a single data-plane algorithm. In practice, a
switch would run multiple data-plane algorithms, each pro-
cessing its own subset of packets. To address this, we en-
vision a policy language that specifies pairs of guards and
transactions. Realizing a policy is straightforward when all
guards are disjoint. When guards overlap, multiple transac-
tions need to execute on the same subset of packets, requir-
ing a mechanism to compose transactions.

One composition semantics is to run the two transactions
one after another sequentially in a user-specified order. This
can be achieved by concatenating the two transaction bodies
to create a larger transaction. We leave a detailed exploration
of multiple transactions to future work, and focus only on
compiling a single packet transaction here.

Domino compiler

Atom
Domino | | |Preprocessingly. |Pipelining_g, Code pipeline for
Code (4.1) (4.2) Generation: Banzai
(4.3) machine

1

|
Atom templates, pipeline width, pipeline depth

Figure 5: Passes in the Domino compiler

4. THE DOMINO COMPILER

The Domino compiler translates Domino programs to
Banzai targets. The compiler provides an all-or-nothing
model: if compilation succeeds, the program will run at line
rate on the target with packet transaction semantics. Other-
wise, if the program cannot run at line rate, it will not com-
pile. This all-or-nothing model trades off diminished pro-
grammability for guaranteed line-rate performance, in con-
trast to software routers that provide greater flexibility, but
lower and unpredictable run-time performance [34].

The Domino compiler has three passes (Figure 5), which
we illustrate using the flowlet switching example. Prepro-
cessing (§4.1) simplifies packet transactions into a simpler
three-address code form [18]. Pipelining (§4.2) transforms
preprocessed code into code for a Pipelined Virtual Switch
Machine (PVSM), an intermediate representation that mod-
els a switch pipeline with no computational or resource lim-
its. Code generation (§4.3) transforms this intermediate rep-
resentation into configuration for a Banzai machine, given
the machine’s computational and resource limits (§2.4), and
rejects the program if it can not run at line rate. The Domino
compiler uses many existing compilation techniques, but
adapts them in important ways for line-rate switches (§4.4).

4.1 Preprocessing

Branch removal. A packet transaction’s body can contain
(potentially nested) branches (e.g., Lines 27 to 29 in Fig-
ure 3a). Branches alter control flow and complicate depen-
dency analysis, i.e., whether a statement should precede an-
other. We transform branches into conditional assignments,
starting from the innermost if and proceeding outwards
(Figure 6). This turns the transaction body into straight-line
code with no branches, which simplifies dependency analy-
sis during pipelining (§4.2).

Rewriting state variable operations. We now identify
state variables in a packet transaction, e.g., last_time and
saved_hop in Figure 3a. For each state variable, we create a
read flank to read the variable into a temporary packet field.
For an array, we also move the index expression into the read
flank using the fact that only one array index is accessed per
packet (§3.2). Within the packet transaction, we replace the
state variable with the temporary packet field, and create a
write flank to write this temporary packet field back to the
state variable (Figure 7). After this, the only operations on
state variables are reads and writes; all arithmetic happens
on packet fields. Restricting stateful operations simplifies
handling of state during pipelining (§4.2).

Converting to static single-assignment form. We
next convert the code to static single-assignment form
(SSA) [32], where every packet field is assigned exactly
once. We do this by replacing every assignment to a packet
field with a new packet field and propagating this until the
next assignment to the same field (Figure 8) . Because
fields are assigned once, SSA removes Write-After-Read
and Write-After-Write dependencies. Only Read-After-
Write dependencies remain during pipelining (§4.2).

Flattening to three-address code. Three-address code is a
representation where all instructions are either reads/writes
into state variables or operations on packet fields of the form
pkt.f1 = pkt.f2 op pkt.f3, where op can be an arith-
metic, logical, relational, or conditional > operator. We also
allow either one of pkt.f2 or pkt.f3 to be an intrinsic func-
tion call. To convert to three-address code, we flatten ex-
pressions that are not in three-address code using temporary
packet fields, e.g., pkt. tmp2 in Figure 9.

Flattening to three-address code breaks down statements
in the packet transaction into a much simpler form that is
closer to the atoms available in the Banzai machine. For
instance, there are no nested expressions. The simpler form
of three-address code statements makes it easier to map them
one-to-one to atoms during code generation (§4.3).

4.2 Pipelining

At this point, the preprocessed code is still one sequen-
tial code block. Pipelining turns this sequential code block
into a pipeline of codelets, where each codelet is a sequen-
tial block of three-address code statements. This codelet
pipeline corresponds to an intermediate representation we
call the Pipelined Virtual Switch Machine (PVSM). PVSM
has no computational or resource limits, analogous to inter-
mediate representations for CPUs [15] that have infinite vir-
tual registers. Later, during code generation, we map these
codelets to atoms available in a Banzai machine while re-
specting its constraints.

We create PVSM'’s codelet pipeline using the steps below.

1. Create a graph with one node for each statement in the
preprocessed code.

2. Now, add stateful dependencies by adding a pair
of edges between the read and write flanks of the
same state variable, e.g., in Figure 10a, the node
pair pkt.last_time = last_time[pkt.id] and
last_time[pkt.id] = pkt.arrival. Because of
preprocessing, all stateful operations are paired up as
read and write flanks. Hence, there is no risk of a
“stranded” stateful operation.

3. Now, add stateless dependencies by adding an edge
from any node that writes a packet variable to any node
that reads the same packet variable, e.g., from pkt . tmp
= pkt.arrival - pkt.last_time to pkt.tmp2 =
pkt.tmp > THRESH in Figure 10a. We only check
read-after-write dependencies because write-after-read
and write-after-write dependencies don’t exist after
SSA, and we eliminate control dependencies [32]

3Conditional operations alone have four arguments.

through branch removal.

4. Generate strongly connected components (SCCs) of
this dependency graph and condense them into a di-
rected acyclic graph (DAG). This captures the notion
that all operations on a state variable must be confined
to one codelet/atom because state cannot be shared be-
tween atoms. Figure 10b shows the DAG produced by
condensing Figure 10a.

5. Schedule the resulting DAG by creating a new pipeline
stage when one node depends on another. This results
in the codelet pipeline shown in Figure 3b.°

4.3 Code generation

To determine if a codelet pipeline can be compiled to a
Banzai machine, we consider two constraints specified by
any Banzai machine (§2.4). Resource limits specify the
number of atoms in a stage (pipeline width) and number of
stages (pipeline depth), while computational limits specify
the atom templates provided by a Banzai machine.

Resource limits. To handle resource limits, we scan each
pipeline stage in the codelet pipeline starting from the first
to check for pipeline width violations. If we violate the
pipeline width, we insert as many new stages as required and
spread codelets evenly across these stages. We continue un-
til the number of codelets in all stages is under the pipeline
width, rejecting the program if we exceed the pipeline depth.

Computational limits. Next, we determine if each codelet
in the pipeline can be mapped to atoms provided by the
Banzai machine. In general, codelets have multiple three-
address code statements that need to execute atomically. For
instance, updating the state variable saved_hop in Figure 3b
requires a read followed by a conditional write. It is not ap-
parent whether such codelets can be mapped to an available
atom. We develop a new technique to determine the imple-
mentability of a codelet, given an atom template.

Each atom template has a set of configuration parameters,
where the parameters determine the atom’s behavior. For in-
stance, Figure 2a shows an atom that can perform stateful
addition or subtraction, depending on the configuration pa-
rameters choice and constant. Each codelet can be viewed
as a functional specification of the atom. With that in mind,
the mapping problem is equivalent to searching for values of
the atom’s configuration parameters that result in the atom
implementing the codelet.

We use the SKETCH program synthesizer [59] for this
purpose, as the atom templates can be easily expressed us-
ing SKETCH. SKETCH also provides efficient search algo-
rithms and has been used for similar purposes in other do-
mains [29, 30]. As an illustration, assume we want to map
the codelet x=x+1 to the atom template shown in Figure 2b.
SKETCH will search for possible parameter values so that
the resulting atom is functionally identical to the codelet,
for all possible input values of x up to a certain bound. In
this case, SKETCH finds the solution with choice=0 and

®We refer to this both as a codelet and an atom pipeline be-
cause codelets map one-to-one atoms (§4.3).

if (pkt.arrival - last_time[pkt.id] > THRESH) {

pkt.tmp = pkt.arrival - last_time[pkt.id] > THRESH;
saved_hop[pkt.id] pkt.tmp // Rewritten
? pkt.new_hop
saved_hop[pkt.id];

Figure 6: Branch removal

saved_hop[pkt.id] = pkt.new_hop;
}

pkt

pkt.id = hash2(pkt.sport,

pkt.dport)
% NUM_FLOWLETS; pkt
last_time[pkt.id] = pkt.arrival; pkt.
las

.id = hash2(pkt.sport, // Read flank
pkt.dport)
% NUM_FLOWLETS;
.last_time = last_time[pkt.id]; // Read flank
last_time = pkt.arrival; // Rewritten
t_time[pkt.id] = pkt.last_time; // Write flank

Figure 7: Rewriting state variable operations

pkt.id hash2 (pkt.sport,
pkt.dport)
% NUM_FLOWLETS;

last_time[pkt.id];

pkt.last_time 0

pkt.last_time
last_time[pkt

pkt.arrival;
.id] pkt.last_time;

pkt.ido hash2 (pkt.sport, // Rewritten
pkt.dport)
% NUM_FLOWLETS;

last_time[pkt.ido];

pkt.last_time@ // Rewritten

// Rewritten
// Rewritten

pkt.last_timel pkt.arrival;
last_time[pkt.ido] pkt.last_timel;

Figure 8: Converting to static single-assignment form

]| pkt.id = hash2(pkt.sport, pkt.dport) % NUM_FLOWLETS;

> || pkt.saved_hop = saved_hop[pkt.id];

3| pkt.last_time = last_time[pkt.id];

4 || pkt.new_hop = hash3(pkt.sport, pkt.dport, pkt.arrival) % NUM_HOPS;
5 || pkt. tmp = pkt.arrival - pkt.last_time;

6 || pkt.tmp2 = pkt.tmp > THRESH;

7 || pkt.next_hop = pkt.tmp2 ? pkt.new_hop pkt.saved_hop;

s || saved_hop[pkt.id] = pkt.tmp2 ? pkt.new_hop pkt.saved_hop;

9|l last_time[pkt.id] = pkt.arrival;

Figure 9: Flowlet switching in three-address code. Lines 1 and 4 are flipped relative to Figure 3a because pkt. id is an array

index expression and is moved into the read flank.

pkt.id = hash2(pkt.sport,
pkt.dport)
% NUM_FLOWLETS

(pkt.last_time = last_time[pkt.id] J

rd \\

@kt.tmp = pkt.arrival -pktlast_tima East_time[pkt.id] = pkt.arrivaD

\l
pkt.tmp2 = pkt.tmp > THRESID

pkt.new_hop = hash3(pkt.sport,
pkt.dport,

G;kt.saved_hop = saved_hop[pkt.idD

pkt.arrival)
% NUM_HOPS

! /

pkt.next_hop = pkt.tmp2 ? saved_hopl[pkt.id] = pkt.tmp2?
pkt.new_hop : pkt.new_hop :
pkt.saved_hop pkt.saved_hop
>

(a) Stateless dependencies in black, stateful in gray.

pkt.id = hash2(pkt.sport,
pkt.dport)
% NUM_FLOWLETS

pkt.last_time = last_time[pkt.id]
last_time[pkt.id] = pkt.arrival

th.tmp = pkt.arrival -pkt.last_tima

1
\l
th.tmpZ = pkt.tmp > THRESH

pkt.new_hop = hash3(pkt.sport,
pkt.dport,

pkt.arrival)
% NUM_HOPS

pkt.saved_hop = saved_hop[pkt.id]

saved_hop[pkt.id] = pkt.tmp2?
pkt.new_hop :
pkt.saved_hop

N

(pkt.next_hop = pkt.tmp2 ?

pkt.new_hop :
pkt.saved_hop,

(b) DAG after condensing SCCs.

Figure 10: Dependency graphs before and after condensing strongly connected components

Differences
No backward control flow (go-
tos, break, continue)

Technique Prior Work
Conversion to | If-

straight-line Conversion [23]
code
SSA Cytron et | SSA runs on straight-line code
al. [32] with no branches

Lam [48] Scheduling in space vs. time

Strongly Con-
nected Compo-

nents

Code gener- | Chlorophyll [53],| Optimal vs. best-effort map-
ation using | technology ping, One-to-one mapping vs.
program syn- | mapping [49], | one-to-many mapping

thesis instruction

selection [20]
Table 2: Domino’s compiler in relation to prior work

constant=1. In contrast, if the specification is the codelet
x=x*x, SKETCH will return an error as no parameters exist.

Using program synthesis for code generation frees the
compiler developer from implementing custom code gener-
ators for different Banzai machines. Instead, the compiler
developer only has to express the Banzai machine’s atom
templates using SKETCH, and the SKETCH synthesizer au-
tomatically maps codelets to atoms.

4.4 Related compiler techniques

Table 2 shows the relationship between Domino’s compi-
lation techniques and prior work. The use of Strongly Con-
nected Components (SCCs) is inspired by software pipelin-
ing for VLIW architectures [48]. The size of the largest SCC
affects the maximum throughput of the pipelined loop in
software pipelining. For Domino, it affects the circuit area
of the atom required to run a program at line rate. Domino
trades off an increase in space for line-rate performance.

Program synthesis was used for code generation in
Chlorophyll [53]. Code generation for Domino also shares
similar goals to technology mapping [49] and instruction se-
lection [20]. However, prior work maps a code sequence to
multiple instructions/tiles, using heuristics to minimize in-
struction count. Domino’s problem is simpler: we map each
codelet to a single atom using SKETCH. The simpler prob-
lem allows a non-heuristic solution: if there is any way to
map the codelet to an atom, SKETCH will find it.

Branch removal resembles If-Conversion [23], a tech-
nique used in vectorizing compilers. This procedure is eas-
ier in Domino because there is no backward control transfer
(goto, break, continue).

5. EVALUATION

We evaluate Domino’s expressiveness by using it to pro-
gram several data-plane algorithms (Table 3), and comparing
it to writing them in P4 (§5.1). To validate that these algo-
rithms can run at line rate, we design a concrete set of Banzai
machines (Table 4) as compiler targets for Domino (§5.2).
We estimate that these machines are feasible in hardware be-
cause their atoms incur modest chip area overhead. We use
the Domino compiler to compile the algorithms in Table 3 to
the targets in Table 4 (§5.3). We conclude with some lessons
for programmable switch design (§5.4).

5.1 Expressiveness

We program several data-plane algorithms (Table 3) us-
ing Domino. These algorithms encompass data-plane traf-
fic engineering, in-network congestion control, active queue
management, network security, and measurement. We also
used Domino to express the priority computation for pro-
gramming scheduling using push-in first-out queues [58].

In all these cases, the algorithms are already available
as blocks of imperative code from online sources; translat-
ing them to Domino syntax was straightforward. In con-
trast, expressing any of them in P4 requires manually teasing
out portions of the algorithm that can reside in independent
match-action tables and then chaining these tables together.

Of the algorithms in Table 3, only flowlet switching has a
publicly available P4 implementation [9] that we can com-
pare against. This implementation requires 231 lines of un-
commented P4, compared to only 37 lines of Domino code
in Figure 3a. Not only that, using P4 also requires the pro-
grammer to manually specify tables, the actions within ta-
bles, and how tables are chained—all to implement a sin-
gle data-plane algorithm. The Domino compiler automates
this process; to demonstrate this, we developed a backend
for Domino that generates the equivalent P4 code. We list
the number of lines of code for these auto-generated P4 pro-
grams in Table 3.

5.2 Compiler targets

We design a set of compiler targets for Domino based on
the Banzai machine model (§2). First, we describe how to
assess the feasibility of atoms: whether they can run at a 1
GHz clock frequency, and what area overhead they incur in
silicon. Next, we discuss the design of stateless and stateful
atoms separately. Finally, we discuss how these stateless and
stateful atoms are combined together in our compiler targets.

Atom feasibility. We synthesize a digital circuit correspond-
ing to an atom template by writing the atom template in Ver-
ilog, and using the Synopsys Design Compiler [7] to compile
the Verilog code. The Design Compiler checks if the result-
ing circuit meets timing at | GHz in a 32-nm standard-cell
library, and outputs its gate area. We use this gate area, along
with the area of a 200 mm? baseline switching chip [40], to
estimate the area overhead for provisioning a Banzai ma-
chine with multiple instances of this atom.

Designing stateless atoms. Stateless atoms are easier to
design because arbitrary stateless operations can be broken
up into multiple pipeline stages without violating atomic-
ity (§2.3). We design a stateless atom that can support sim-
ple arithmetic (add, subtract, left shift, right shift), logical
(and, or, xor), relational (>=, <=, ==, !=), and conditional in-
structions (C’s “?”” operator) on a pair of packet fields. Any
packet field can also be substituted with a constant operand.
This stateless atom meets timing at 1 GHz and occupies an
area of 1384 um? (Table 4).

Designing stateful atoms. The choice of stateful atoms de-
termines the algorithms a line-rate switch can support. A
more complex stateful atom can support more data-plane al-

Algorithm Stateful operations Most ex- | # of stages, | Ingress Domino | P4
pressive max. or LOC LOC
atom atom- Egress

s/stage Pipeline?

Bloom filter . . .

(3 hash functions) Test/Set membership bit on every packet. Write 4,3 Either 29 104

Heavy H1tter§ 163] Increment Count-Min Sketch [31] on every | RAW 10,9 Either 35 192

(3 hash functions) packet

Flowlets [57] Update saved next hop if flowlet threshold | PRAW 6,2 Ingress 37 107

is exceeded.
Accumulate RTT sum if
l;CP [162] I§TT ils under llnaxfimurlrg allowable RET N PRAW 33 Egress 23 s
ample: ample a packet if packet count reaches N | 1z .p AWl 4.2 Eith 18 70

NetFlow [17] Reset count to 0 when it reaches N. i ’ et

HULL [22] Update counter for virtual queue. Sub 7,1 Egress 26 95

Adaptive . . .

Virtual Queue [47] Up@ate virtual queue size and virtual ca- | Nested 7,3 Ingress 36 147

pacity

Priority computa-

tion for weighted| Compute packet’s virtual start time using | Nested 4,2 Ingress 29 87

fair queueing [58] | finish time of last packet in that flow.

giiinT{; 6]change Track number of changes in announced | Nested 6,3 Ingress 27 119

£ TTL for each domain

Update best path’s utilization/id if we see a
better path. .

CONGA [21] Update best path utilization alone if it Pairs 4.2 Ingress 32 89
changes.
Update:
Whether we are marking or not.
Time for next mark. ,

CoDel [51] Number of marks so far. El(;esn t 15,3 Egress 57 271
Time at which min. queueing delay will P
exceed target.

Table 3: Data-plane algorithms

gorithms, but may not meet timing and occupies more area.
To illustrate this effect, we design a containment hierarchy
(Table 4) of stateful atoms, where each atom can express
all stateful operations that its predecessor can. These atoms
start out with the simplest stateful capability: the ability to
read or write state alone. They then move on to the abil-
ity to read, add, and write back state atomically (RAW), a
predicated version of the same (PRAW), and so on. When
synthesized to a 32-nm standard-cell library, all our stateful
atoms meet timing at 1 GHz. However, the atom’s area and
minimum end-to-end propagation delay increases with the
atom’s complexity (Table 4).

The compiler targets. We design seven Banzai machines as
compiler targets. A single Banzai machine has 600 atoms.
1. 300 are stateless atoms of the single stateless atom type
from Table 4.
2. 300 are stateful atoms of one of the seven stateful atom
types from Table 4 (Read/Write through Pairs).
These 300 stateless and stateful atoms are laid out physically
as 10 stateless and stateful atoms per pipeline stage and 30
pipeline stages. While the number 300 and the pipeline lay-
out are arbitrary, they are sufficient for all examples in Ta-

ble 3, and incur modest area overhead as we show next.

We estimate the area overhead of these seven targets rela-
tive to a 200 mm? chip [40], which is at the lower end of chip
sizes today. For this, we multiply the individual atom areas
from Table 4 by 300 for both the stateless and stateful atoms.
For 300 atoms, the area overhead is 0.2 % for the stateless
atom and 0.9 % for the Pairs atom, the largest among our
stateful atoms. The area overhead combining both stateless
and stateful atoms for all our targets is at most 1.1%—a mod-
est price for the programmability it provides.

5.3 Compiling Domino programs to Ban-
zai machines

We now consider every target from Table 47, and every
data-plane algorithm from Table 3 to determine if the algo-
rithm can run at line rate on a particular Banzai machine.

We say an algorithm can run at line rate on a Banzai ma-
chine if every codelet within the data-plane algorithm can be
mapped (§4.3) to either the stateful or stateless atoms pro-
vided by the Banzai machine. Because our stateful atoms

"Because every target is uniquely identified by its stateful
atom type, we use the two interchangeably.

Atom Description Area Min.
(m?) | de-
at 1 | lay
GHz (ps)

Stateless Arithmetic, logic, relational, 1384 387

and conditional operations
on packet/constant operands

Read/Write Read/Write packet field/- | 250 176

constant into single state

variable.
ReadAddWrite Add packet field/constant to | 431 316
(RAW) state variable (OR) Write

packet field/constant into

state variable.

Predicated ReadAd- | Execute RAW on state vari- | 791 393

dWrite (PRAW) able only if a predicate is

true, else leave unchanged.

IfElse ReadAd- | Two separate RAWs: one | 985 392

dWrite each for when a predicate is

(IfElseRAW) true or false.

Subtract (Sub) Same as IfElIseRAW, but | 1522 409

also allow subtracting a
packet field/constant.

Nested Ifs (Nested) Same as Sub, but with an ad- 3597 580

ditional level of nesting that

provides 4-way predication.
Paired updates | Same as Nested, but allow 5997 606
(Pairs) updates to a pair of state

variables, where predicates

can use both state variables.

Table 4: Atom areas and minimum critical-path delays in
a 32-nm standard-cell library. All atoms meet timing at 1
GHz. Each of the seven compiler targets contains 300 in-
stances of one of the seven stateful atoms (Read/Write to
Pairs) and 300 instances of the single stateless atom.

are arranged in a containment hierarchy, we list the most ex-
pressive stateful atom/target required for each data-plane al-
gorithm in Table 3.

As Table 3 shows, the choice of stateful atom determines
what algorithms can run on a switch. For instance, with only
the ability to read or write state, only the Bloom Filter algo-
rithm can run at line rate, because it only requires the ability
to test and set membership bits. Adding the ability to in-
crement state (the RAW atom) permits Heavy Hitters to run
at line rate, because it employs a count-min sketch that is
incremented on each packet.

5.4 Lessons for programmable switches

Atoms with a single state variable support many algo-
rithms. The algorithms from Bloom Filter through DNS
TTL Change Tracking in Table 3 can run at line rate using
the Nested Ifs atom that modifies a single state variable.

But, some algorithms modify a pair of state variables
atomically. An example is CONGA, whose code is given
below:

if (p.util < best_path_util[p.src]) {
best_path_util[p.src] = p.util;
best_path[p.src] = p.path_id;

} else if (p.path_id == best_path[p.src]) {
best_path_util[p.src] = p.util;

3

Here, best_path (the path id of the best path for a particu-
lar destination) is updated conditioned on best_path_util
(the utilization of the best path to that destination)® and vice
versa. These two state variables cannot be separated into
different stages and still guarantee a packet transaction’s se-
mantics. The Pairs atom, where the update to a state variable
is conditioned on a predicate of a pair of state variables, al-
lows CONGA to run at line rate.

There will always be algorithms that cannot sustain line
rate. While the targets and their atoms in Table 4 are suffi-
cient for several data-plane algorithms, there are algorithms
that they can’t run at line rate. An example is CoDel, which
cannot be implemented because it requires a square root op-
eration that isn’t provided by any of our targets. One possi-
bility is a look-up table abstraction that allows us to approx-
imate such mathematical functions. However, regardless of
what set of atoms we design for a particular target, there will
always be algorithms that cannot run at line rate.

Atom design is constrained by timing, not area. Atoms
are affected by two factors: their area and their timing, i.e.,
the minimum delay on the critical path of the atom’s com-
binational circuit. For the few hundred atoms that we re-
quire, atom area is insignificant (< 2%) relative to chip area.
Further, even for future atoms that are larger, area may be
controlled by provisioning fewer atom instances.

However, atom timing is critical. Table 4 shows a 3.4x
range in minimum critical-path delay between the simplest
and the most complex atoms. This increase can be explained
by looking at the simplified circuit diagrams for the first
three atoms (Table 5), which show an increase in circuit
depth with atom complexity.

Because the clock frequency of a circuit is at least as small
as the reciprocal of this minimum critical-path delay, a more
complex atom results in a lower clock frequency and a lower
line rate. Although all our atoms have a minimum critical-
path delay under 1 ns (1 GHz), it is easy to extend them with
functionality that violates timing at 1 GHz.

In summary, for a switch designer, the minimum delay on
the critical path of atoms is the most important metric to op-
timize. The most programmable line-rate switches will have
the highest density of useful stateful functionality squeezed
into a critical path budget of 1 clock cycle.

Compilers can be used to design instruction sets. De-
signing an instruction set for a programmable substrate is
a chicken-and-egg problem: the choice of instructions de-
termines which algorithms can execute on that target, while
the choice of algorithms dictates what instructions are re-
quired in the target. Indeed, other programmable substrates
(GPUs, CPUs, DSPs) go through an iterative process to de-
sign a good instruction set.

A compiler can aid this process. To show how, we de-
scribe how we designed the stateful atoms in Table 4. We
pick a data-plane algorithm, partially execute the Domino

8p.src is the address of the host originating this message,
and hence the destination for the host receiving it and exe-
cuting CONGA.

Atom Circuit i
de-
lay
(ps)

Read/Write 176

M

ReadAddWrite pkt.fl——t Mux ‘e
(RAW)

Const——

pkt.f1—>

pRL2—y RELOP

Adder
Const——
3-to-1 X

Predicated pkt.f1—> Mok -

ReadAddWrite | Pktf2——> 103

(PRAW)

Table 5: An atom’s minimum critical-path delay increases
with circuit depth. Mux is a multiplexer. RELOP is a rela-
tional operation (>, <, ==, !=). x is a state variable. pkt.f1
and pkt. f2 are packet fields. Const is a constant operand.

compiler to generate a codelet pipeline, inspect the stateful
codelets, and create an atom that expresses all the compu-
tations required by the stateful codelets. We check that an
atom can express all these computations by fully executing
the compiler on the data-plane algorithm with that atom as
the target. We then move on to the next algorithm, extending
our atom through a process of trial-and-error to capture more
computations, and using the compiler to verify our intuitions
on extending atoms. In the process, we generate a hierarchy
of atoms, each of which works for a subset of algorithms.

Our atom design process is manual and ad hoc at this
point, but it already shows how a compiler can aid in
instruction-set design for programmable switches. Using the
same iterative approach involving a compiler, we anticipate
the atoms in Banzai machines evolving as data-plane algo-
rithms demand more of the hardware.

6. RELATED WORK

Abstract machines for line-rate switches. NetASM [55] is
an abstract machine and intermediate representation (IR) for
programmable data planes that is portable across network
devices: FPGAs, virtual switches, and line-rate switches.
Banzai is a low-level machine model for line-rate switches
alone and can be used as a NetASM target. Because of its
role as a low-level machine model, Banzai models practical
constraints required for line-rate operation (§2.4) that an IR
like NetASM doesn’t have to. For instance, Banzai machines

don’t permit sharing state between atoms and use atom tem-
plates to limit computations that can happen at line rate.

Programmable data planes. Eden [25] provides a pro-
grammable data plane using commodity switches by pro-
gramming end hosts alone. Domino targets programmable
switches that provide more flexibility relative to an end-
host-only solution. For instance, Domino allows us to pro-
gram in-network congestion control and AQM schemes,
which are beyond Eden’s capabilities. Tiny Packet Programs
(TPP) [42] allow end hosts to embed small programs in
packet headers, which are then executed by the switch. TPPs
use a restricted instruction set to facilitate switch execution;
we show that switch instructions must and can be substan-
tially richer (Table 4) for stateful data-plane algorithms.

Software routers [35, 46] and network processors [14] are
flexible, but at least 10x—100x slower than programmable
switches [19, 3]. FPGA-based platforms like the Corsa
DP 6440 [1], which supports an aggregate capacity of
640 Gbit/s, are faster, but still 5x-10x slower than pro-
grammable switches [3, 19].

Programming languages for networks. Many program-
ming languages target the network control plane [39, 62].
Domino focuses on the data plane, which requires different
programming constructs and compilation techniques.

Several DSLs target the data plane. Click [46] uses C++
for packet processing on software routers. packetC [36],
Intel’s auto-partitioning C compiler [33], and Microengine
C [12] target network processors. Domino’s C-like syntax
and sequential semantics are inspired by these DSLs. How-
ever, because it targets line-rate switches, Domino is more
constrained. For instance, because compiled programs run
at line rate, Domino forbids loops, and because Banzai has
no shared state, Domino has no synchronization constructs.

Jose et al. [43] focus on compiling P4 programs to pro-
grammable data planes such as the RMT and FlexPipe ar-
chitectures. Their work focuses only on compiling state-
less data-plane tasks such as forwarding and routing, while
Domino handles stateful data-plane algorithms.

Abstractions for stateful packet processing. SNAP [24]
programs stateful data-plane algorithms using a network
transaction: an atomic block of code that treats the entire net-
work as one switch [44]. It then uses a compiler to translate
network transactions into rules on each switch. SNAP needs
a compiler to compile these switch-local rules to a switch’s
pipeline, and can use Domino for this purpose.

FAST [50] provides switch support and software abstrac-
tions for state machines. Banzai’s atoms support more gen-
eral stateful processing beyond state machines that enable a
much wider class of data-plane algorithms.

7. DISCUSSION

Packet transactions provide a pathway to take algorithms
that were hitherto meant only for software routers and run
them on emerging programmable line-rate switching chips.
However, more work must be done before packet transac-
tions are ready for production use.

1. Packet transactions provide the first transactional se-
mantics for line-rate packet processing. These seman-
tics make it easier to reason about correctness and
performance, but they exclude algorithms that cannot
run at line rate while respecting these semantics. Are
weaker semantics sensible? One possibility is approx-
imating transactional semantics by only processing a
sampled packet stream. This provides an increased
time budget for each packet in the sampled stream, po-
tentially allowing the packet to be recirculated through
the pipeline multiple times for packet processing.

2. Our compiler doesn’t aggressively optimize. For in-
stance, it is possible to fuse two stateful codelets in-
crementing two independent counters into the same in-
stance of the Pairs atom. However, by carrying out a
one-to-one mapping from codelets to the atoms imple-
menting them, our compiler precludes these optimiza-
tions. Developing an optimizing compiler for packet
transactions is an area for future work.

3. Supporting multiple packet transactions in Domino
also requires further work. When a switch exe-
cutes multiple transactions, there may be opportunities
for inter-procedural analysis [20], which goes beyond
compiling individual transactions and looks at multiple
transactions together. For instance, the compiler could
detect computations common to multiple transactions
and execute them only once.

4. Finally, we have a manual design process for atoms.
Formalizing this design process and automating it into
an atom-design tool would be useful for switch de-
signers. For instance, given a corpus of data-plane al-
gorithms, can we automatically mine this corpus for
stateful and stateless codelets, and design an atom
(or atoms) that captures the computations required by
some (or all) of them?

8. CONCLUSION

This paper presented Domino, a C-like imperative lan-
guage that allows programmers to write packet-processing
code using packet transactions, which are sequential code
blocks that are atomic and isolated from other such code
blocks. The Domino compiler compiles packet transac-
tions to hardware configurations for Banzai, which is a ma-
chine model based on programmable line-rate switch archi-
tectures [13, 19, 3]. Our results suggest that it is possible to
have both the convenience of a familiar programming model
and the performance of a line-rate switch, provided that the
algorithm can indeed run at line rate. Packet-processing lan-
guages are still in their infancy; we hope these results will
prompt further work on programming abstractions for high-
performance packet-processing hardware.

Acknowledgements

We thank our shepherd, Bruce Maggs, the anonymous SIG-
COMM reviewers, Amy Ousterhout, and Pratiksha Thaker
for their suggestions that improved the presentation of the
paper. This work was partly supported by NSF grants CNS-
1563826 and CNS-1563788. We thank the industrial part-

ners of the MIT Center for Wireless Networks and Mobile
Computing (Wireless @MIT) for their support.

9. REFERENCES

[1] 100G Data Planes, DP 6440, DP 6430 | Corsa Technology.
http://www.corsa.com/products/dp6440/.

[2] Arista - Arista 7050 Series.
https://www.arista.com/en/products/7050-series.

[3] Barefoot: The World’s Fastest and Most Programmable
Networks.
https://barefootnetworks.com/media/white_papers/Barefoot-
Worlds-Fastest-Most- Programmable- Networks. pdf.

[4] Cisco Nexus Family. http://www.cisco.com/c/en/us/
products/switches/cisco_nexus_family.html.

[5] Components of Linux Traffic Control. http://tldp.org/
HOWTO/Traffic-Control-HOWTO/components.html.

[6] Dell ForcelO. http://www.forcelOnetworks.com/.

[7] Design Compiler - Synopsys.
http://www.synopsys.com/Tools/Implementation/
RTLSynthesis/DesignCompiler/Pages/default.aspx.

[8] DPDK: Data Plane Development Kit. http://dpdk.org/.

[9] Flowlet Switching in P4. https://github.com/p4lang/tutorials/
tree/master/SIGCOMM_2015/flowlet_switching.

[10] High Capacity StrataXGS®Trident II Ethernet Switch
Series. http://www.broadcom.com/products/Switching/Data-
Center/BCM56850-Series.

[11] High-Density 25/100 Gigabit Ethernet StrataXGS Tomahawk
Ethernet Switch Series. http://www.broadcom.com/products/
Switching/Data-Center/BCM56960-Series.

[12] Intel Enhances Network Processor Family with New
Software Tools and Expanded Performance.
http://www.intel.com/pressroom/archive/releases/2001/
20010220net.htm.

[13] Intel FlexPipe. http://www.intel.com/content/dam/www/
public/us/en/documents/product-briefs/ethernet-switch-
fm6000- series-brief.pdf.

[14] IXP4XX Product Line of Network Processors.
http://www.intel.com/content/www/us/en/intelligent-
systems/previous-generation/intel-ixp4xx-intel-network-
processor-product-line.html.

[15] LLVM Language Reference Manual - LLVM 3.8
documentation. http://llvm.org/docs/LangRef . html#abstract.

[16] Mellanox Products: SwitchX-2 Ethernet Optimized for SDN.
http://www.mellanox.com/page/
products_dyn?product_family=146&mtag=switchx_2_en.

[17] Sampled NetFlow. http://www.cisco.com/c/en/us/td/docs/
i0s/12_0s/feature/guide/12s_sanf.html.

[18] Three-address code.
https://en.wikipedia.org/wiki/Three-address_code.

[19] XPliant™ Ethernet Switch Product Family.
http://www.cavium.com/XPliant- Ethernet- Switch-Product-
Family.html.

[20] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[21] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav,
and G. Varghese. CONGA: Distributed Congestion-Aware
Load Balancing for Datacenters. In SIGCOMM, 2014.

[22] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,
and M. Yasuda. Less Is More: Trading a Little Bandwidth for
Ultra-Low Latency in the Data Center. In NSDI, 2012.

[23] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren.
Conversion of Control Dependence to Data Dependence. In
POPL, 1983.

http://www.corsa.com/products/dp6440/
https://www.arista.com/en/products/7050-series
https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-Most-Programmable-Networks.pdf
https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-Most-Programmable-Networks.pdf
http://www.cisco.com/c/en/us/products/switches/cisco_nexus_family.html
http://www.cisco.com/c/en/us/products/switches/cisco_nexus_family.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html
http://www.force10networks.com/
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx
http://dpdk.org/
https://github.com/p4lang/tutorials/tree/master/SIGCOMM_2015/flowlet_switching
https://github.com/p4lang/tutorials/tree/master/SIGCOMM_2015/flowlet_switching
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56960-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56960-Series
http://www.intel.com/pressroom/archive/releases/2001/20010220net.htm
http://www.intel.com/pressroom/archive/releases/2001/20010220net.htm
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://llvm.org/docs/LangRef.html#abstract
http://www.mellanox.com/page/products_dyn?product_family=146&mtag=switchx_2_en
http://www.mellanox.com/page/products_dyn?product_family=146&mtag=switchx_2_en
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
https://en.wikipedia.org/wiki/Three-address_code
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html

[24] M. T. Arashloo, Y. Karol, M. Greenberg, J. Rexford, and
D. Walker. SNAP: Stateful Network-Wide Abstractions for
Packet Processing. arXiv:1512.00822.

[25] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor,

T. Karagiannis, L. Koromilas, and G. O’Shea. Enabling
End-Host Network Functions. In SIGCOMM, 2015.

[26] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi.
EXPOSURE: Finding Malicious Domains Using Passive
DNS Analysis. In NDSS, 2011.

[27] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,

J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,

G. Varghese, and D. Walker. P4: Programming
Protocol-Independent Packet Processors. SIGCOMM CCR,
July 2014.

[28] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding
Metamorphosis: Fast Programmable Match-action
Processing in Hardware for SDN. In SIGCOMM, 2013.

[29] A. Cheung, A. Solar-Lezama, and S. Madden. Using
Program Synthesis for Social Recommendations. In CIKM,
2012.

[30] A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing
Database-backed Applications with Query Synthesis. In
PLDI, 2013.

[31] G. Cormode and S. Muthukrishnan. An Improved Data
Stream Summary: The Count-Min Sketch and Its
Applications. Journal of Algorithms, April 2005.

[32] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph. ACM
Transactions on Programming Language Systems, 1991.

[33] J. Dai, B. Huang, L. Li, and L. Harrison. Automatically
Partitioning Packet Processing Applications for Pipelined
Architectures. In PLDI, 2005.

[34] M. Dobrescu, K. Argyraki, and S. Ratnasamy. Toward
Predictable Performance in Software Packet-Processing
Platforms. In NSDI, 2012.

[35] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,

G. lannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software
Routers. In SOSP, 2009.

[36] R. Duncan and P. Jungck. packetC Language for High
Performance Packet Processing. In 11th IEEE International
Conference on High Performance Computing and
Communications, 2009.

[37] C. Estan, G. Varghese, and M. Fisk. Bitmap Algorithms for
Counting Active Flows on High-speed Links. IEEE/ACM
Trans. Netw., Oct. 2006.

[38] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. [IEEE/ACM Trans.
Netw., Aug. 1993.

[39] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,

J. Rexford, A. Story, and D. Walker. Frenetic: A Network
Programming Language. In /CFP, 2011.

[40] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown.
Design Principles for Packet Parsers. In ANCS, 2013.

[41] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network. In SIGCOMM,
2009.

[42] V.Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and
D. Mazieres. Millions of Little Minions: Using Packets for
Low Latency Network Programming and Visibility. In

SIGCOMM, 2014.

[43] L. Jose, L. Yan, G. Varghese, and N. McKeown. Compiling
Packet Programs to Reconfigurable Switches. In NSDI, 2015.

[44] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the
"One Big Switch" Abstraction in Software-defined
Networks. In CoNEXT, 2013.

[45] D. Katabi, M. Handley, and C. Rohrs. Congestion Control
for High Bandwidth-Delay Product Networks. In
SIGCOMM, 2002.

[46] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. FE.
Kaashoek. The Click Modular Router. ACM Trans. Comput.
Syst., 2000.

[47] S.S. Kunniyur and R. Srikant. An Adaptive Virtual Queue
(AVQ) Algorithm for Active Queue Management.
IEEE/ACM Trans. Netw., Apr. 2004.

[48] M. Lam. Software Pipelining: An Effective Scheduling
Technique for VLIW Machines. In PLDI, 1988.

[49] G. D. Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill Higher Education, 1st edition, 1994.

[50] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and
R. Govindan. Flow-level State Transition As a New Switch
Primitive for SDN. In SIGCOMM, 2014.

[51] K. Nichols and V. Jacobson. Controlling Queue Delay. ACM
Queue, 10(5), May 2012.

[52] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy,
L. Rizzo, and S. Shenker. E2: A Framework for NFV
Applications. In SOSP, 2015.

[53] P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla,

S. Chasins, and R. Bodik. Chlorophyll: Synthesis-aided
Compiler for Low-power Spatial Architectures. In PLDI,
pages 396-407, 2014.

[54] A.Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.
Inside the Social Network’s (Datacenter) Network. In
SIGCOMM, 2015.

[55] M. Shahbaz and N. Feamster. The Case for an Intermediate
Representation for Programmable Data Planes. In SOSR,
pages 3:1-3:6, 2015.

[56] A. Singh,J. Ong, A. Agarwal, G. Anderson, A. Armistead,
R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano,
A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. Holzle, S. Stuart, and A. Vahdat. Jupiter Rising: A
Decade of Clos Topologies and Centralized Control in
Google’s Datacenter Network. In SIGCOMM, 2015.

[57] S. Sinha, S. Kandula, and D. Katabi. Harnessing TCPs
Burstiness using Flowlet Switching. In HotNets, 2004.

[58] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T.
Chuang, A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti,
and N. McKeown. Programmable Packet Scheduling at Line
Rate. In SIGCOMM, 2016.

[59] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat. Combinatorial Sketching for Finite Programs.
In ASPLOS, 2006.

[60] C. Tai, J. Zhu, and N. Dukkipati. Making Large Scale
Deployment of RCP Practical for Real Networks. In
INFOCOM, 2008.

[61] D. L. Tennenhouse and D. J. Wetherall. Towards an Active
Network Architecture. In DARPA Active Networks
Conference and Exposition, 2002.

[62] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak.
Maple: Simplifying SDN Programming Using Algorithmic
Policies. In SIGCOMM, 2013.

[63] M. Yu, L. Jose, and R. Miao. Software Defined Traffic
Measurement with OpenSketch. In NSDI, 2013.

	Introduction
	A Machine Model for Line-rate Switches
	Background: Programmable switches
	The Banzai machine model
	Atoms: Banzai's processing units
	Constraints for line-rate operation
	What can Banzai not do?

	Packet transactions
	Domino by example
	The Domino language
	Triggering packet transactions
	Handling multiple transactions

	The Domino compiler
	Preprocessing
	Pipelining
	Code generation
	Related compiler techniques

	Evaluation
	Expressiveness
	Compiler targets
	Compiling Domino programs to Banzai machines
	Lessons for programmable switches

	Related work
	Discussion
	Conclusion
	References

