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Abstract

Data-center network stacks are moving into hardware to
achieve 100 Gbps data rates and beyond at low latency and
low CPU utilization. However, hardwiring the network stack
in the NIC would stifle innovation in transport protocols. In
this paper, we enable programmable transport protocols in
high-speed NICs by designing Tonic, a flexible hardware ar-
chitecture for transport logic. At 100 Gbps, transport pro-
tocols must generate a data segment every few nanoseconds
using only a few kilobits of per-flow state on the NIC. By
identifying common patterns across transport logic of dif-
ferent transport protocols, we design an efficient hardware
“template” for transport logic that satisfies these constraints
while being programmable with a simple API. Experiments
with our FPGA-based prototype show that Tonic can support
the transport logic of a wide range of protocols and meet tim-
ing for 100 Gbps of back-to-back 128-byte packets. That is,
every 10 ns, our prototype generates the address of a data
segment for one of more than a thousand active flows for a
downstream DMA pipeline to fetch and transmit a packet.

1 Introduction

Transport protocols, along with the rest of the network
stack, traditionally run in software. Despite efforts to im-
prove their performance and efficiency [|116,23//30]], software
network stacks tend to consume 30-40% of CPU cycles to
keep up with applications in today’s data centers [23}[30,[36].

As data centers move to 100 Gbps Ethernet, the CPU
utilization of software network stacks becomes increasingly
prohibitive. As a result, multiple vendors have developed
hardware network stacks that run entirely on the network in-
terface card (NIC) [[8,10]. However, there are only two main
transport protocols implemented on these NICs, both hard-
wired and modifiable only by the vendors:

RoCE. RoCE is used for Remote Direct Memory Access
(RDMA) [8]], using DCQCN [41]] for congestion control and
a simple go-back-N method for reliable data delivery.

TCP. A few vendors offload a TCP variant of their choice

to the NIC to either be used directly through the socket API
(TCP Offload Engine [[10]]) or to enable RDMA (iWARP [/7]).

These protocols, however, only use a small fixed set
out of the myriad of possible algorithms for reliable deliv-
ery [15}/19,122}25}311[32] and congestion control [[11}[16}/17}
33,/40,41[] proposed over the past few decades. For instance,
recent work suggests that low-latency data-center networks
can significantly benefit from receiver-driven transport pro-
tocols [[19,22//34], which is not an option in today’s hardware
stacks. In an attempt to deploy RoCE NICs in Microsoft data
centers, operators needed to modify the data delivery algo-
rithm to avoid livelocks in their network but had to rely on
the NIC vendor to make that change [20]. Other algorithms
have been proposed to improve RoCE’s simple reliable deliv-
ery algorithm [29]/32]]. The long list of optimizations in TCP
from years of deployment in various networks is a testament
to the need for programmability in transport protocols.

In this paper, we investigate how to make hardware trans-
port protocols programmable. Even if NIC vendors open
up interfaces for programming their hardware, it takes a sig-
nificant amount of expertise, time, and effort to implement
transport protocols in high-speed hardware. To keep up with
100 Gbps, the transport protocol should generate and trans-
mit a packet every few nanoseconds. It should handle more
than a thousand active flows, typical in today’s data-center
servers [[141/35//36]. To make matters worse, NICs are ex-
tremely constrained in terms of the amount of their on-chip
memory and computing resources [284[32]].

We argue that transport protocols on high-speed NICs can
be made programmable without exposing users to the full
complexity of programming for high-speed hardware. Our
argument is grounded in two main observations:

First, programmable transport logic is the key to en-
abling flexible hardware transport protocols. An imple-
mentation of a transport protocol performs several function-
ality such as connection management, data buffer manage-
ment, and data transfer. However, its central responsibility,
where most of the innovation happens, is to decide which
data segments to transfer (data delivery) and when (conges-



tion control), which we collectively call the transport logic.
Thus, the key to programmable transport protocols on high-
speed NICs is enabling users to modify the transport logic.

Second, we can exploit common patterns in transport
logic to create reusable high-speed hardware modules.
Despite their differences in application-level API (e.g., sock-
ets and byte-stream abstractions for TCP vs. the message-
based Verbs API for RDMA), and in connection and data
buffer management, transport protocols share several com-
mon patterns. For instance, different transport protocols use
different algorithms to detect lost packets. However, once a
packet is declared lost, reliable transport protocols prioritize
its retransmission over sending a new data segment. As an-
other example, in congestion control, given the parameters
determined by the control loop (e.g., congestion window and
rate), there are only a few common ways to calculate how
many bytes a flow can transmit at any time. This enables us
to design an efficient “template” for transport logic in hard-
ware that can be programmed with a simple APIL.

Using these insights, we design and develop Tonic, a pro-
grammable hardware architecture that can realize the trans-
port logic of a broad range of transport protocols, using a
simple API, while supporting 100 Gbps data-rates. Every
clock cycle, Tonic generates the address of the next segment
for transmission. The data segment is fetched from memory
by a downstream DMA pipeline and turned into a full packet
by the rest of the hardware network stack (Figure |I).

We envision that Tonic would reside on the NIC, re-
placing the hard-coded transport logic in hardware imple-
mentations of transport protocols (e.g., future RDMA NICs
and TCP offload engines). Tonic provides a unified pro-
grammable architecture for transport logic, independent of
how specific implementations of different transport proto-
cols perform connection and data buffer management, and
their application-level APIs. We will, however, describe how
Tonic interfaces with the rest of the transport layer in general
(§2) and how it can be integrated into Linux Kernel to inter-
act with applications using socket API as an example (§3)).

We implement a Tonic prototype in ~8K lines of Ver-
ilog code and demonstrate Tonic’s programmability by im-
plementing the transport logic of a variety of transport pro-
tocols [[12,/15,211122,[32,/41]] in less than 200 lines of code.
We also show, using an FPGA, that Tonic meets timing for
~100 Mpps, i.e., supporting 100Gbps of back-to-back 128B
packets. That is, every 10ns, Tonic can generate the transport
metadata required for a downstream DMA pipeline to fetch
and send one packet. From generation to transmission, the
latency of a single segment address through Tonic is ~ 0.1us,
and Tonic can support up to 2048 concurrent flows.

2 Tonic as the Transport Logic

This section is an overview of how Tonic fits into the trans-
port layer (§2.1)), and how it overcomes the challenges of im-
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Figure 1: Tonic providing programmable transport logic in a
hardware network stack on the NIC (sender-side).
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plementing transport logic on high-speed NICs (§2.2]).

2.1 How Tonic Fits in the Transport Layer

Sitting between applications and the rest of the stack,
transport-layer protocols perform two main functions:
Connection Management includes creating and configuring
endpoints (e.g., sockets for TCP and queue-pairs for RDMA)
and establishing the connection in the beginning, and closing
the connection and releasing its resources at the end.

Data Transfer involves delivering data from one endpoint
to another, reliably and efficiently, in a stream of segments
Different transport protocols provide different APIs for ap-
plications to request data transfer: TCP offers the abstraction
of a byte-stream to which applications can continuously ap-
pend data, while in RDMA, each “send” call to a queue-pair
creates a separate work request and is treated as a separate
message. Moreover, specifics of managing applications’ data
buffers differ across different implementations of transport
protocols. Regardless, the transport protocol must deliver
the outstanding data to its destination in multiple data seg-
ments that fit into individual packets. Deciding which bytes
comprise the next segment and when it is transmitted is done
by data delivery and congestion control algorithms, which
we collectively call transport logic and implement in Tonic.

Figure|[I|shows a high-level overview of how Tonic fits in a
hardware network stack. To decouple Tonic from specifics of
connection management and application-level APIs, connec-
tion setup and tear-down run outside of Tonic. Tonic relies
on the rest of the transport layer to provide it with a unique
identifier (flow id) for each established connection, and to
explicitly add and remove connections using these IDs.

For data transfer on the sender side, Tonic keeps track of
the number of outstanding bytes and transport-specific meta-
data to implement the transport logic, i.e., generate the ad-
dress of the next data segment for each flow at the time desig-
nated by the congestion control algorithm. Thus, Tonic does
not need to store and/or handle actual data bytes; it relies
on the rest of the transport layer to manage data buffers on
the host, DMA the segment whose address is generated in
Tonic from memory, and notify it of new requests for data
transmission on existing connections (see §§]f0r details).

The receiver-side of transport logic mainly involves gen-

'We focus on reliable transport as it is more commonly used and more
complicated to implement.



erating control signals such as acknowledgments, per-packet
grant tokens [19,[22}34]], or periodic congestion notification
packets (CNPs) [41]], while the rest of the transport layer
manages receive data buffers and delivers the received data
to applications. While handling received data can get quite
complicated, generating control signals on the receiver is
typically simpler than the sender. Thus, although we mainly
focus on the sender, we reuse modules from the sender to
implement a receiver solely for generating per-packet cumu-
lative and selective acks and grant tokens at line rate.

2.2 Hardware Design Challenges

Implementing transport logic at line rate in the NIC is
challenging due to two main constraints:

Timing constraints. Data centers have a median packet
size of less than 200 bytes [14,[35]. To achieve 100 Gbps
for these small packets, the NIC has to send a packet every
~10 ns. Thus, the transport logic should determine the next
segment for transmission every ~10 ns. To perform complex
operations under this timing constraint, we could conceiv-
ably pipeline the processing of transport events (e.g., seg-
ment generation, acknowledgments, timeouts) across mul-
tiple stages. However, processing back-to-back events for
the same flow requires updates to the same state, making it
difficult to pipeline event processing while providing state
consistency. Thus, we strive to process concurrent transport
events within 10 ns instead, so that we can quickly consoli-
date the state for the next event.

Memory constraints. A typical data-center server has
more than a thousand concurrent active flows with kilobytes
of in-flight data [14}35/[36]]. Since NICs have just a few
megabytes of high-speed memory [28,32], the transport pro-
tocol can store only a few kilobits of state per flow on NIC.

Tonic’s goal is to satisfy these tight timing and memory
constraints while supporting programmability with a simple
API. To do so, we identify common patterns across trans-
port logic in various protocols that we implement as reusable
fixed-function modules. These patterns allow us to optimize
these modules for timing and memory, while simplifying the
programming API by reducing the functionality users must
specify. These patterns are summarized in Table[I] and are
discussed in detail in next section, where we describe Tonic’s
components and how these patterns affect their design.

3 Tonic Architecture

Transport logic at the sender is what determines, for each
flow, which data segments to transfer (data delivery) and
when (congestion control). Conceptually, congestion con-
trol algorithms perform credit management, i.e., determine
how many bytes a given flow can transmit at a time. Data
delivery algorithms perform segment selection, i.e., decide
which contiguous sequence of bytes a particular flow should
transmit. Although the terms ‘“data delivery” and “con-

Observation Examples
Only track a limited window of segments | TCP, NDP, IRN
Only keep a few bits of state per segment | TCP, NDP, IRN, RoCEv2
Lost segments first, new segments next TCP, NDP, IRN, RoCEv2
Loss detection: Acks and timeouts TCP, NDP, IRN
The three Cf)mmon credit calculation TCP, RoCEv2, NDP
patterns: window, rate, and grant tokens
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Table 1: Common transport logic patterns.

gestion control” are commonly associated with TCP-based
transport protocols, Tonic provides a general programmable
architecture for transport logic that can be used for other
kinds of transport protocols as well, such as receiver-driven
[[19L122}]34] and RDMA-based [8] transport protocols.

Tonic exploits the natural functional separation between
data delivery and credit management to partition them into
two components with separate state (Figure[2). The data de-
livery engine processes events related to generating, track-
ing, and delivery of segments, while the credit engine pro-
cesses events related to adjusting each flow’s credit and send-
ing out segments addresses for those with sufficient credit.

At the cost of lightweight coordination between the two
engines, this partitioning helps Tonic meet its timing con-
straints while concurrently processing multiple events (e.g.,
receipt of acknowledgments and segment transmission) ev-
ery cycle. These events must read the current state of their
corresponding flow, update it, and write it back to memory
for events in the next cycle. However, concurrent read and
write to memory in every cycle is costly. Instead of using a
wide memory to serve all the transport events, the partition-
ing allows the data delivery and credit engines to have nar-
rower memories to serve only the events that matter for their
specific functionality, hence meeting timing constraints.

First, presents how the two engines coordinate to
fairly and efficiently pick one of thousand flows every cy-
cle for segment transmission while keeping the outgoing link
utilized. Next, §3.2]and §3.3|describe fixed-function and pro-
grammable event processing modules in each engine, and
how their design is inspired by patterns in TabldI] using
TCP-based, receiver-driven, and RDMA-based protocols as
examples. We present Tonic’s solution for resolving conflicts
when more than one event for the same flow is received in a

cycle in and its programming interface in
3.1 Efficient Flow Scheduling

At any time, a flow can only transmit a data segment if
it (1) has enough credit, and (2) has a new or lost segment
to send. To be work conserving, Tonic must track the set
of flows that are eligible for transmission (meet both of the
above criteria) and only pick among those when selecting a
flow for transmission each cycle. This is challenging to do
efficiently. We have more than a thousand flows with their
state partitioned across two engines: Only the credit engine
knows how much credit a flow has, and only the data de-
livery engine knows the status of a flow’s segments and can
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Figure 2: Tonic’s architecture (red boxes (also with thick borders) are programmable, others are fixed)

generate the address of its next segment. We cannot check
the state of all the flows every cycle across both engines to
find the ones eligible for transmission in that cycle.

Instead, we decouple the generation of segment addresses
from their final transmission to the DMA pipeline. We al-
low the data delivery engine to generate up to N segment ad-
dresses for a flow without necessarily having enough credit
to send them out. In the credit engine, we keep a ring buffer
of size N for each flow to store these outstanding segments
addresses. When the flow has enough credit to send a seg-
ment, the credit engine dequeues and outputs a segment ad-
dress from the buffer and signals the data delivery engine to
decrement the number of outstanding segments for that flow.

This solves the problem of the partitioned state across the
two engines. The data delivery engine does not need to keep
track of the credit changes of flows for segment address gen-
eration. It only needs to be notified when a segment address
is dequeued from the buffer. Moreover, the credit engine
does not need to know the exact status of all flow’s segments.
If the flow’s ring buffer is empty, that flow does not have
segments to send. Otherwise, there are already segment ad-
dresses that can be output when the flow has enough credit.

Still, the data delivery engine cannot simply check the
state of all the flows every cycle to determine those that can
generate segments. Instead, we dynamically maintain the set
of active flows in the data delivery engine, i.e., the flows that
have at least one segment to generate and less than N out-
standing segments (see red numbered circles in Figure [2).
When a flow is created, it is added to the active set. Every
cycle, one flow is selected and removed from the set for seg-
ment generation (Step 1). Once processed (Step 2), only if it
has more segments to send and less than N outstanding seg-
ments, is it inserted back into the set (Step 3). Otherwise, it
will be inserted in the set if, later on, the receipt of an ack or
a signal from the credit engine “activates” the flow (Step 9).
Moreover, the generated segment address is forwarded to the
credit engine (Step 4) for insertion in the ring buffer (Step 5).

Similarly, the credit engine maintains the set of ready-to-
transmit flows, i.e., the flows with one segment address or
more in their ring buffers and enough credit to send at least

one segment out. Every cycle, a flow is selected from the set
(Step 6), one segment address from its ring buffer is trans-
mitted (Step 7), its credit is decreased, and it is inserted back
into the set if it has more segment addresses and credit for
further transmission (Step 8). It also signals the data deliv-
ery engine about the transmission (Step 9) to decrement the
number of outstanding segments for that flow.

To be fair when picking flows from the active (or ready-to-
transmit) set, Tonic uses a FIFO to implement round-robin
scheduling among flows in the set (see active list in [37]).
The choice of round-robin scheduling is not fundamental;
any other scheduler that meets our timing constraints can re-
place the FIFO to support other scheduling disciplines [38]].

3.2 Flexible Segment Selection

With B bytes of credit, a flow can send S = max(B,MSS)
bytes, where MSS is the maximum segment size. In transport
protocols, data-delivery algorithms use acknowledgments to
keep track of the status of each byte of data (e.g., delivered,
lost, in-flight, and not transmitted), and use that to decide
which contiguous $ bytes of data to transmit next.

However, there are two main challenges in implementing
data-delivery algorithms in high-speed NICs. First, due to
memory constraints, the NIC cannot store per-byte informa-
tion. Second, with a few exceptions [8l32], these algorithms
are designed for software, where they could store and freely
loop through large arrays of metadata to aggregate informa-
tion. This computational flexibility has created significant
diversity across these algorithms. Unfortunately, NIC hard-
ware is much more constrained than software. Thus, we did
not aim to support all data-delivery algorithms. Instead, we
looked for patterns that are common across a variety of algo-
rithms while being amenable to hardware implementation.

3.2.1 Pre-Calculated Fixed Segment Boundaries

Data-delivery algorithms could conceivably choose the
next S bytes to send from anywhere in the data stream and
produce segments with variable boundaries. However, since
the NIC cannot maintain per-byte state, Tonic requires data
to be partitioned into fixed-size segments (by a Kernel mod-



ule or the driver, see when the flow requests transmission
of new data. This way, data-delivery algorithms can use per-
segment information to select the next segment.

With message-based transport protocols (e.g., RoCEv2),
having fixed segment boundaries fits naturally; the message
length is known from the beginning and can be optimally
partitioned into segments. For transport protocols that pro-
vide a byte-stream abstraction (e.g., TCP and NDP), hav-
ing fixed segment boundaries does not affect high-bandwidth
flows as their data can be partitioned into MSS-sized seg-
ments. For flows that generate small data segments and spo-
radically, there is a possibility of creating many small seg-
ments, and they do not benefit much from Tonic (see {5).
Regardless, due to memory constraints, segmentation is done
outside of Tonic and does not affect high-bandwidth flows.

3.2.2 Small Per-Segment State for a Limited Window

Independent of a flow’s available credit, data-delivery al-
gorithms typically do not transmit a new segment if it is too
far, i.e., more then C segments apart, from the first unac-
knowledged segment, to limit the state that the sender and
receiver need to keep El Still, in a 100 Gbps network with a
10us RTT, C can get as large as ~128 segments. Fortunately,
we observe that storing the following per-segment state is
enough for most data-delivery algorithms: (1) Is the segment
acknowledged (in presence of selective acknowledgments)?
(2) If not, is it lost or still in flight? (3) If lost, is it already
retransmitted (to avoid redundant retransmission)?

More specifically, we observe that in the absence of ex-
plicit negative acknowledgments, data-delivery algorithms
accumulate evidence of loss for each segment from posi-
tive acknowledgments, e.g., duplicate cumulative (e.g., TCP
NewReno [21]]) or selective acknowledgments (e.g., IRN for
RDMA and TCP SACK [[15]). Once the accumulated evi-
dence for a segment passes a threshold, the algorithm can
declare it lost with high confidence. Typically, an evidence
of loss for segment i is also an evidence of loss for every
unacknowledged segment j with j < i. As a result, most of
these algorithms can be rewritten to only keep track of the to-
tal evidence of loss for the first unacknowledged segment and
incrementally compute the evidence for the rest as needed.

Based on these observations (#1 and #2 in Table [T), we
use a fixed set of bitmaps in Tonic’s data delivery engine
to track the status of a flow’s segments and implement op-
timized fixed-function bitmap operations for updating them
on various transport events.

3.2.3 Concurrent Event Processing

For every flow, four main events can affect the generation
of its next segment address. First, the receipt of an acknowl-
edgment can either move the window forward and enable the

2In TCP-based protocols, C is the minimum of receive window and con-
gestion window size. However, the limit imposed by C exists when transport
protocols use other ways (e.g., rate) to limit a flow’s transmission pace [8§].

flow to generate more segments, or signal segment loss and
trigger retransmissions. Second, the absence of acknowledg-
ments, i.e., a timeout, can also lead to more segments marked
as lost and trigger retransmissions. Third, generation of a
segment address increments the number of a flow’s outstand-
ing segments and can deactivate the flow if it goes above N.
Fourth, segment address transmission (out of the credit en-
gine) decrements the number of outstanding segments and
can enable the flow to generate more segment addresses.

Tonic’s data delivery engine has four modules to handle
these four events (Figure[2). Every cycle, each module reads
the state of the flow for which it received an event from the
memory in the data delivery engine, processes the event, and
updates the flow state accordingly. The flow state in the data
delivery engine consists of a fixed set of variables to track the
status of the current window of segments across events, as
well as the user-defined variables used in the programmable
components (Table[Z). As an example of the fixed state vari-
ables, Tonic keeps a fixed set of bitmaps for each flow (ob-
servations in §3.2.2): The acked bitmap keeps track of selec-
tively acknowledged segments, marked-for-rtx keeps track
of lost segments that require retransmission, and rtx-cnt
stores information about their previous retransmissions.

The following paragraphs briefly describe how each event-
processing module affects a flow’s state, and whether there
are common patterns that we can exploit to implement all
or parts of its functionality in a fixed-function manner. For
programmable modules, the detailed API is covered in

Incoming. This module processes acknowledgments (and
other incoming packets, see §3.3.3). Some updates to state
variables in response to acknowledgments are similar across
all data-delivery algorithms and do not need to be pro-
grammable (e.g., updating window boundaries, and mark-
ing selectively acked segments in acked bitmap, see §3.2.2),
whereas loss detection and recovery, which rely on acknowl-
edgments as a signal, vary a lot across different algorithms
and must be programmable by users (#4 in Table [I). Thus,
the Incoming module is designed as a two-stage pipeline: a
fixed-function stage for the common updates followed by a
programmable stage for loss detection and recovery.

The benefit of this two-stage design is that the common
updates mostly involve bitmaps and arrays (§3.2.2)), which
are implemented as ring buffers in hardware and costly to
modify across their elements. For instance, in all data de-
livery algorithms, if an incoming packet acknowledges seg-
ment C cumulatively and segment S selectively, wnd-start is
updated to max (wnd-start, C) and acked[S] to one, and the
boundaries of all bitmaps and arrays are updated based on the
new wnd-start. By moving these updates into a fixed func-
tion stage, we can (i) optimize them to meet Tonic’s timing
and memory constraints, and (ii) provide the programmers
with a dedicated stage, i.e., a separate cycle, to do loss de-
tection and recovery, where they can use the updated state
variables from the previous stage, the rest of the variables



State Variable | Description

acked selectively acknowledged segments (bitmap)
marked-for-rtx lost segments marked for retransmission (bitmap)
rtx-cnt number of retransmissions of a segment (bitmap)
wnd-start the address of the first segment in the window
wnd-size size of the window (min(W, rcved_window))
highest-sent the highest segment transmitted so far

total-sent Total number of segments transmitted so far

is-idle does the flow have segments to send?
outstanding-cnt | # of outstanding segments

rtx-timer when will the rtx timer expire?

user-context user-defined variables for programmable modules

Table 2: Per-flow state variables in the data delivery engine

from memory to infer segment loss (and perform other user-
defined computation as we discuss in §3.3.3).

Periodic Updates. The data delivery engine iterates over
the active flows, sending them one at a time to this mod-
ule to check for retransmission timer expiration and perform
other user-defined periodic updates (§3.3.3). Thus, with its
10 ns clock cycle, Tonic can cover each flow within a few
microseconds of the expiry of its retransmission timer. This
module must be programmable as a retransmission timeout
is a signal for detecting loss (#4 in Table[I). Similar to the
programmable stage of the Incoming module, the program-
mers can use per-flow state variables to infer segment loss.

Segment Generation. Given an active flow and its vari-
ables, this module generates the next segment’s address and
forwards it to the credit engine. Tonic can implement seg-
ment address generation as a fixed function module based on
the following observation (#3 in Table[I): Although different
reliable data delivery algorithms have different ways of infer-
ring segment loss, once a lost segment is detected, it is only
logical to retransmit it before sending anything new. Thus,
the procedure for selecting the next segment is the same irre-
spective of the data-delivery algorithm, and is implemented
as a fixed-function module in Tonic. Thus, this module pri-
oritizes retransmission of lost segments in marked-for-rtx
over sending the next new segment, i.e., highest_sent+1 and
also increments the number of outstanding segments.

Segment Transmitted. This module is fixed function and
is triggered when a segment address is transmitted out of the
credit engine. It decrements the number of outstanding seg-
ments of the corresponding flow. If the flow was deactivated
due to a full ring buffer, it is inserted into the active set again.

3.3 Flexible Credit Management

Transport protocols use congestion-control algorithms to
avoid overloading the network by controlling the pace of a
flow’s transmission. These algorithms consist of a control
loop that estimates the network capacity by monitoring the
stream of incoming control packets (e.g., acknowledgments
and congestion notification packets (CNPs)) and sets param-
eters that limit outgoing data packets. While the control loop
is different in many algorithms, the credit calculation based
on parameters is not. Tonic has efficient fixed-function mod-

ules for credit calculation (§3.3.1 and §3.3.2)) and relegates
parameter adjustment to programmable modules (§3.3.3).

3.3.1 Common Credit-Calculation Patterns

Congestion control algorithms have a broad range of ways
to estimate network capacity. However, they enforce limits
on data transmission in three main ways (#5 in Table [I)):
Congestion window. The control loop limits a flow to at
most W bytes in flight from the first unacknowledged byte.
Thus, if byte i is the first unacknowledged byte, the flow
cannot send bytes beyond i+ W. Keeping track of in-flight
segments to enforce a congestion window can get compli-
cated, e.g., in the presence of selective acknowledgments,
and is implemented in the fixed-function stage of the incom-
ing module in the data delivery engine.

Rate. The control loop limits the flow’s average rate (R) and
maximum burst size (D). Thus, if a flow had credit ¢ at
the time f( of the last transmission, then the credit at time ¢
will be min(R* (t —ty) + co, D). As we show in §4] imple-
menting precise per-flow rate limiters under our strict timing
and memory constraints is challenging and has an optimized
fixed-function implementation in Tonic.

Grant tokens. Instead of estimating network capacity, the
control loop receives tokens from the receiver and adds them
to the flow’s credit. Thus, the credit of a flow is the total
tokens received minus the number of transmitted bytes, and
the credit calculation logic consists of a simple addition.

Given that these are used by most congestion control al-
gorithms, we optimize the implementation of each to meet
Tonic’s timing and memory constraints. Congestion window
calculations are mostly affected by acknowledgments, Thus,
calculation and enforcement of congestion window happens
in the data delivery engine. For the other two credit calcu-
lation schemes, Tonic relies on the credit engine to process
credit-related event, and Tonic users can simply pick which
credit-calculation algorithm to use in the credit engine.

3.3.2 Event Processing for Credit Calculation

Conceptually, three main events can trigger credit calcu-
lation for a flow, and the credit engine has different modules
to concurrently process them every cycle (Figure [2). First,
when a segment address is received from the data delivery
engine and is the only one in the flow’s ring buffer, the flow
could now qualify for transmission or remain idle based on
its credit (the Enqueue module). Second, when a flow trans-
mits a segment address, its credit must be decreased and we
should determine whether it is qualified for further transmis-
sion based on its updated credit and the occupancy of its ring
buffer (the Transmit module). Third are events that can add
credit to the flow (e.g., from grant tokens and leaky bucket
rate limiters), which is where the main difference lies be-
tween rate-based and token-based credit calculation.

When using grant tokens, the credit engine needs two ded-
icated modules to add credit to a flow: one to process incom-



ing grant tokens from the receiver, and one to add credit for
retransmissions on timeouts. When using rate, the credit en-
gine does not need any extra modules for adding credit since
a flow with rate R bytes-per-cycle implicitly gains R bytes of
credit every cycle and, therefore, we can compute in advance
when it will be qualified for transmission.

Suppose in cycle Ty, the Transmit module transmits a seg-
ment from flow f, and is determining whether the flow is
qualified for further transmission. Suppose that f has more
segments in the ring buffer but lacks C bytes of credit. The
Transmit module can compute when it will have sufficient
credit as T = % and set up a timer for 7' cycles. When
the timer expires, f definitely has enough credit for at least
one segment, so it can be directly inserted into ready-to-tx.
When f reaches the head of ready-to-tx and is processed
by the Transmit module again in cycle 7, the Transmit mod-
ule can increase f’s credit by (7} — Tp) * R — S, where S is
the size of the segment that is transmitted at time 7} El Note
that when using rate, the credit engine must perform division
and maintain per-flow timers. We will discuss the hardware
implementation of these operations in

3.3.3 Flexible Parameter Adjustment

Congestion control algorithms often have a control loop
that continuously monitors the network and adjusts credit
calculation parameters, i.e., rate or window size, based on
estimated network capacity. Parameter adjustment is either
triggered by incoming packets (e.g., acknowledgments and
their signals such as ECN or delay in TCP variants and
Timely, and congestion notification packets (CNPs) in DC-
QCN) or periodic timers and counters (timeouts in TCP vari-
ants and byte counter and various timers in DCQCN), and in
some cases is inspired by segment losses as well (window
adjustment after duplicate acknowledgments in TCP).

Corresponding to these triggers, for specifying parameter
adjustment logic, Tonic’s users can use the programmable
stage of the “Incoming” module, which sees all incoming
packets, and the “Periodic Updates” module for timers and
counters. Both modules are in the data delivery engine and
have access to segment status information, in case segment
status (e.g., drops) is needed for parameter adjustment. The
updated parameters are forwarded to the credit engine.

As we show in we have implemented several con-
gestion control algorithms in Tonic and their parameter ad-
justment calculations have finished within our 10 ns clock
cycle. Those with integer arithmetic operations did not need
any modifications. For those with floating point operations,
such as DCQCN, we approximated the operations to a cer-
tain decimal point using integer operations. If an algorithm
requires high-precision and complicated floating point oper-
ations for parameter adjustment that cannot be implemented
within one clock cycle [[17], the computation can be rele-

3Similarly, the Enqueue module can set up the timer when it receives the
first segment of the queue and the flow lacks credit for its transmission.

gated to a floating-point arithmetic module outside of Tonic.
This module can perform the computation asynchronously
and store the output in a separate memory, which merges
into Tonic through the “Periodic Updates” module.

3.4 Handling Conflicting Events

Tonic strives to process events concurrently in order to be
responsive to events. Thus, if a flow receives more than one
event in the same cycle, it allows the event processing mod-
ules to process the events and update the flow’s state vari-
ables, and reconciles the state before writing it back into
memory (the Merge modules in Figure [2)).

Since acknowledgments and retransmission timeouts are,
by definition, mutually exclusive, Tonic discards the time-
out if it is received in the same cycle as an acknowledg-
ment for the same flow. This significantly simplifies the
merge logic because several variables (window size and re-
transmission timer period) are only modified by these two
events and, therefore, will never be concurrently updated.
We can resolve concurrent updates for the remaining vari-
ables with simple, predefined merge logic. For example,
Segment Generation increments the number of outstanding
segments, whereas Segment Transmitted decrements it; if
both events affect the same flow at the same time, the num-
ber does not change. User-defined variables are updated in
either the Incoming or the Periodic Updates module, and we
rely on the user to specify which updated variables should be
prioritized if both updates happen in the same cycle.

3.5 Tonic’s Programming Interface

To implement a new transport logic in Tonic, program-
mers only need to specify (i) which of the three credit man-
agement schemes to use, (ii) the loss detection and recovery
logic in response to acknowledgments and timeouts, and (iii)
congestion-control parameter adjustment in response to in-
coming packets or periodic timers and counters. The first one
is used to pick the right modules for the credit engine, and the
last two are inserted into the corresponding programmable
stages of the data delivery engine (Figure [2).

To specify the logic for the programmable stage of the
Incoming module, programmers need to write a function
that receives the incoming packet (acknowledgment or other
control signals), the number of newly acknowledged seg-
ments, the acked bitmap updated with the information in the
acknowledgment, the old and new value of wnd-start (in
case the window moves forward due to a new cumulative
acknowledgment), and the rest of the flow’s state variables
(Table 2) as input. In the output, they can mark a range
of segments for retransmission in marked-for-rtx, update
congestion-control parameters such as window size and rate,
and reset the retransmission timer. The programming inter-
face of the Periodic Updates module is similar.

In specifying these functions, programmers can use inte-



ger arithmetic operations, e.g., addition, subtraction, multi-
plication, and division with small-width operands, condition-
als, and a limited set of read-only bitmap operations, e.g., in-
dex lookup, and finding the first set bit in the updated acked
bitmap (see appendix [D]for an example program). Note that,
as we described in a dedicated fixed-function stage in
the data delivery engine performs the costly common bitmap
updates on receipt of acknowledgments. We evaluate Tonic’s
programming interface in where we show that a wide
range of transport protocols can be implemented using this
interface and give examples of ones that cannot.

4 Hardware Implementation

In this section, we describe the hardware design of the
Tonic components that were the most challenging to imple-
ment under Tonic’s tight timing and memory constraints.

High-Precision Per-Flow Rate Limiting. A flow with rate
R bytes per cycle and C bytes to send will have sufficient
credit for transmission in 7' = [%] cycles. Tonic needs to do
this computation in the credit engine but must represent R as
an integer since it cannot afford to do floating-point division.
This creates a trade-off between the rate-limiting precision
and the range of rates Tonic can support. If R is in bytes per
cycle, we cannot support rates below one byte per cycle or
~1 Gbps. If we represent R in bytes per thousand cycles,
we can support rates as low as 1 Mbps. However, T = [%W
determines how many thousand cycles from now the flow
qualifies for transmission which results in lower rate con-
formance and precision for higher-bandwidth flows. To sup-
port a wide range of rates without sacrificing precision, Tonic
keeps multiple representations of the flow’s rate at different
levels of precision and picks the most precise representation
for computing 7" at any moment (details in Appendix [B).

Efficient Bitmap Operations. Tonic uses bitmaps as large
as 128 bits to track the status of segments for each flow.
Bitmaps are implemented as ring buffers. The head pointer
corresponds to the first unacked segment and moves forward
around the buffer with new acks. To efficiently implement
operations whose output depends on the values of all the bits
in the bitmap, we must divide the buffer into smaller parts in
multiple layers, process them in parallel, and join the results.
One such operation, frequently used in Tonic, is finding the
first set bit after the head. The moving head of the ring buffer
complicates the implementation of this operation since keep-
ing track of the head in each layer requires extra processing,
making it difficult to compute within our 10 ns target. In-
stead, Tonic uses a light-weight pre-processing on the input
ring buffer to avoid head index computation in the layers al-
together (details in Appendix [C).

Concurrent Memory Access. The memory in data delivery
engine is concurrently accessed by five modules (including
both stages of the Incoming module) every cycle (§3.2.3).
However, FPGAs only have dual-ported block RAMs, with

each port capable of either read or write every cycle. Build-
ing memories with more concurrent reads and writes requires
keeping multiple copies of data in separate memory “banks”
and keeping track of the bank with the most recent data
for each addresﬂ [24]. To avoid supporting five concurrent
reads and writes, we manage to partition per-flow state vari-
ables into two groups, each processed by at most four events.
Thus, Tonic can use two memories with four read and write
ports instead of a single one with five, to provide concurrent
access for all processing modules at the same time.

5 Integrating Tonic into the Transport Layer

This section describes how to integrate Tonic into the
Linux Kernel for applications using the Socket API. Tonic’s
transport logic is intentionally decoupled from the specific
implementation of other transport functionality such as con-
nection management, application-level API, and buffer man-
agement. While Section [2] provides a high-level overview of
Tonic’s relationship with the rest of the transport layer, this
section provides an illustrative and detailed example of how
Tonic can interface with the rest of the transport layer to learn
about new connections, requests for data transmission on ex-
isting connections, and connection termination. As another
example, we discuss how Tonic can be used in RDMA-based
transport layers in Appendix

After creating and configuring the socket, the application
uses multiple system calls for connection management and
data transfer. Note that as discussed in §2] Tonic mainly fo-
cuses on the sender sider of the transport logic. Thus, only
the system calls and modifications relevant to the sender side
of the transport layer are discussed in this section.
Connection Management. The system calls include
connect () on the client to initiate a connection, listen()
and accept () on the server to listen for and accept new con-
nections, and close () to terminate a connection. Since con-
nection management happens outside of Tonic, the Kernel
implementation of these system calls stays untouched. How-
ever, once the connection is established, the Kernel maps it to
a unique flow id in [0,N), where N is the maximum number
of flows supported by Tonic. The Kernel then notifies Tonic
through the NIC driver about the new connection. Specifi-
cally, from the Transmission Control Block (TCB) allocated
for the connection in the Kernel, the IP addresses and ports
of the communication endpoints and the maximum segment
size (MSS) should be sent to Tonic alongside the flow id.
Note that for flows using Tonic for data transfer, the Ker-
nel only needs to track those fields in the TCB that are for
connection management (e.g., IP addresses, ports, and TCP
FSM), pointers to data buffers, and receiver-related fields.
Fields used for data transfer for the sender, i.e., snd.nxt,
snd.una, and snd.wnd, are stored in and handled by Tonic.

4This overhead is specific to FPGAs, and can potentially be eliminated
if the memory is designed as an ASIC.



Finally, after a call to close(), the Kernel notifies Tonic of
connection termination using the connection’s flow id.

Data Transfer. At a high level, send() adds more data to
the connection’s socket buffer, which stores the connection’s
outstanding data waiting for delivery. As discussed in
Tonic keeps a few bits of per-segment state for outstanding
data and performs all transport logic computation in terms of
segments. Therefore, data needs to be partitioned into equal-
sized segments before Tonic can start its transmission. As
a result, the modifications to the implementation of send ()
mainly involve determining segment boundaries for the data
in the socket buffer and deciding when to notify Tonic of the
existence of new data segments.

More specifically, the Kernel keeps an extra pointer for
each connection’s socket buffer, in addition to its head and
tail, called tonic-tail. It points to the end of the last data
segment of which Tonic has been notified and is used in the
segmentation process described below. head and updates to
tonic-tail are sent to Tonic to use when generating the ad-
dress of the next segment to fetch from memory.

Starting with an empty socket buffer, when the applica-
tion calls send(), data is copied to the socket buffer, and
tail is updated accordingly. The data is then partitioned
into MSS-sized segments. Suppose the data is partitioned
into S segments and B < MSS remaining bytes. The Kernel
then updates tonic-tail to point to the end of the last MSS-
sized segment, i.e., head + MSS * 8, and notifies Tonic of
the update to tonic-tail. The extra B bytes remain un-
known to Tonic for a configurable time 7', in case the ap-
plication calls send to provide more data. In that case, the
data are added to the socket buffer, data between tonic-tail
and tail are similarly partitioned, tonic-tail is updated ac-
cordingly, and Tonic is notified of new data segments.

If there is not enough data for a MSS-sized segment af-
ter T, the Kernel needs to notify Tonic of the “small” seg-
ment and its size, and update tonic-tail accordingly. Note
that Tonic requires all segments, except for the last one in a
burst, to be of equal size, as all computations, including win-
dow updates, are in terms of segments. Thus, after creating a
“small” segment, if there is more data from the application,
Tonic can only start its transmission when it is done trans-
ferring its current segments. Tonic notifies the Kernel once
it successfully delivers the final “small” segment, at which
point, head and tonic-tail will be equal, and the Kernel
continues partitioning the remaining data in the socket buffer
and updating Tonic as before. Note that Tonic can periodi-
cally forward acknowledgements to the kernel to move head
forward and free up space for new data in the socket buffer.
Other Considerations. As we show in §6| Tonic’s current
design supports 2048 concurrent flows, which matches the
working sets observed in data centers [[14/[35] and other hard-
ware offloads in the literature [[18]. If a host has more open
connections than Tonic can support, the Kernel can offload
data transfer for high-bandwidth flows to Tonic on a first-

come first-serve basis, or have users set a flag when creat-
ing the socket and fall back to software once Tonic runs out
of resources for new flows. Alternatively, modern FPGA-
based NICs have a large DRAM directly attached to the
FPGA [18]. The DRAM can potentially be used to store
the state of more connections, and swap them back and forth
into Tonic’s memory as they activate and need to transmit
data. Moreover, to provide visibility into the performance of
hardware transport logic, Tonic can provide an interface for
Kernel to periodically pull transport statistics from the NIC.
Takeaways. Linux Kernel can be modified so applications
can use Tonic through the socket API. That said, Tonic is
most beneficial for high-bandwidth flows that generate MSS-
sized segments. Flows that sporadically generate small seg-
ments do not benefit as much, as small segments cannot be
consolidated within Tonic. We emphasize that the above de-
sign serves as an example of how Tonic can be integrated into
a commonly-used transport layer. However, TCP, sockets,
and bytestreams are not always suitable for high-bandwidth,
low-latency flows. In fact, several such data-center applica-
tions are starting to use RDMA and its message-based API
instead [5}(9,|20L/33]]. Tonic can be integrated into RDMA-
based transport as well, which we discuss in Appendix [A]

6 Evaluation

To evaluate Tonic, we implement a prototype in Verilog
(~8K lines of code) and a cycle-accurate hardware simulator
in C++ (~2K lines of code). The simulator is integrated with
NS3 network simulator [4]] for end-to-end experiments.

To implement a transport protocol on Tonic’s Verilog pro-
totype, programmers only need to provide three Verilog files:
(i) incoming.v, describing the loss detection and recovery
logic and how to change credit management parameters (i.e.,
rate or window) in response to incoming packets; this code
is inserted into the second stage of the Incoming pipeline in
the data delivery engine, (ii) periodic_updates.v, describ-
ing the loss detection and recovery logic in response to time-
outs and how to change credit management parameters (i.e.,
rate or window) in response to periodic timers and counters;
this code is inserted into the Periodic Updates module in the
data delivery engine, and (iii) user_configs.vh, specifying
which of the three credit calculation schemes to use and the
initial values of user-defined state variables and other param-
eters, such as initial window size, rate, and credit.

We evaluate the following two aspects of Tonic:
Hardware Design (§6.1). We use Tonic’s prototype to eval-
uate its hardware architecture for programmability and scal-
ability. Can Tonic support a wide range of transport proto-
cols? Does it reduce the development effort of implementing
transport protocols in the NIC? Can Tonic support complex
user-defined logic with several variables? How many per-
flow segments and concurrent flows can it support?
End-to-End Behavior (§6.2)). We use Tonic’s cycle-accurate



simulator and NS3 to compare Tonic’s end-to-end behavior
with that of hard-coded implementations of two protocols:
New Reno [21] and RoCEv2 with DCQCN [41]], both for a
single flow and multiple flows sharing a bottleneck link.

6.1 Hardware Design

There are two main metrics for evaluating the efficiency of
a hardware design: (i) Resource Utilization. FPGAs consist
of primitive blocks, which can be configured and connected
differently to implement a Verilog program: look-up tables
(LUTs) are the main reconfigurable logic blocks, block RAMs
(BRAMs) are used to implement memory. and (ii) Timing.
At the beginning of each cycle, each module’s input is writ-
ten to a set of input registers. The module must process the
input and prepare the result for the output registers before
the next cycle begins. Tonic must meet timing at 100 MHz to
transmit a segment address every 10 ns. That is, to achieve
100 Gbps, the processing delay of every path from input to
output registers in every module must stay within 10 ns.

We use these two metrics to evaluate Tonic’s programma-
bility and scalability. These metrics are highly dependent on
the specific target used for synthesis. We use the Kintex Ul-
trascale+ XCKU15P FPGA as our target because this FPGA,
and others with similar capabilities, are included as bump-
in-the-wire entities in today’s commercial programmable
NICs [2,[3]. This is a conservative choice, as these NICs
are designed for 10-40 Gbps Ethernet. A 100 Gbps NIC
could potentially have a more powerful FPGA. Moreover,
we synthesize all of Tonic’s components onto the FPGA
to evaluate it as a standalone prototype. However, given
the well-defined interfaces between the fixed-function and
programmable modules, it is conceivable to implement the
fixed-function components as an ASIC for more efficiency.
Unless stated otherwise, we set the maximum number of
concurrent flows to 1024 and the maximum window size to
128 segments in all of our experiments El

6.1.1 Hardware Programmability

We have implemented the sender’s transport logic of six
protocols in Tonic as representatives of various types of
segment selection and credit calculation algorithms in the
literature. Table 3] summarizes the resource utilization of
these Tonic-based implementations for both fixed-function
and user-defined modules, as well as the lines of code and
bytes of user-defined state it took to implement them.

Reno [[12] and New Reno [21]] represent TCP variants that
use only cumulative acknowledgments for reliable delivery
and congestion window for credit management. Reno can
only recover from one loss within the window using fast re-
transmit, whereas New Reno uses partial acknowledgments
to recover more efficiently from multiple losses in the same

5A 100 Gbps flow with 1500B back-to-back packets over 15-us RTT,
typical in data centers, has at most 128 in-flight segments.
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User-De‘ﬁned Credit Look up Tables (IjUTs) BRAMs
Logic Type User-Defined| Fixed
LoC state(B) total(K) % | total(K) % | total %
Reno 48 8| wnd (24 0.5/109.4 209|195 20
NewReno| 74 13| wnd |2.6 0.5(112.5 21.5|1211 21
SACK 193 19| wnd |3.3 0.6|112.1 21.4|219 22
NDP 20 1| token [3.0 0.6/143.6 29.0|300 30
gOC(E)ECVI:I/ 63 30| rate |0.9 0.21185.2 35.2|1251 26
IRN 54 14| rate (2.9 0.6|177.4 339|219 22

Table 3: Resource utilization of transport protocols in Tonic.

window. SACK, inspired from RFC 6675 [15], represents
TCP variants that use selective acknowledgments. Our im-
plementation has one SACK block per acknowledgment but
can be extended to more.

NDP [22] represents receiver-driven protocols, recently
proposed for low-latency data-center networks [[1934]]. NDP
senders use explicit NACKs and timeouts for loss detection
and rely on grant tokens for congestion control. RoCEv2
with DCQCN [41] is a widely-used transport for RDMA
over Ethernet, and IRN [32] is a recent hardware-based pro-
tocol that improves the simple reliable delivery algorithm on
RoCE NICs. Both use rate limiters for credit management.

Note that, as described in not all data-delivery al-
gorithms are feasible for hardware implementation as is. For
instance, due to memory constraints on the NIC, it is not pos-
sible to keep timestamps for every packet, new and retrans-
missions, on the NIC. As a result, transport protocols which
rely heavily on per-packet timestamps, e.g., QUIC [25[], need
to be modified to work with fewer timestamps, i.e., for a sub-
set of in-flight segments, to be offloaded to hardware.

Takeways. There are three key takeaways from these results:

e Tonic supports a variety of transport protocols.

e Tonic enables programmers to implement new transport
logic with modest development effort. Using Tonic, each
of the above protocols is implemented in less than 200
lines of Verilog code, with the user-defined logic con-
suming less than 0.6% of the FPGA’s LUTs. In contrast,
Tonic’s fixed-function modules, which are reused across
these protocols, are implemented in ~8K lines of code and
consume ~sixty times more LUTs.

e Different credit management schemes have different over-
heads. For transport protocols that use congestion win-
dow for credit management, window calculations overlap
with and therefore are implemented in the data delivery
engine As a result, their credit engine utilizes
fewer resources (both reconfigurable logic and memory)
than others. Rate limiting requires more per-flow state and
more complicated operations () than enforcing receiver-
generated grant tokens but needs fewer memory ports for
concurrent reads and writes (§3.3.2), overall leading to
lower BRAM and higher LUT utilization for rate limiting.
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Figure 3: NewReno’s Tonic vs hard-coded implementation in NS3 (10G line-rate): a) Congestion window updates (single flow,
random drops), b) Transmitted sequence numbers with retransmission in large dots (single flow, random drops), and ¢) CDF of
average throughput of multiple flows sharing a bottleneck link over 5 seconds (200 flows from 2 hosts to one receiver)

6.1.2 Hardware Scalability

To evaluate Tonic’s scalability, we examine how sources

of variability in its architecture affect memory utilization and
timing (Results summarized Table [).
User-defined logic in programmable modules can have
arbitrarily-long chains of dependent operations, potentially
causing timing violations. We generate 70 random programs
for incoming.v (the programmable stage of Incoming mod-
ule in data delivery engine) with different numbers of arith-
metic, logical, and bitmap operations, and analyze how long
the chain of dependent operations gets without violating tim-
ing at 10ns. These programs use up to 125B of state and
have a maximum dependency of 65 logic levels (respectively
six and two times more than the benchmark protocols in Ta-
ble B). Each logic level represents one of several primitive
logic blocks (LUT, MUX, DSP, etc.) chained together to im-
plement a path in a Verilog program.

We plug these programs into Tonic, synthesize them, and
analyze the relationship between the number of logic levels
and latency of the max-delay path in comparison to bench-
mark programs. As summarized in Table [ our benchmark
protocols have 13 to 29 logic levels on their max-delay path
and all meet timing. Synthetic programs with up to 32 logic
levels consistently meet timing, while those with more than
43 logic levels do not. Between 32 and 42 logic levels, the
latency of the max-delay path is around 10 ns. Depending
on the mix of primitives on the max-delay path and their la-
tencies, programs in that region can potentially meet timing.
Thus, Tonic not only supports our benchmark protocols, but
also has room to support future more sophisticated protocols.
User-defined state variables increase the memory width af-
fecting BRAM utilization. We add extra variables to SACK,
IRN, and NDP to see how wide memories can get without
violating timing and running out of BRAMs on the FPGA,
repeating the experiment for each of the three credit man-
agement schemes as they have different memory footprints.
As shown in Table[d] programmers can use 448 bytes of user-
defined state if they use congestion window, 340 bytes if they
use rate, and 256 bytes if they use grant tokens (Benchmark
programs in Table [3use less than 30 bytes).
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Metric | Results
. . (0,31] meets timing

Szg?ll)ee);il;};giogic }Z\%;s (31,42] depends on operations

(42,65] violates timing

256 grant token
User-Defined State | bytes 340 rate

448 congestion window
Window Size segments | 256
Concurrent Flows | count 2048

Table 4: Summary of Tonic’s scalability results.

Maximum window size determines the size of per-flow
bitmaps stored in the data delivery engine to keep track of
the status of a flow’s segments, therefore affecting memory
utilization, and the complexity of bitmap operations, hence
timing. Tonic can support bitmaps as large as 256 bits (i.e.,
tracking 256 segments), with which we can support a single
100Gbps flow in a network with up to 30us RTT.

Maximum number of concurrent flows determines
memory depth and the size of FIFOs used for flow schedul-
ing (§3.1). Thus, it affects both memory utilization and the
queue operations, hence timing. Tonic can scale to 2048 con-
current flows in hardware which matches the size of the ac-
tive flow set observed in data centers [[14135]] and other hard-
ware offloads in the literature [[18|].

Takeways. Tonic has additional room to support future
protocols that are more sophisticated with more user-defined
variables than our benchmark protocols. It can track 256
segments per flow and support 2048 concurrent flows. With
a more powerful FPGA with more BRAMs, Tonic can po-
tentially support even larger windows and more flows.

6.2 End-to-End Behavior

To examine Tonic’s end-to-end behavior and verify the fi-
delity of Tonic-based implementation of transport logic in
different transport protocols, we have developed a cycle-
accurate hardware simulator for Tonic in C++ and integrated
it into NS3. We implement a NewReno and a RoCEv2 with
DCQCN sender in our Tonic simulator and demonstrate that
the end-to-end behavior of their Tonic-based implementation
matches that of their hard-coded implementation in NS3.

Note that our goal in performing these simulations is to an-



alyze and verify Tonic’s end-to-end behavior. Tonic’s capa-
bility to support 100Gbps line rate has been demonstrated in
the previous section using hardware synthesis. Thus, in our
simulations, we use 10Gbps and 40Gbps as line rate merely
to make hardware simulations with multiple flows over sec-
onds computationally tractable.

6.2.1 TCP New Reno

We implement TCP New Reno in Tonic based on
RFC 6582, and use NS3’s native network stack for the hard-
coded implementation of New Reno. Our Tonic-based im-
plementation works with the unmodified native TCP receiver
in NS3. In all simulations, the hosts are connected via
10Gbps links to the same switch, the RTT is 10us, the buffer
is 5.5MB, the minimum retransmission timeout is 200ms
(Linux default), segments are 1000 bytes large, and delayed
acknowledgments are enabled on the receiver.

Single Flow. We start a single flow from one host to another,
and randomly drop packets on the receiver’s NIC. Figure 3]a
and [3]b show the updates to the congestion window and
transmitted sequence numbers (retransmissions are marked
with large dots) respectively. Tonic’s behavior in both cases
closely matches the hard-coded implementation. The slight
differences stem from the fact that in NS3’s network stack,
all the computation happens in the same virtual time step
while in Tonic every event (incoming packets , segment ad-
dress generation, etc.) is processed over a 100ns cycle (in-
creased from 10ns to match the 10G line rate).

Multiple Flows. Two senders each start 100 flows to a sin-
gle receiver, so 200 flows share a single bottleneck link for
5 seconds. As shown in Figure [3]c, the CDF of average
throughput across the 200 flows for the Tonic-based imple-
mentation closely matches that of the hard-coded implemen-
tation. We observe similarly matching distributions for num-
ber of retransmissions. When analyzing the flows’ through-
put in millisecond-long epochs, we notice larger variations
in the hard-coded implementation than Tonic since Tonic,
as opposed to NS3’s stack, performs per-packet round robin
scheduling across flows on the same host.

6.2.2 RoCEv2 with DCQCN

We implement RoCE with DCQCN based on [41]], and
use the authors’ NS3 implementation from [42] for the hard-
coded implementation. Our Tonic-based implementation
works with the unmodified hard-coded RoCE receiver. In
all simulations, hosts are connected via 40Gbps links to the
same switch, RTT is 4us, segments are 1000B large, and we
use the default DCQCN parameters from [42].

Single Flow. DCQCN is a rate-based algorithm which per-
forms congestion control using CNPs and periodic timers
and counters as opposed to packet loss in TCP. Thus, to ob-
serve rate updates for a single flow, we run two flows from
two different hosts to the same receiver for one second to
create congestion and track the throughput changes of one as
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Figure 4: RoCEv2 with DCQCN in Tonic vs hard-coded in
NS3 (40G line rate, one of two flows on a bottleneck link).

they both converge to the same rate. As shown in Figure
Tonic’s behavior in terms of rate updates closely matches the
hard-coded implementation. Moreover, we ran a single DC-
QCN flow at 100Gbps with 128B back-to-back packets and
confirmed that Tonic can saturate the 100Gbps link.

Multiple Flows. Two senders each start 100 flows to a single
receiver, so 200 flows share a single bottleneck link for one
second. Both Tonic and the hard-coded implementation do
per-packet round robin scheduling among the flows on the
same host. As a result, all flows in both cases end up with
an average throughput of 203 +0.2Mbps. Moreover, we ob-
serve a matching distribution of CNPs in both cases.

7 Related Work

Tonic is the first programmable architecture for transport
logic in hardware able to support 100 Gbps. In this section,
we review the most closely related prior work.

Commercial hardware network stacks. Some newer
NICs have hardware network stacks, including hard-wired
transport protocols [8|/10]. However, these NICs only imple-
ment two transport protocols, either RoCE [8]] or a vendor-
selected variant of TCP, and they cannot be modified with-
out going through the vendor. Tonic enables programmers to
implement a variety of transport protocols in hardware with
modest effort. Since a detailed description of the architecture
of these commercial NICs is not publicly available, we were
not able to compare our design decisions with theirs.

Non-commercial hardware transport protocols. Recent
work explores hardware transport protocols that run at high
speed with low memory footprint [28}29,]32]]. Tonic facil-
itates innovation in this area by enabling researchers to im-
plement new protocols with modest development effort.

Accelerating network functionality. Several academic
and industrial projects offload end-host virtual switching and
network functions to FPGAs, processing a stream of already-
generated packets [[13}[18}|26]27,/39]. Tonic, on the other
hand, implements the transport logic in the NIC by keeping
track of potentially a few hundred segments at a time to gen-
erate packets at line rate while running user-defined transport
logic to ensure efficient and reliable delivery.
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A Integrating Tonic within RDMA

Remote Direct Memory Access (RDMA) enables applica-
tions to directly access memory on remote endpoints with-
out involving the CPU. To do so, the endpoints create a
queue pair, analogous to a connection, and post requests,
called Work Queue Elements (WQE's), for sending or receiv-
ing data from each other’s memory. Although RDMA orig-
inated from InfiniBand networks, RDMA over Ethernet is
getting more common in data centers [9}/20,33]]. In the rest
of this section, we use RDMA to refer to RDMA implemen-
tations over Ethernet.

Once a queue pair is created, RDMA NICs can add the
new “connection” to Tonic and use it to on the sender side to
transfer data in response to different WQEs. Each WQE cor-
responds to a separate message transfer and therefore nicely
fits Tonic’s need for partitioning data into segments before
starting transmission.

For instance, in an RDMA Write, one endpoint posts a Re-
quest WQE to write to memory on the other endpoint. Data
length, data source address on the sender, and data sink ad-
dresses on the receiver are specified in the Request WQE.
Thus, a shim layer between RDMA applications and Tonic
can break the data into segments and notify Tonic of number
of segments, and the source memory address to read the data
from on the sender. Once Tonic generates the next segment
address, the rest of the RDMA NIC should DMA it from the
sender’s memory and add appropriate headers.

An RDMA Send is similar to RDMA Write, except it re-
quires a Receive WQE on the receiver to specify the sink
address to which the data from the sender should be written.
So, the sender side can still use Tonic in the same way. As
another example, in an RDMA Read, one endpoint requests
data from memory on the other endpoint. So the respon-
der endpoint should transmit data to the requester endpoint.
Again, the data length, data source on the responder, and data
sink on the requester are specified in the WQE, and the shim
layer can break it into segments and transfer it using Tonic.

Thus, Tonic can be integrated into RDMA NICs to re-
place the hard-coded transport logic on the sender-side of
data transfer. In fact, two of our benchmark protocols, RoOCE
with DCQCN [41] and IRN [32] are proposed for RDMA
NICs. That said, this is assuming we have a compatible re-
ceiver on the other receiver-side to generate the control sig-
nals (e.g., acknowledgements, congestion notifications, etc.)
required by whichever transport protocol one chooses to im-
plement on Tonic on the sender side.
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While some implementations of RDMA over Ethernet
such as iWarp [[7]] handle out-of-order (OOQO) packets and
implement TCP/IP-like acknowledgments, others namely
RoCE [8]] assume a lossless network and have simpler trans-
port protocols that do not require receivers to handle OOO
packets and generate frequent control signals. However, as
RDMA over Ethernet is getting more common in data cen-
ters, the capability to handle OOO packets on the receiver
and generate various control signals for more efficient trans-
port is being implemented in these NICs as well [32L/41]].
Takeaways. Tonic can be integrated into RDMA NICs to
replace the hard-coded transport logic on the sender-side of
data transfer.

B High-Precision Per-Flow Rate Limiting

When using rate in the credit engine, if a flow with rate
R bytes per cycle needs C more bytes of credit to transmit
a segment, Tonic calculates 7' = f%] as the time where the
flow will have sufficient credit for transmission. It sets up
a timer that expires in T cycles, and upon its expiry, queues
up the flow in ready-to-tx for transmission (§3.3.2). Note
that 7 must be calculated in the fast path. Since we cannot
afford to do floating-point division in the fast path, R must
be represented as an integer.

This creates a trade-off between the rate-limiting precision
and the range of rates Tonic can support. If we represent R
in bytes per cycle, we can compute the exact cycle when the
flow will have enough credit, but cannot support rates lower
than one byte per cycle or ~1 Gbps. If we instead represent
R in, say, bytes per thousand cycles, we can support lower
rates (e.g., 1 Mbps), but T = [%] will determine how many
thousand cycles from now the flow can qualify for transmis-
sion. This results in lower rate conformance and precision
for higher-bandwidth flows. As a concrete example, for a
20 Gbps flow, R would be 25000 bytes per thousand cycles.
Suppose the flow has a 1500-byte segment to transmit. It
will have enough credit to do so in 8 cycles but has to wait
(%] = 1 thousand cycles to be queued for transmission.

Instead of committing to one representation for R, Tonic
keeps multiple variables Ry, ... Ry for each flow, each rep-
resenting flow’s rate at a different level of precision. As the
congestion control loop adjusts the rate according to network
capacity, Tonic can efficiently switch between Ry,... Ry to
pick the most precise representation for computing 7 at any
moment. This enables Tonic to support a wide range of rates
without sacrificing the rate-limiting precision.

C Efficient Bitmap Operations

Tonic uses bitmaps as large as 128 bits to track the status
of a window of segments for each flow. Bitmaps are im-
plemented as ring buffers, with the head pointer correspond-
ing to the first unacknowledged segment. As new acknowl-
edgments arrive, the head pointer moves forward around the



ring. To efficiently implement operations whose output de-
pends on the values of all the bits in the bitmap, we must par-
allelize them by dividing the ring buffer into smaller parts,
processing them in parallel, and joining the results. For large
ring buffers, this divide and conquer pattern is repeated in
multiple layers. As each layer depends on the previous one
for its input, we must keep the computation in each layer
minimal to stay within our 10 ns target.

One such operation finds the first set bit after the head.
This operation is used to find the next lost segment for re-
transmission in the marked-for-rtx bitmap. The moving
head of the ring buffer complicates the implementation of
this operation. Suppose we have a 32-bit ring buffer Az,
with bits 5 and 30 set to one, and the head at index 6. Thus,
find first(Asy,6) = 30. We divide the ring into eight four-
bit parts, “or” the bits in each one, and feed the results into
an 8-bit ring buffer Ag, where Ag[i] = OR(Ax,[i: i+ 3]). So,
only Ag[1] and Ag[7] are set. However, because the set bit
in A3,[4 : 7] is before the head in the original ring buffer, we
cannot simply use one as Ag’s head index or we will mistak-
enly generate 5 instead of 30 as the final result. So, we need
extra computation to find the correct new head. For a larger
ring buffer with multiple layers of this divide and conquer
pattern, we need to compute the head in each layer.

Instead, we use a lightweight pre-processing on the in-
put ring buffer to avoid head index computation altogether.
More specifically, using A3, as input, we compute A;, which
is equal to A3, except that all the bits from index zero to
head (6 in our example) are set to zero. Starting from in-
dex zero, the first set bit in A%, is always closer to the orig-
inal head than the first set bit in A3y. So, findfirst(As;,6)
equals findfirst(A%,,0) if A}, has any set bits, and other-
wise find first(A3;,0). This way, independent of the input
head index H, we can always solve findfirst(A,H) from
two subproblems with the head index fixed at zero.
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D New Reno in Tonic

The following is the implementation of New Reno’s loss detection and recovery algorithm on receipt of acknowledgments in

Tonic [21]. Extra comments have been added for clarification.

module new_reno_incoming(
/3 % sk ok ok ok ok ok ok ok ok ok ok sk ok kokok ok okokkkokk TNPUTS ok sk ok ok sk ok sk sk ok s ok %k sk ok % ok % % ok % % >k % 5k % % >k % % % /
// ACK, NACK, SACK, CNP, etc...
input [“PKT_TYPE_W-1:0] pkt_type,
input [“PKT_DATA_W-1:0] pkt_data_in,

// Segment ID in the cumulative acknowledgment
input [“SEGMENT_ID_W-1:0] cumulative_ack,

// Segment ID that is selectively acknowledged, if any
input [“SEGMENT_ID_W-1:01] selective_ack,

// Number of segments acknowledged with the received acknowledgment
input [“WINDOW_INDEX_W-1:0] newly_acked_cnt,

// Segment ID at the beginning of the window, before and after the
// acknowledgment

input [“WINDOW_INDEX_W-1:0] old_wnd_start,

input [“WINDOW_INDEX_W-1:0] new_wnd_start,

// Current time in nanoseconds
input [‘TIME_W-1:0] now,

//// Per-Flow State

input [“MAX_WINDOW_SIZE-1:0] acked,
input [‘MAX_TX_CNT_SIZE-1:0] tx_cnt,

input [“SEGMENT_ID_W-1:0] highest_sent,

input [“SEGMENT_ID_W-1:01] wnd_start,

input [“WINDOW_SIZE_W-1:0] wnd_size_in,

input [‘TIEMR_W-1:0] rtx_timer_amount_in,
input [“SEGMENT_ID_W-1:0] total_tx_cnt,

input [‘USER_VARS_W-1:01] user_vars_in,

/% sk sk ok ok ok ok ok ok ok ok okoskok ok ok ok ok ok ok ok okokok QUTPUTS ok %k ok sk ok ok sk sk ok ok % ok ok ok ok ok ok ok ok o % % % % ok ok ok ok % /

output [‘FLAG_W-1:0] mark_any_for_rtx,
output [“SEGMENT_ID_W-1:01] mark_for_rtx_from,
output [“SEGMENT_ID_W-1:01] mark_for_rtx_to,
output [“WINDOW_SIZE_W-1:0] wnd_size_out,

output [“TIMER_W-1:0] rtx_timer_amount_out,
output [‘FLAG_W-1:0] reset_rtx_timer,
output [“USER_VARS_W-1:01] user_vars_out

);

[k kkkkkkkkkkokkkokkkkkkkkkkk [ocal Variables s kkskkkkkkkkkkkkkkkk
*

* Declarations ommited for brevity

*
**************************************************************/

/// is the ack new or duplicate?
assign is_dup_ack = old_wnd_start == cumulative_ack;
assign is_new_ack = new_wnd_start > old_wnd_start;

/// count duplicated acks
assign dup_acks = is_new_ack 7 O0:
is_dup_ack ? dup_acks_in + 1 : dup_acks_in;

// How many in_flight packets?
assign sent_out = highest_sent - wnd_start;
assign in_flight = sent_out - dup_acks;

// update previous highest ack
assign prev_highest_ack_out = is_new_ack ? old_wnd_start : prev_highest_ack_in;

/// Should we do fast rtx?
assign do_fast_rtx = dup_acks == ‘DUP_ACKS_THRESH &
((cumulative_ack > recover_in) |
(wnd_size_in > 1 & cumulative_ack - prev_highest_ack_in <= 4));

// if yes, update recovery sequence and updated ssh_thresh
assign recovery_seq_out = do_fast_rtx ? highest_sent : recovery_seq_in;
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assign half_wnd in_flight > 2 7 in_flight >> 1 : 2;
assign ss_thresh_out = do_fast_rtx 7?7 half_wnd : ss_thresh_in;

//// if in recovery and this is a new ack, is it a

// full ack or a partial ack? (Definition in RFC)
assign full_ack = is_new_ack & cumulative_ack > recover_in;
assign partial_ack = is_new_ack & cumulative_ack <= recover_in;

// mark for retransmission

assign mark_any_for_rtx = do_fast_rtx | partial_ack;
assign rtx_start = wnd_start_in;
assign rtx_end = wnd_start_in + 1;

// reset rtx timer if not in recovery

assign in_recovery_out = do_fast_rtx | (in_recovery_in & cumulative_ack <= recover_in);
assign reset_rtx_timer = “in_recovery_out;
assign in_timeout_out = (“full_ack) & in_timeout_in;

//// decide new window size

// keep a counter for additive increase

assign additive_inc_cntr_out = in_recovery_out & “in_timeout_in 7 O
is_new_ack & wnd_size_in >= ss_thresh_in 7
(additive_inc_cntr_in == wnd_size_in ? 0

additive_inc_cntr_in + 1): additive_inc_cntr_in;

assign wnd_size_out = new_wnd_size >= ‘MAX_WINDOW_SIZE ? ‘MAX_WINDOW_SIZE : new_wnd_size;

always @(*) begin
if (do_fast_rtx) begin
// set it equals to new ss_thresh, expanded for performance reasons
cwnd_out = sent_out - ‘DUP_ACKS_THRESH > 2 ? sent_out >> 1 : 1;
end
else if (“in_recovery_in & is_new_ack) begin
if (cwnd_in < ss_thresh_out) begin

cwnd_out = cwnd_in + newly_acked_cnt;
end
else if (wnd_inc_cntr_in >= cwnd_in) begin
cwnd_out = cwnd_in + 1;
end
else begin
cwnd_out = cwnd_in;
end
end
else begin
cwnd_out = cwnd_in;
end
end
assign there_is_more = in_flight >= cwnd_in;

always @(*) begin
if (do_fast_rtx) begin

new_wnd_size = sent_out;
end
else if ("in_recovery_in & is_new_ack) begin
new_wnd_size = cwnd_out;
end
else begin
new_wnd_size = there_is_more 7?7 sent_out : cwnd_in + dup_acks;
end

end

//// break up user context into variables

assign {prev_highest_ack_in, in_recovery_in, recover_in,
in_timeout_in, wnd_inc_cntr_in, ss_thresh_in,
dup_acks_in, cwnd_in} = user_cntxt_in;

assign user_cntxt_out = {prev_highest_ack_out, in_recovery_out, recover_out,
in_timeout_out, wnd_inc_cntr_out, ss_thresh_out,
dup_acks_outm, cwnd_out};

endmodule
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