
DEUCE: Write-Efficient Encryption for Non-Volatile Memories

Vinson Young Prashant J. Nair Moinuddin K. Qureshi

School of Electrical and Computer Engineering

Georgia Institute of Technology

{vyoung,pnair6,moin}@ece.gatech.edu

Abstract

Phase Change Memory (PCM) is an emerging Non Volatile

Memory (NVM) technology that has the potential to pro-

vide scalable high-density memory systems. While the non-

volatility of PCM is a desirable property in order to save

leakage power, it also has the undesirable effect of making

PCM main memories susceptible to newer modes of security

vulnerabilities, for example, accessibility to sensitive data

if a PCM DIMM gets stolen. PCM memories can be made

secure by encrypting the data. Unfortunately, such encryp-

tion comes with a significant overhead in terms of bits writ-

ten to PCM memory, causing half of the bits in the line to

change on every write, even if the actual number of bits be-

ing written to memory is small. Our studies show that a typ-

ical writeback modifies, on average, only 12% of the bits in

the cacheline. Thus, encryption causes almost a 4x increase

in the number of bits written to PCM memories. Such ex-

traneous bit writes cause significant increase in write power,

reduction in write endurance, and reduction in write band-

width. To provide the benefit of secure memory in a write

efficient manner this paper proposes Dual Counter Encryp-

tion (DEUCE). DEUCE is based on the observation that a

typical writeback only changes a few words, so DEUCE re-

encrypts only the words that have changed. We show that

DEUCE reduces the number of modified bits per writeback

for a secure memory from 50% to 24%, which improves per-

formance by 27% and increases lifetime by 2x.

Categories and Subject Descriptors B.3.2 [Hardware]:

Primary Memory

Keywords PCM, Encryption, Tamper-proof Design.

1. Introduction

As DRAM scaling becomes challenging, architects are look-

ing for alternative technologies for designing future memory

systems. Emerging Non-Volatile Memory (NVM) technolo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey.
Copyright c© 2015 ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694387

gies, such as Phase Change Memory (PCM), Spin-Torque

Transfer RAM (STT-RAM), and Resistive RAM (RRAM),

have the potential for building high-density power-efficient

memory systems due to enhanced scalability and non-

volatility properties [1]. Without loss of generality, this pa-

per analyzes PCM as a representative example of NVM,

however the problem, insight, and solutions we develop are

applicable to other NVM technologies as well.

One of the key challenges in designing a PCM system

tends to be the efficient handling of write operations [2, 3].

Writes not only have a higher latency compared to reads, but

they also tend to consume significant power and have limited

endurance [4]. Therefore, PCM systems are optimized to re-

duce the write traffic, in order to improve power efficiency,

write bandwidth, and endurance limited lifetime [5, 6]. For-

tunately, when a write operation is performed to the main

memory system, only a small number of bits get modified,

and PCM systems leverage this observation to optimize the

number of bits written to memory on each write operation.

For example, PCM systems employ a technique called Data

Comparison Write (DCW) [7] whereby only modified bits

in the cache line get written to PCM memory. A further en-

hancement on this scheme, called Flip-N-Write (FNW) [8]

reduces the bit writes to PCM even further by inverting the

data if more than half of the bits get modified. FNW bounds

the number of bit flips on each write to a maximum of half

the number of bits in the line. With these optimizations, the

number of bits written on each write operation to memory

gets reduced to only 10% to 15%, on average. Thus, such

optimizations are highly effective at reducing the number of

bits written to PCM, and, given the reduced write perfor-

mance and limited endurance of PCM memories, are vital to

achieving high-performance and durability for PCM.

PCM systems are non-volatile and can store data for long

after the system is powered down. While the non-volatility

of PCM is a desirable property for reducing leakage power,

this property can make PCM systems vulnerable to new se-

curity issues. For example, in traditional systems if a DRAM

DIMM gets lost or stolen, the data is lost within a few sec-

onds due to the low retention of DRAM. However, if a PCM

DIMM gets stolen, then it is possible to access sensitive data

even after several days or months. An adversary (such as a

malicious repairman) with access to the DIMM can stream

out the data stored in the PCM array and obtain sensitive in-

formation [9, 10]. Therefore, securing the memory against

ENCRYPT

ENCRYPT

WRITE

1

000000000000000...00000000000000000

 00000000000000...00000000000000000

Line X

Line X

0

10

20

30

40

50

DCW FNW DCW FNW

4x

No Encryption Encryption

10101101010001...01001100011101010

 010101001101000...00101010101010001

ENCRYPTED WRITE

(b)

(256 out of 512 bits modified)

(a)

(1 out of 512 bits modified)

B
it

F
lip

s
P

er
 W

rit
e

(%
)

Figure 1. (a) Encryption changes half the bits in the line, even if only one bit in the line changes (b) Our evaluations show that

encryption increases the number of bit flips in PCM by 4x for both Data Comparison Write (DCW) and Flip-N-Write (FNW).

such unintended access has become an even bigger concern

for PCM systems compared to DRAM. Furthermore, PCM

DIMMs are likely to be implemented using conventional

bus-based interface standards such as LPDDR-NVM, mak-

ing them susceptible to traditional attacks such as those that

rely on bus snooping [11]. To prevent loss of sensitive data,

it is important to make PCM memories secure against both

bus snooping attacks as well as stolen DIMM attacks.

The security of PCM memories can be enhanced by en-

crypting the data. Unfortunately, all good encryption algo-

rithms follow the Avalanche Effect [12], whereby a change

of even a single bit in the input data causes half of the bits

in the encrypted data to be changed. While this Avalanche

property is essential to providing security, it causes the num-

ber of bits written on each memory write to be 50% regard-

less of the number of bits modified in the line. For exam-

ple, consider Figure 1(a) where a write operation modifies

only the MSB of a line that has been initialized to all ze-

ros. This will cause only 1 bit to flip in the memory system

without encryption. However, when encryption is employed,

the difference between the two encrypted values will be half

the number of bits. Thus, encryption causes the number of

bits written to encrypted memory to be large, rendering op-

timizations such as DCW and FNW ineffective.

We analyze PCM memory system with benchmarks from

the SPEC suite. Figure 1(b) shows the average number of

bits modified per write for the unencrypted memory and en-

crypted memory when DCW and FNW are employed. We

implement FNW at a granularity of two bytes, where 1 flip

bit is provisioned per 16 bits. A write to memory modifies

only 12.2% of the bits (as optimized by DCW) on average,

and FNW reduces this to 10.5%. Unfortunately, encryption

causes DCW and FNW to flip 50% and 43% of the bits per

write, respectively. Thus, encryption increases the number of

bits written to PCM memory by almost a factor of 4. This in-

crease in bit writes can correspondingly increase the power

consumption of writes by 4x, reduce endurance-related life-

time by 4x, and cause significant reduction in PCM write

bandwidth due to power limitations. Ideally, we want to se-

cure memory, without having to pay the power overheads,

lifetime overheads, and performance overheads that happen

due to extra writes from encryption. The goal of this paper is

devise such a write efficient architecture for secure memory.

We implement memory encryption in the baseline using

counter mode encryption [13, 14] scheme which uses One

Time Pad (OTP) to implement low latency encryption. Each

line has a counter associated with it which gets incremented

on each write to the line. The line address and the counter

is provided to the AES engine to generate the OTP, and this

OTP is ex-ored with the data for encryption, or for decrypt-

ing the encrypted data. We leverage the observation that a

typical writeback only modifies a few words, so it is not nec-

essary to re-encrypt all the words with the new OTP. If we

can keep track of the words that have been modified then

we can continue to use the older OTP for the unmodified

words. With this insight, we propose Dual Counter Encryp-

tion (DEUCE). DEUCE maintains bits to track which words

in the line have been modified. Words that have been mod-

ified use the current value of the line counter for encryp-

tion and decryption, whereas the unmodified words use an

older value (obtained from masking few LSB of the current

counter) of line counter for decryption. Periodically, the en-

tire line is re-encrypted which resets the modified bits.

Our evaluations show that DEUCE reduces the number

of bit flips for a write to encrypted memory by more than

2x, lowering it from 50% to 24%. The write reduction of

DEUCE improves the performance of encrypted memory by

27% and EDP by 43%, while incurring a storage overhead

of only 32 bits per line for a system with encrypted memory.

Reducing the bit writes by 2x with DEUCE does not re-

sult in a equivalent increase of 2x in lifetime, because certain

bit locations continue to receive more writes than other lo-

cations. We propose Horizontal Wear Leveling (HWL) based

on algebraic functions that provides near perfect intra line

wear leveling, while avoiding the per line storage for track-

ing the rotation amount. We show that DEUCE with HWL

improves the lifetime of encrypted memory by 2x.

While we evaluate DEUCE for a system that performs

encryption at the line level, DEUCE is applicable to Block

Level Encryption (BLE) schemes that perform re-encryption

at the granularity of the AES block (16 bytes). For example,

DEUCE lowers the average number of bit flips for a memory

encrypted with BLE from 33% to 19.9%.

2. Background and Motivation

2.1 Attack Models

In this paper we specifically seek to protect PCM memories

from two types of attacks. First, the traditional attack of bus

snooping, where an adversary has access to the bus between

the processor and memory and can obtain memory data

by simply doing hardware probes of this memory bus [9].

Second, the stolen DIMM attack, whereby an adversary (or

a malicious machine repairman) can get access to the PCM

DIMM. The attacker can then simply stream the data out of

the PCM memory to obtain all the data contained in the PCM

DIMM. As PCM DIMM is non-volatile, the attack of the

second type becomes much more severe in PCM compared

to DRAM DIMM. We seek an efficient solution that will

protect PCM DIMM from both types of attacks.

2.2 Security via Data Encryption with Line Counters

PCM memories can be protected against security threats by

encrypting the memory contents. The straightforward way

to encrypt data at runtime is to employ a one-way function

such as AES, and use a global key, as shown in Figure 2(a).

However, if the same key is used for all lines, one can simply

compare encrypted lines to figure out which lines store the

same content, and employ a dictionary-based attack.

Line Line

AESKey

Line

AES−ctr

Encrypted Line Encrypted Line Encrypted Line

Key
Addr
CtrAddr

Key

IV IV

AES−ctr

(a) (b) (c)

Figure 2. Enhancing security of (a) encrypted memory by

adding (b) line address and (c) line counter to encryption.

A more secure approach is to use the line address along

with the key to perform encryption, as shown in Figure 2(b).

This ensures that each line gets encrypted with its own key,

thwarting stolen DIMM attacks. However, this scheme is

still vulnerable to bus snooping attacks that can monitor con-

secutive writes to the same line. An even stronger approach

to data security is to employ a per-line counter in conjunc-

tion with the line address and key to perform encryption, as

shown in Figure 2(c). The per-line counter is incremented

on each write, ensuring that each write of each line gets en-

crypted with a unique key, and thus protects the system from

both bus snooping attack and stolen DIMM attack.

2.3 Low Latency Encryption via One Time Pad (OTP)

Memory encryption not only incurs the storage overhead of

a per-line counter, but it also incurs the latency overheads of

encryption and decryption. Since memory read operations

are in the critical path, the decryption latency is of particular

importance as it gets added to the overall memory latency,

as shown in Figure 3. While this latency may be acceptable

when the latency of accessing data is quite high (for exam-

ple, access from hard drive, which takes a few milli seconds),

this latency becomes impractically expensive when the la-

tency for both the data access and decryption are similar,

such as for main memory (both take a few tens of nanosec-

onds).

Prior work [13, 14] on counter mode encryption avoids

the serialization of memory access and decryption by em-

ploying the One Time Pad (OTP) technique. The key idea is

to generate the OTP in parallel with the memory access, and

simply XOR the OTP with the memory contents, as shown

in Figure 3. As XOR incurs low latency, this scheme re-

moves the decryption latency from the critical path of mem-

ory access, while maintaining provable security guarantees

because of the uniqueness of the OTP.

MEMORY ACCESS

ONE TIME PAD XOR cycles
saved

time

MEMORY ACCESS

DECRYPTION

Figure 3. Counter mode encryption uses One Time Pad

(OTP) to reduce the impact of decryption latency.

2.4 Operation of Counter Mode Encryption

Counter mode encryption uses a block cipher (such as AES),

not to encrypt the data directly but to generate the OTP. To

maintain security, the OTP for each line must be generated

only once during the lifetime. To ensure this, counter mode

encryption uses the line address and the per-line counter

as the input data for the AES circuit to generate a unique

output, which is used as a PAD. On a write to memory,

the cache line is encrypted by XORing the content of the

cache line with the OTP, as shown in Figure 4(a). To read

the memory contents, the per-line counter and line address

is used to regenerate the PAD, and this PAD is XORed with

the encrypted contents, as shown in Figure 4(b).

OTP

LineAddr Counter

Decrypted Cache Line

Encrypted
CacheLine

(a) Encryption (b) Decryption

OTP

LineAddr Counter

CacheLine

Key

Encrypted Cache Line

AES−ctr Key AES−ctr

Figure 4. Counter mode generates OTP using line address

and counter for both (a) Encryption and (b) Decryption.

The counter used for counter mode encryption need not

itself be protected with encryption, as having the knowledge

of the value of the counter does not enable the attacker to

0
5

10
15
20
25
30
35
40
45
50

B
it

 F
lip

s
P

er
 W

ri
te

 (
%

) DCW (NoEncr) FNW (NoEncr) DCW (Encr) FNW (Encr)

lib
q

mcf lbm Gem
s

milc

om
ne

tpp

les
lie

3d

so
ple

x

ze
us

mp
wrf

xa
lan

c
as

tar

Gmea
n

Figure 5. Average number of modified bits per write for unencrypted memory (NoEncr) and encrypted memory (Encr) under

Data Comparison Write (DCW) and Flip-N-Write (FNW). Encryption increase the number of bit writes to PCM by almost 4x.

generated the pad [15]. Even if the attacker had access to

the counter value, the attacker would still need the key and

line address to generate the pad, and it is assumed that the

key is well protected. Therefore, we store the line counter

in plain text. The security of counter mode encryption has

been approved by NIST. In our studies we will assume that

memory is encrypted with counter based encryption.1

2.5 The Problem: Write Overhead of Encryption

The per-line counter in Counter Mode Encryption is incre-

mented on every write, which allows every cacheline to have

a unique PAD for each write. As the PAD is guaranteed to

not be reused such systems provide strong security. In PCM

systems, this security, however, comes at a cost to write en-

durance and bandwidth as 50% of the bits will be expected to

flip on every writeback, due to the random bits of the PAD,

regardless of the input data of the cacheline. Figure 5 shows

the average number of bits modified per write for under both

no encryption and encryption, when DCW and FNW are

applied. For the unencrypted system, the average bits writ-

ten per write are quite small, 12.4% for DCW and 10.5%

for FNW. However, encryption increases this by almost 4x,

making it 50% under DCW and 43% under FNW.

2.6 Goal: Write-Efficient Memory Encryption

Encryption causes the number of bit writes to increase by al-

most 4x, thereby significantly increasing write power, reduc-

ing performance, and lowering the lifetime of PCM mem-

ory system. Ideally, we would like to have memory security

without the significant write overheads of memory encryp-

tion. A prior proposal, i-NVMM [17], proposes to employ

1 Note that if the attacker has the ability to tamper with the memory values

or the bus directly, then a new form of attack can be formed, whereby
the attacker always resets the counter value to zero. This would make the

system reuse the pad, and then the attacker can employ “pad reuse” based

attacks to potentially gain access to the encrypted data. While, such Bus

Tampering Attacks are much harder than Bus Snooping Attacks, and are

beyond the scope of the attack models we consider, one can use Merkle

Trees [14, 16] based authentication techniques to ensure the integrity of

memory contents and protect against such attacks.

partial encryption of memory whereby only cold pages are

encrypted, and hot pages are encrypted only on power down.

This scheme does not protect against bus snooping attacks

(as the writeback from processor to memory is kept unen-

crypted for hot pages). We can also reduce the write over-

head by using Block-Level Encryption (BLE) [18], which

performs re-encryption at the granularity of AES block (16

bytes) using per block counters. Unfortunately, BLE still in-

curs high write overhead because even if a byte changes in

the 16-byte block, the entire block must get re-encrypted.

Our goal is to significantly reduce the write overhead of en-

cryption, while retaining the security of memory contents.

To this end, we propose Dual Counter Encryption (DEUCE).

We explain our methodology before explaining our design.

3. Methodology

3.1 Configuration

The parameters for the baseline system are shown in Ta-

ble 1. The L4 cache is 64MB, and the L4 cache capacity

is partitioned equally between all the cores. The linesize of

all cache units is fixed at 64 bytes. Write requests arrive at

the PCM memory only on eviction from the L4 cache. Both

read and write requests are at the granularity of cache line,

and are serviced by one of the PCM banks, based on the ad-

dress of the line. We assume that relevant pages have already

been brought into memory and been initially encrypted as

they are placed into the memory via the memory-controller.

For counter mode encryption, we assume each line is provi-

sioned with a 28 bit line counter. We implement FNW at a

two-byte boundary, so FNW incurs an overhead of 32 bits.

Processors

Number of cores 8 cores, each 4-wide 4GHz

L1/L2/L3 (private) 32KB/256KB/1MB (8-way each)

L4 cache 64MB (8MB per core), 50 cycles latency

Phase Change Memory

Capacity 4 ranks, each 8GB = 32 GB total

Read Latency 75 ns

Write Latency 150ns for each slot of 128 bits [19]

Table 1. Baseline Configuration

0
0

0
1

8
10

8
9

8
8

4
7

4
6

4
5

4
4

0
3

0
2

0 1 2 3 4 5 6 7 8 9 10

W1 W2 W3 W2,W4 W2 W4 W3 W7,W5,W6

Value of Per−Line Counter

Words

LCTR

TCTR

W1 W3
W7

W5,W6

W3

W4W4

W2 W2W2

W4
W3
W2
W1

W2
W1

Modified Words
in Write

ALL ALL ALL
Re−Encrypted

Figure 6. Operation of DEUCE for a system with Epoch Interval of 4 and 8 words per line (W0-W7). At start of each Epoch

(red arrow), all words are re-encrypted and TCTR=LCTR. In between Epochs, all words that have been modified at least once

since the start of the Epoch get re-encrypted. Such words use LCTR, whereas the unmodified words continue to use TCTR.

3.2 Workloads

We use a representative slice of 4 billion instructions for each

benchmark from the SPEC2006 suite. We perform evalua-

tions by executing the benchmark in rate mode, where all

the eight cores execute the same benchmark. We perform

our studies using all the 12 benchmarks that have at least 1

Writeback per One Thousand Instructions (WBPKI). Table 2

shows the read/write characteristics of our workloads.

Workload L4 Read Miss L4 WriteBack

(8-copies) (MPKI) (WBPKI)

libq 22.9 9.78

mcf 16.2 8.78

lbm 14.6 7.25

Gems 14.4 7.14

milc 19.6 6.80

omnetpp 10.8 4.71

leslie3d 12.8 4.38

soplex 25.5 3.97

zeusmp 4.65 1.97

wrf 3.85 1.67

xalanc 1.85 1.61

astar 1.84 1.29

Table 2. Benchmark Characteristics.

3.3 Figure of Merit

We measure the average number of bits modified on each

writeback as the figure of merit for different systems. While

reporting the modified bits per cacheline, we also include the

bit flips that happen in metadata (e.g. the Flip bit in FNW).

4. Dual Counter Encryption (DEUCE)

DEUCE leverages the observation that most words in any

cacheline are written back unmodified. Fortunately, these

unmodified words need not be re-encrypted and only the

modified words can be re-encrypted. For example, if only

one word in the line is modified, instead of rewriting the

whole line, the design could re-encrypt only the modified

word with an updated counter and write only that word back.

On decryption, the design could decrypt the modified word

with the updated counter, decrypt the rest of the cacheline

with the previous counter, and combine them to form the

newest cacheline. A straightforward way to implement this

would be to have a separate counter per word (to avoid PAD

reuse). However, this would not only incur high storage over-

head but would also require an encryption algorithm that op-

erates at a granularity of a word, making AES an unsuitable

choice given that the minimum block length for AES is 16

bytes. To implement re-encryption at word granularity effi-

ciently, we propose DEUCE, a simplified design that relies

on generating two PADs to reduce the number of bit writes.

4.1 DEUCE: Overview

DEUCE tracks which words have been modified, and uses

the most recent counter value for the modified words, and

an older value of the counter for the unmodified words. We

provide the overview of DEUCE with an example. Consider

that the line has two counters, a Leading Counter (LCTR)

and a Trailing Counter (TCTR). The LCTR is identical to

the line counter. The TCTR is obtained by masking off a

few Least Significant Bits (LSBs) of the LCTR. For our

example, let us consider that we mask the 2 LSB of LCTR.

Thus, LCTR will be equal to TCTR once every 4 writes,

a duration which we call Epoch Interval. In between the

Epoch, the value of TCTR remains unchanged, whereas the

LCTR keeps getting incremented. Each word is appended

with a bit to indicate if it has been modified since the start

of the Epoch. When LCTR equals TCTR, the modified bits

associated with all words in the line are reset. On each

subsequent write, the modified words are encrypted using

LCTR, whereas the unmodified words keep using TCTR.

Note that both LCTR and TCTR are virtual counters, whose

values get determined by the line counter. Thus, except for

the existing line counter, DEUCE does not require separate

counters for implementation.

Figure 6 shows the operation of DEUCE for a design

when the Epoch Interval is four writes and each line contains

8 words (W0 to W7). The counter is incremented on each

write, and, when the two least significant bit of the line

counter is 00 (at 0, 4, 8, etc.), all the words in the line are re-

encrypted, and TCTR is advanced up to LCTR. Otherwise,

1 1 10 0 0 0 0

Line
Encrypted

Line Counter

PAD−LCTR

Decrypted
Line

PAD−TCTR

Key AES

LineAddr
LCTR

AESKey

LineAddr TCTR

modified bit (per word)

&0xFFE0

Figure 7. Operation of DEUCE. Two decryptions are performed, one with the PAD generated from the leading counter (PAD-

LCTR), and the second with the PAD generated with the trailing counter (PAD-TCTR). The modified bit of the word decides

which decrypted value to use. Note: both LCTR and TCTR are virtual counters, their values get determined by the line counter.

on every write LCTR is incremented, while TCTR is not.

On every write, all the words that have changed since the

last Epoch get re-encrypted. For example, at line counter

value 1, W1 gets written, so only W1 is re-encrypted. On

next write only W2 gets modified, but now both W1 and W2

get re-encrypted. Similarly, on the next write after that W3

gets written, so W1,W2, and W3 get re-encrypted. The next

write triggers the start of the new Epoch so all words get re-

encrypted, and TCTR is incremented from 0 to 4. And, so

on. Thus, for each write during the Epoch, only a subset of

words (that have been modified at least once since the last

Epoch) are re-encrypted. This way, the modified words use

LCTR, and other unmodified words continue to use TCTR.

4.2 DEUCE Parameters: Epoch and Word Size

The two design parameters for DEUCE are Epoch Interval

and Word Size. The Epoch Interval impacts the effectiveness

of DEUCE in terms of reducing bit flips, as there is a full

line re-encryption on every Epoch Interval. A larger inter-

val will reduce the full re-encryption overhead. However, a

longer Epoch Interval may also cause DEUCE to continu-

ously re-encrypt many words that are modified shortly after

the Epoch but have stopped being modified since.

The word size determines the storage overhead and fine-

ness of tracking modified parts of the cacheline. As we need

one modified bit per word, we would need 64 bits per line if

tracking is done at a byte granularity, and only 8 bits per line

if tracking is done at 8 bytes. A finer granularity improves

the effectiveness of DEUCE, but incurs higher overhead. So,

the word size of DEUCE must be carefully selected.

4.3 Design of DEUCE

4.3.1 Structure

To implement DEUCE on top of a secure memory system,

we simply need 1 bit per word in the line to indicate if

the word has changed since last Epoch. For example, if

tracking is done at a 2 byte granularity then we would need

32 modified bits for each line in memory.

4.3.2 Write Operation

At the start of each Epoch, all words in the line are re-

encrypted and all the modified bits are reset. On subsequent

writes, a read is performed to identify the words that are

modified by the given write. The modified bits correspond-

ing to these words are set. Only the words which have been

modified at least once since the start of the Epoch are re-

encrypted with the LCTR. The unmodified words (identi-

fied by the modified bit equal to zero) are encrypted with the

TCTR, and thus continue to remain unchanged in memory.

4.3.3 Read Operation

On a read, decryption is performed as shown in Figure 7.

Two PADs are obtained, one with the leading counter (PAD-

LCTR), and second with the trailing counter (PAD-TCTR).

Decryption is performed based on both PADs; however, the

modified bit indicates which of the two values should be

used for the given word. If the modified bit for a given word

is set then the value decrypted using PAD-LCTR is used,

otherwise the value decrypted using PAD-TCTR is used.

4.3.4 Overheads

The storage overhead of DEUCE is simply 1 bit per track-

ing granularity, so for our default configuration that tracks

at a granularity of two bytes, we need 32 bits per line. The

latency overhead of DEUCE is negligible, as we generate

both PADs in parallel and use a multiplexer to choose be-

tween the two decrypted values. Thus, we would need two

AES circuits, or we can simply time divison multiplex the

AES circuits to generate the two PADs one after the other.

As long as both PADs are obtained before the data from the

memory arrives, we would avoid the latency overheads.

4.3.5 Security

The security of the counter based scheme relies on the

premise that a given OTP is not reused, therefore it is critical

to ensure that DEUCE does not use the same PAD multi-

ple times for re-encryption of data. DEUCE always uses a

different PAD for re-encrypting the word if the word gets

modified. DEUCE simply avoids re-encryption for words

that remain unmodified. Given the uniqueness of the PAD

for re-encryption of the modified words, the security level of

DEUCE is similar to the baseline OTP scheme. The attacker

can only retrieve information that a particular word has been

modified since the last Epoch, which is similar to knowing

which line is modified in a page, based on the line address.

4.4 RESULTS: Sensitivity to DEUCE Word Size

Figure 8 shows the number of modified bits per write, on

average, as the tracking granularity of DEUCE is varied

from 1 byte (64 bit overhead per line) to 8 bytes (8 bit

overhead per line) for an Epoch interval of 32. A smaller

granularity is more efficient at reducing write overhead. As

the tracking granularity is increased from 1 byte to 2 byte

to 4 byte to 8 bytes, the average number of modified bits

increases from 21.4% to 23.7% to 26.8% to 32.2%. Our

default configuration uses a granularity of 2 bytes, which has

a storage overhead of 32 bits per line.

0
5

10
15
20
25
30
35
40
45
50

B
it

 F
lip

s
P

er
 W

ri
te

 (
%

) 8 Bytes 4 Bytes 2 Bytes 1 Byte

lib
q

mcf lbm Gem
s

milc

om
ne

tpp

les
lie

3d

so
ple

x

ze
us

mp
wrf

xa
lan

c
as

tar

Gmea
n

Figure 8. Number of modified bits per write with DEUCE

as the tracking granularity is varied. DEUCE with word size

of 2 bytes reduces modified bits from 50% to 23.7%.

4.5 RESULTS: Sensitivity to Epoch Interval

Figure 9 shows the number of modified bits per write, on

average, with DEUCE as the Epoch interval is varied from

8 to 32. As the Epoch interval increases, the full encryp-

tion of the line happens less frequently, reducing the num-

ber of modified bits. However, at a much larger Epoch Inter-

val, some words that were modified earlier in the Epoch but

are no longer being modified continue to get re-encrypted,

resulting in higher bit flips. For example, for wrf and milc

there is an increase in bit flips when the Epoch Interval is in-

creased from 8 to 16, and 16 to 32, respectively. The average

number of bits modified for Epoch Interval of 8 is 24.8%,

for Epoch Interval of 16 is 24.0%, and for Epoch Interval

of 32 is 23.7%. Overall, increasing the Epoch Interval has a

relatively small effect (less than 1%) on bit writes, as most

writebacks tend to be to similar locations. We use a default

Epoch Interval of 32 in our studies.

0
5

10
15
20
25
30
35
40
45
50

B
it

 F
lip

s
P

er
 W

ri
te

 (
%

) Epoch=8 Epoch=16 Epoch=32

lib
q

mcf lbm Gem
s

milc

om
ne

tpp

les
lie

3d

so
ple

x

ze
us

mp
wrf

xa
lan

c
as

tar

Gmea
n

Figure 9. Number of modified bits per write with DEUCE

as the Epoch Interval is varied. DEUCE with Epoch Interval

of 32 reduces modified bits from 50% to 23.7%.

4.6 DynDEUCE: Morphing from DEUCE to FNW

DEUCE is effective at reducing the average number of bit

flips for an encrypted memory by more than 2x (from 50%

to 24%). DEUCE performs well when programs write to

cachelines in sparse and regular patterns, which tends to be

the common case for most general general purpose applica-

tions. However, if the applications modifies all the words of

the line on every write, then DEUCE will not be able to re-

duce the number of bit writes to memory, as it will deem all

the words as modified and will re-encrypt all the words of

the line on each write, thus causing 50% of the bits to flip

on each write. In such a scenario, it would have been bet-

ter to use Flip-N-Write (FNW) and get the 14% fewer bit

flips (from 50% to 43%) that FNW can provide. For exam-

ple, consider the number of modified bits per write shown

in Figure 9. Both Gems and soplex have an average of more

than 43% bit flips with DEUCE, and would have benefited

from FNW instead of DEUCE. Both FNW and DEUCE in-

cur similar storage overheads (32 bits per line). As both

FNW and DEUCE are orthogonal, one can potentially im-

plement encrypted memory with both (a configuration we

call FNW+DEUCE). However, this configuration will incur

double the storage overhead, of 64 bits per line. Ideally, we

want benefit of FNW, if FNW is better than DEUCE, with-

out paying for the extra storage overhead. We propose such

a configuration that can dynamically switch from DEUCE to

FNW, in between the Epoch if FNW provides more benefit

than DEUCE. We call this configuration as DynDEUCE.

To maintain a constant storage overhead, DynDEUCE

reuses the bits allocated for tracking the modified words

in DEUCE as the FlipBits in FNW when it is deemed that

is FNW is beneficial. Thus, the storage overhead of Dyn-

DEUCE is a single bit (ModeBit) per line. If the ModeBit is

zero, DynDEUCE operates as DEUCE. When the ModeBit

is 1, then DEUCE gets disabled, all words are re-encrypted,

and the modified bits allocated for DEUCE are repurposed

as FlipBits of FNW. Determining which of the two policies,

DEUCE or FNW, is better is done dynamically by measur-

0
5

10
15
20
25
30
35
40
45
50

B
it

 F
lip

s
P

er
 W

ri
te

 (
%

)
FNW (Encr) DEUCE DynDEUCE DEUCE+FNW FNW (NoEncr)

lib
q

mcf lbm Gem
s

milc

om
ne

tpp

les
lie

3d

so
ple

x

ze
us

mp
wrf

xa
lan

c
as

tar

Gmea
n

Figure 10. Number of bit flips per write with various schemes. DEUCE and DynDEUCE reduce the bit flips to 24% and 22%

respectively. These schemes bridge two thirds of the gap between FNW (with encryption) and FNW (without encryption).

ing the number of bit flips expected with the two policies. If

FNW has fewer bit flips then the ModeBit is set to use FNW.

Morphing the mode from DEUCE to FNW is straightfor-

ward; however, going from FNW to DEUCE is impractical,

as the state at the start of the Epoch is lost when the mode

is changed from DEUCE to FNW. DynDEUCE solves this

problem by ensuring that the mode returns to DEUCE at the

start of every Epoch. Then, at each write during the Epoch, if

the number of bit flips with FNW is smaller then the mode is

shifted from DEUCE to FNW. Figure 11 shows an example

of DynDEUCE. At the start of the Epoch the ModeBit is set

to use DEUCE. At the next write (and all subsequent writes

till the next Epoch) the number of bit flips with DEUCE and

FNW are estimated. For the example, encrypting the line

with DEUCE gives 67 bit flips and encrypting the line with

FNW gives 55 bit flips. So, DynDEUCE decides to change

the mode to FNW, and for all the writes till the next Epoch,

the mode continues to be FNW. Thus, DynDEUCE can be

implemented with a storage overhead of only 33 bits per line

(1 bit for mode selection and 32 bits, which are used either

as modified bits for DEUCE or as Flip bits for FNW).

Bitflips(FNW) < Bitflips(DEUCE), so use FNW till next Epoch

AF1B 11AA 2DE6 EFB2 AADE 34A7 2D15

2D05 C07D 11AA F5A6 62E8 6F79 A848 D646

2D05 3F82 B623 F5A6 62E8 6F79 57B7 29B9

= 55

= 67

468F

Epoch + 1

Epoch

If Encrypted with DEUCE

If Encrypted with FNW

8+1 10+1 0 5+1 7+1 8+1 11+1 11+1

 8 6+1 8 5 7 8 5+1 5+1

Figure 11. Operation of DynDEUCE. For each write after

the Epoch, DynDEUCE calculates the expected number of

bit flips with FNW and DEUCE. If FNW has fewer bit flips

than DEUCE, the mode is set to FNW till the next Epoch.

4.7 RESULTS: Comparison of Bit Flip Reduction

Figure 10 shows the number of modified bits per write, for

various bit flip reductions schemes, such as FNW, DEUCE,

DynDEUCE, and DEUCE+FNW (has dedicated bits for

both DEUCE and FNW). We compare these schemes to a

FNW system with no encryption. The average number of bit

flips with FNW with encrypted memory remains constant at

43% regardless of the workload. DEUCE is highly effective

at reducing the number of bit flips, especially for workloads

such as libq, mcf, and omnetpp. These workloads modify

only a small number of words per write, and the footprint of

which word gets modified does not change significantly. On

average, DEUCE reduces the number of bit flips to 23.7%.

For Gems and Soplex, DEUCE has higher bit flips than

FNW. For both these workloads DynDEUCE is more effec-

tive than either FNW or DEUCE standalone. On average,

DynDEUCE has 22.0% bit flips. DynDEUCE bridges half

the gap between DEUCE and FNW+DEUCE, a policy that

dedicates dedicated storage to both FNW as well as DEUCE

(total of 64 bits per line). Overall, DEUCE and DynDEUCE

remove two-thirds of the extra bit flips due to encryption.

4.8 Comparison of Storage Overhead

Table 3 shows the storage overhead of different schemes for

an encrypted memory system (already equipped with per

line counter). Both FNW and DEUCE are implemented with

identical storage overhead; DynDEUCE needs 1 extra mode

bit, and DEUCE+FNW needs twice the storage.

Scheme Overhead Avg. Bit Flips Per Write

FNW 32 bits/line 42.7%

DEUCE 32 bits/line 23.7%

DynDEUCE 33 bits/line 22.0%

DEUCE+FNW 64 bits/line 20.3%

Table 3. Storage Overhead and Effectiveness

5. Horizontal Wear Leveling for Durability

PCM is an endurance limited memory technology, and re-

duction in write traffic can enhance the system lifetime sig-

nificantly. DEUCE reduces the bit writes to PCM by a fac-

tor of 2x, so ideally we would expect the lifetime to also

increase by 2x. However, we found that the average life-

time with DEUCE increases by only 11%. This happens be-

cause some portions of the line continue to get written much

more frequently than others causing them to wear out sooner.

This section analyzes the problem of non-uniform bit writes

within a line, and develops a low cost and highly effective

wear leveling algorithm to make bit writes uniform.

5.1 Problem of Non-Uniformity in Bit Writes

Figure 12 show the number of writes to each bit position of

a cache line, normalized to the average writes to a bit, for

mcf and libquantum. The bit writes are highly non-uniform,

and the most frequently written bit receives as much as 6x

(for mcf) to 27x (for libquantum) the writes compared to the

average. Such non-uniformity in bit writes not only reduce

the lifetime of unencrypted memory but also that of DEUCE,

as the same set of words get re-encrypted frequently.

W
ri

te
s

(N
o

rm
.

to
 A

v
g

.)

mcf

 0

 2

 4

 6

 8

 1 128 256 384 512

W
ri

te
s

(N
o

rm
.

to
 A

v
g

.)

Bit Position in a Cache Line

libquantum

 0

 9

 18

 27

 36

 1 128 256 384 512

Figure 12. Variation in writes per bit position of a line. The

most frequently written bit receives as much as 6x (for mcf)

to 27x (for libquantum) more writes than average.

5.2 Background on Vertical Wear Leveling

The problem of non-uniformity in writes can be addressed

by wear leveling. We call wear leveling algorithms that oper-

ate at a line granularity, such as Start-Gap [20] and Security

Refresh [21], as Vertical Wear Leveling (VWL) algorithms.

Unfortunately, Vertical Wear Leveling is not effective at re-

ducing the bit write variation within a line. Bit writes in a

line can be made uniform by rotating the line periodically

and keeping track of the rotation amount per line [7]. Ide-

ally, we want uniform bit writes without relying on dedi-

cated storage on a per line or per page basis. We extend verti-

cal wear leveling algorithms, such as Start-Gap and Security

Refresh, to provide a storage overhead free intra-line wear

leveling, which we call Horizontal Wear Leveling (HWL).

We explain Start-Gap as a low-cost Vertical Wear Level-

ing algorithm. Figure 13(a) shows the structures for Start-

Gap for a memory with 8 lines (A-H). It consists of two

pointers, Start and Gap, and one dummy line called the

GapLine to aid movement. Every so often (say 100 writes),

the Gap line moves by one, by copying the content of the

previous line to the next line, as shown in Figure 13(b), Af-

ter the Gap has gone through all the lines, the Start register is

incremented by 1. Thus, Start keeps track of the total number

of global rotations, and Gap keeps track of the lines moved

in current rotation. Using Start and Gap, the remapped loca-

tion can be obtained easily.

7

6

5

4

3

2

1

0 A

B

C

D

Start

88

7

6

5

4

3

2

1

0

Start

7

6

5

4

3

2

1

0 A

B

C

D

E

F

G

Start

H

A Rot2

8

B Rot2

Gap

E

F

G

H F Rot3

Gap

C Rot2

D Rot2

E Rot2

G Rot3

H Rot3

(c)(b)(a)

Move as
E Rot3

Start=2

HWL

Gap

Figure 13. Extending Start-Gap to perform HWL (a) Start-

Gap (b) Operation of Start Gap (c) Implementing HWL by

rotating a line by (Start+1) on Gap moves.

5.3 Horizontal Wear Leveling via Algebraic Functions

Our insight to develop low cost Horizontal Wear Leveling

(HWL) algorithms is to make the rotation amount an al-

gebraic function of the global structures used by Vertical

Wear Leveling. For example, we can get the rotation amount

as Rotation Amount = [Start’ % BitsInLine], where Start’

equals (Start+1) if the Gap has already crossed the line, oth-

erwise Start’ is equal to Start. This way, rotation amount can

increase as Start increases and wrap around when the line

has been rotated through all the bits (including any metadata

bits associated with the line). Note that, if the Gap has al-

ready crossed through the line, then the rotation amount is

determined as Rotation Amount = [(Start+1) % BitsInLine].

This ensures that when Start increments, all the lines for

which the Gap has already passed through have already been

rotated by the amount equal to the new value of the Start.

Figure 13(c) shows the extension of Start-Gap that supports

HWL. For typical applications, the Start register gets incre-

mented by several hundred thousand, so all the bits within

each line get rotated several hundred times, ensuring close

to uniform bit writes. We found that the lifetime with HWL

is within 0.5% of the lifetime of perfect wear leveling.2

2 Given the deterministic nature of HWL, an adversary (or a badly written)

program can purposely shift the write pattern at the granularity of the

change of Start. The system can be protected against such access patterns

easily by calculating a unique rotation amount for each line, as a function

of the line address and Start. For example, calculate rotation amount using

Rotation Amount = [Hash(Start’,LineAddress) % BitsInLine].

To support HWL, the memory is equipped with shifters,

for rotating the line on a write and reverse rotating the line

on read. Note that our proposed HWL does not incur any

storage overhead. It avoids extra writes for line rotation by

leveraging the line movement that is incurred by vertical

wear leveling.

5.4 RESULTS: Impact on Lifetime

Figure 14 shows the lifetime of FNW, DEUCE, and DEUCE

with HWL (DEUCE-HWL), normalized to the lifetime of

the encrypted memory. Note that for encrypted memory, all

the bits in the line get written with 50% probability, so it

achieves an almost uniform bit writes within the line and

HWL is not required. FNW reduces bit flips by 14% (50%

to 43%) and the writes are spread uniformly across all bits,

so it provides a 14% improvement in lifetime. Even though

DEUCE reduces bit writes by 2x, the average lifetime im-

provement is only 11%. This is because DEUCE continues

to write to the frequently written parts of the line. How-

ever, DEUCE when combined with HWL provides an av-

erage lifetime of 2x, which is in proportion to the reduction

in bit writes. Thus, HWL achieves lifetime close to uniform

bit writes, while incurring no storage overhead, other that

what is required for vertical wear leveling.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L
if

et
im

e
N

or
m

. t
o

E
nc

ry
pt

ed
 M

em

FNW DEUCE DEUCE+HWL

lib
q

mcf lbm Gem
s

milc

om
ne

tpp

les
lie

3d

so
ple

x

ze
us

mp
wrf

xa
lan

c
as

tar

Gmea
n

4.4 4.6 5.1

Figure 14. Lifetime normalized to encrypted memory.

HWL increases the lifetime of DEUCE from 1.1x to 2x.

6. Impact on Performance and Power

6.1 Impact on Write Throughput

Due to power limitations, PCM memory systems tend to

have limited write throughput. Typically, there is not enough

current to write all the bits of a 64 byte cache line within

one shot. For example, the recent 8Gb PCM prototype [19]

shows a write width of 128 bits, and the write of a cache line

can take up-to 4 write slots. For our system, we assume a 128

bit width for write (provisioned for handling a maximum

of 64 bit flips using internal Flip-N-Write [22]). We also

assume that multiple writes can be scheduled concurrently,

provided the total number of bit flips does not exceed the

current capacity [22].

Bit flip reduction can potentially cause a write to con-

sume fewer write slots, as multiple portions of a cacheline

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
vg

 W
ri

te
 S

lo
ts

 U
se

d

FNW (Encr) DEUCE FNW (NoEncr)

lib
q

mcf lbm Gem
s

milc

om
ne

tpp

les
lie

3d

so
ple

x

ze
us

mp
wrf

xa
lan

c
as

tar

Amea
n

Figure 15. Average number of write slots used per write

request. On average, DEUCE consumes 2.64 slots whereas

unencrypted memory takes 1.92 slots out of the 4 write slots.

can be serviced concurrently. However, the reduction in bit

flips does not always directly translate into fewer write slots

because of fragmentation. For example, if the given write

causes 70 flips, and one slot can only handle 64 flips, then

this write will take two slots. Figure 15 shows the average

number of write slots consumed per write. FNW on an en-

crypted PCM reduces bit flips by 14% (50 to 43), but this

reduction is not enough to allow the PCM system to ser-

vice the request in three slots. DEUCE, on the other hand,

reduces the number of write slots from 4.0 to 2.64, which

reduces the effective write latency by 34%, thus improving

the write throughput by 52%. The unencrypted memory con-

sumes 1.92 write slots on average. Thus, DEUCE bridges

two-thirds of the gap for consumption of write slots between

encrypted memory and unencrypted memory.

6.2 Impact on System Performance

Servicing the writes quickly can reduce the memory con-

tention for reads and thus improve system performance. Fig-

ure 16 shows the system speedup of FNW (with and without

encryption) and DEUCE compared to the encrypted memory

system. Applying FNW on encrypted memory has negligi-

ble impact on performance because of the fragmentation of

write slots, which means even with FNW the system tends to

have write latency similar to that of the encrypted memory

without FNW. DEUCE, however, is able to increase system

performance by 27% on average, due to its increased write

throughput. Disabling encryption and using FNW would im-

prove the system performance by 40%, on average. Thus,

DEUCE bridges two-thirds of the performance gap between

encrypted memory and unencrypted memory.

6.3 Impact on Power and Energy

As writes in PCM consume significant power, the reduc-

tion in bit writes also has a significant impact on the en-

ergy and power of the system. We measure energy and

power for the PCM memory system, taking into account

the power consumed for each bit written. Figure 17 com-

pares the speedup, energy consumption, power, and Energy

Delay Product (EDP), normalized to an encrypted memory

system.

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Sp
ee

du
p

FNW (Encr) DEUCE FNW (NoEncr)

lib
q

mcf lbm Gem
s

milc

om
ne

tpp

les
lie

3d

so
ple

x

ze
us

mp
wrf

xa
lan

c
as

tar

Gmea
n

Figure 16. Speedup compared to encrypted memory sys-

tem. DEUCE bridges two-thirds of the performance gap be-

tween encrypted memory and unencrypted memory.

FNW has only a small impact on the energy and power

consumption of PCM memory, reducing it by approximately

11%. DEUCE reduces memory energy consumption by 43%

and power by 28%. The reduction in power is less than the

reduction in energy because of the shorter execution time.

Energy Delay Product (EDP) is often used as a met-

ric combining power and performance. Compared to the

baseline encrypted memory, FNW provides a reduction of

4% and DEUCE of 43%. Disabling the encryption and em-

ploying FNW would provide an EDP improvement of 56%.

Thus, DEUCE bridges three-fourths of the EDP gap between

encrypted and unencrypted memory.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
or

m
. t

o
E

nc
ry

pt
ed

 M
em

or
y FNW(Encr) DEUCE FNW(NoEncr)

Speedup MemEnergy MemPower SystemEDP

Figure 17. Speedup, memory energy consumption, memory

power consumption, and system Energy Delay Product.

7. Related Work

Our study addresses the problem of reducing write traffic for

encrypted memory systems. We discuss some of the closely

related works that have looked at secure PCM memories.

7.1 Block Level Encryption at AES Granularity

In our studies, we assume counter mode encryption that

operates at a line granularity [13, 14]. Each line has one

counter, which is incremented on each write, thus caus-

ing the entire line to be modified. Block-Level Encryp-

tion (BLE) [18] reduces write overhead by performing re-

encryption at the granularity of an AES block (16 bytes).

As the cacheline is 64 bytes, BLE provisions the line with

four separate counters, one per each block. On a write, BLE

re-encrypts only the modified blocks in the cacheline and in-

crements the counter of the modified blocks. Unfortunately,

BLE still incurs high write overhead as it rewrites 16 bytes,

even if one bit in the block gets modified. DEUCE, on the

other hand, operates at a much smaller granularity of 2 bytes,

and performs fine grained re-encryption. Thus, DEUCE de-

couples the granularity of re-encryption from the granularity

of AES. Nonetheless, DEUCE is orthogonal to BLE and can

be combined for greater benefit.

0
5

10
15
20
25
30
35
40
45
50

B
it

 F
lip

s
P

er
 W

ri
te

 (
%

) BLE DEUCE BLE+DEUCE

lib
q

mcf lbm Gem
s

milc

om
ne

tpp

les
lie

3d

so
ple

x

ze
us

mp
wrf

xa
lan

c
as

tar

Gmea
n

Figure 18. Bit flips with DEUCE and Block Level Encryp-

tion at granularity of AES. DEUCE (24%) is orthogonal to

BLE (33%) and can be combined for greater benefits (20%).

Figure 18 shows the average number of modified bits per

line with BLE, DEUCE, and the combination of BLE+DEUCE.

BLE reduces the bit flips to 33%, whereas DEUCE reduces

it to 24%. The combination of BLE+DEUCE cause 19.9%

bit flips, outperforming either scheme standalone.

7.2 Partial Working-Set Encryption with i-NVMM

i-NVMM [17] tries to reduce the latency overheads of en-

cryption by keeping the hot data in unencrypted form, and

encrypting it only on power down. While i-NVMM may pro-

tect the system against the stolen DIMM attack, it still leaves

the system vulnerable to bus snooping attacks, as writes to

hot pages are sent unencrypted on the bus. We seek to pro-

tect the memory against both stolen DIMM attack as well as

the bus snooping attacks. If one wishes to protect the system

only against stolen DIMM attack, then it can be done with

low latency (and low bit flips) by eliminating the counter

from counter mode encryption, and simply using the line ad-

dress to generate a unique PAD per line. When the DIMM

gets stolen, the adversary will not be able to regenerate the

PADs per line without the secret key. This would also ensure

that the entire memory content always remains encrypted,

which is not the case for i-NVMM.

7.3 Protecting PCM from Endurance Related Attacks

Given that PCM has limited endurance, PCM systems are

vulnerable to endurance related attacks that write to a small

portion of memory repeatedly [20, 21, 23]. PCM systems

can be protected from such lifetime reducing attacks by

means of an attack detector [23]. DEUCE is an encryption

scheme that focuses on information security as opposed to

lifetime security. Techniques that mitigate endurance related

attacks could also be applied for systems that use DEUCE.

8. Conclusions

Secure PCM systems rely on data encryption, which increase

the bit flips per write by almost 4x. The extra bit flips de-

grade write throughput, performance, lifetime, and power ef-

ficiency. Ideally, we want the security of encryption without

significantly increasing the bit writes to PCM. We observe

that each writeback writes to only a few words, and we can

reduce bit flips by re-encrypting only modified words. With

this insight, this paper makes the following contributions:

1. We propose Dual Counter Encryption (DEUCE), a de-

sign that selectively re-encrypts cachelines at a fine gran-

ularities (two bytes). DEUCE reduces the number of bit

flips for an encrypted memory system from 50% to 24%,

while incurring a storage overhead of 32 bits per line.

2. We propose a simple Horizontal Wear Leveling (HWL)

algorithm based on an algebraic function of Start-Gap, to

make the bit writes within a line uniform. Our proposed

HWL is storage overhead free, and increases the lifetime

improvement provided by DEUCE from 1.1x to 2x.

3. We show that DEUCE is orthogonal to, and can be

combined with, existing schemes such as Flip-N-Write

(FNW) and Block Level Encryption (BLE). For exam-

ple, DEUCE combined with BLE reduces the bit flips of

BLE from 33% to 19.9%. We also develop DynDEUCE,

which dynamically selects between FNW and DEUCE,

depending on which scheme has fewer bit writes.

The reduction in bit flips with DEUCE improves write

throughput by 52%, performance by 27%, lifetime by 2x,

and EDP by 43% with respect to an encrypted memory sys-

tem. DEUCE bridges two-thirds of the gap in performance,

power, and lifetime between an encrypted memory system

and an unencrypted memory system.

With an increase in hardware attacks, secure memory sys-

tems are becoming essential. We show how architecture sup-

port can mitigate the overheads of encryption, and make se-

curity practical. While we analyze PCM as an example of

NVM, the scheme, insights, and evaluations should also be

useful for other NVM technologies, such as STT-RAM and

RRAM, in which write operations are expensive and there-

fore it is desirable to have write-efficient memory encryption

to obtain both security and high performance and durability.

Acknowledgements

We thank the anonymous reviewers, Andrew Chien, Swamit

Tannu, and Daniel Wong for their comments and feedback

on earlier draft of this paper. We also thank Simha Sethu-

madhavan and Milos Prvulovic for discussions and provid-

ing useful insights on working of counter mode encryption

and security analysis of encrypted memoryx. This work was

supported by the Center for Future Architectures Research

(C-FAR), one of the six SRC STARnet Centers, sponsored

by MARCO and DARPA.

References

[1] M. K. Qureshi, S. Gurumurthi, and B. Rajendran, “Phase

change memory: From devices to systems,” Synthesis Lectures

on Computer Architecture, vol. 6, no. 4, 2011.

[2] J. Yue and Y. Zhu, “Accelerating write by exploiting pcm

asymmetries,” in HPCA-2013.

[3] L. Jiang et al., “A low power and reliable charge pump design

for phase change memories,” in ISCA-2014.

[4] S. Schechter et al., “Use ecp, not ecc, for hard failures in

resistive memories,” in ISCA-2010.

[5] B. C. Lee, E. Ipek et al., “Architecting phase change memory

as a scalable dram alternative,” in ISCA-2009.

[6] M. Qureshi, M. Franceschini, and L. Lastras-Montano, “Im-

proving read performance of phase change memories via write

cancellation and write pausing,” in HPCA-16, 2010.

[7] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and

energy efficient main memory using phase change memory

technology,” in ISCA, 2009.

[8] S. Cho and H. Lee, “Flip-n-write: A simple deterministic

technique to improve pram write performance, energy and

endurance,” in MICRO-2009.

[9] A. Huang, “The trusted pc: skin-deep security,” Computer,

vol. 35, no. 10, 2002.

[10] A. B. Huang, Hacking the Xbox: An Introduction to Reverse

Engineering. No Starch Press, 2003.

[11] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan,

“Side-channel vulnerability factor: A metric for measuring

information leakage,” in ISCA-2012.

[12] A. Webster and S. Tavares, “On the design of s-boxes,” in Ad-

vances in Cryptology CRYPTO 85 Proceedings, ser. Lecture

Notes in Computer Science, 1986, vol. 218.

[13] Suh et al., “Efficient memory integrity verification and en-

cryption for secure processors,” in MICRO-2003.

[14] C. Yan, B. Rogers, D. Englender, D. Solihin, and

M. Prvulovic, “Improving cost, performance, and security of

memory encryption and authentication,” in ISCA-2006.

[15] H. Lipmaa, P. Rogaway et al., “Ctr-mode encryption,” 2000.

[16] B. Rogers, S. Chhabra et al., “Using address independent seed

encryption and bonsai merkle trees to make secure processors

os-and performance-friendly,” in MICRO-2007.

[17] S. Chhabra and Y. Solihin, “i-nvmm: A secure non-volatile

main memory system with incremental encryption,” in ISCA-

2011.

[18] J. Kong and H. Zhou, “Improving privacy and lifetime of pcm-

based main memory,” in DSN-2010.

[19] Y. Choi et al., “A 20nm 1.8v 8gb pram with 40mb/s program

bandwidth,” in ISSCC, 2012.

[20] M. K. Qureshi, J. Karidis, M. Franceschini et al., “Enhancing

lifetime and security of pcm-based main memory with start-

gap wear leveling,” in MICRO-42, 2009.

[21] N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security refresh:

Prevent malicious wear-out and increase durability for phase-

change memory with dynamically randomized address map-

ping,” in ISCA-2010.

[22] A. Hay, K. Strauss, T. Sherwood et al., “Preventing pcm banks

from seizing too much power,” in MICRO-2011.

[23] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M. Frances-

chini, “Practical and secure pcm systems by online detection

of malicious write streams,” in HPCA-2011.

