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ABSTRACT
Data-intensive computing applications are using more and more
memory and are placing an increasing load on the virtual mem-
ory system. While the use of large pages can help alleviate the
overhead of address translation, they limit the control the operat-
ing system has over memory allocation and protection. We present
a novel device, the SpecTLB, that exploits the predictable behav-
ior of reservation-based physical memory allocators to interpolate
address translations.

Our device provides speculative translations for many TLB
misses on small pages without referencing the page table. While
these interpolations must be confirmed, doing so can be done in
parallel with speculative execution. This effectively hides the ex-
ecution latency of these TLB misses. In simulation, the SpecTLB
is able to overlap an average of 57% of page table walks with suc-
cessful speculative execution over a wide variety of applications.
We also show that the SpecTLB outperforms a state-of-the-art TLB
prefetching scheme for virtually all tested applications with signif-
icant TLB miss rates. Moreover, we show that the SpecTLB is
efficient since mispredictions are extremely rare, occurring in less
than 1% of TLB misses. In essense, the SpecTLB effectively en-
ables the use of small pages to achieve fine-grained allocation and
protection, while avoiding the associated latency penalties of small
pages.

Categories and Subject Descriptors
C.0 [General]: Modelling of computer architecture; C.4
[Performance of systems]: Design studies; D.4.2 [Operating Sys-
tems]: Virtual Memory

General Terms
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Keywords
TLB, Memory Management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’11, June 4–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

1. INTRODUCTION
The memory capacity of modern computers is growing at a much

faster rate than the size of translation-lookaside buffers (TLBs).
Therefore, TLB misses are becoming more frequent and address
translation is an increasingly significant performance bottleneck.
Recent work has shown that the impact of address translation on
overall system performance ranges from 5-14% even for nominally
sized applications in a non-virtualized environment [5]. Larger ap-
plications have even higher overhead, approaching 50% in some
cases [17].

Virtualization compounds address translation overhead. Nested
paging, a popular mechanism for hardware supported memory
virtualization, increases virtual memory overhead dramatically.
Translating a single guest virtual address to a machine physical ad-
dress can take as many as twenty-four memory accesses on x86-64.
Consequently, the overhead of virtual memory increases to up to
89% for real-world workloads when using nested paging [5].

The use of large pages reduces the performance overhead of vir-
tual memory by increasing TLB coverage. Each entry in the TLB
that holds a large page covers a larger region of virtual memory,
so the entire TLB is able to translate a larger region of the address
space. However, this increased coverage does not come for free.

The page is the unit of a program’s address space that the oper-
ating system can allocate and protect. The operating system must
allocate an entire page of physical memory at a time, regardless of
how much of that space will be used by the application. Always
allocating large pages leads to excessive physical memory use if a
program fragments its virtual memory use. More critically, appli-
cation permissions (read/write/execute) must be consistent across
an entire page, large or small. Finally, the operating system can tell
if memory has been modified or accessed on a page granularity. It
uses this facility to know when to write back portions of memory
mapped files. This means that if large pages are used for memory
mapped files, the operating system must write back the entire large
page even if only a single byte was modified.

On x86-64, pages are only available in three sizes: 4KB, 2MB
and 1GB. The large gap between these sizes makes page size selec-
tion critical. Using too small of a page overburdens the TLB, while
using too large of a page can waste physical memory and have high
I/O overhead. The proper page size for a region of memory may
change from application to application or even from execution to
execution. Therefore, some modern operating systems take an au-
tomatic approach to selecting page size.

FreeBSD’s reservation-based physical memory allocator uses
small pages for all memory by default. After a program uses ev-
ery 4KB page within an entire 2MB region of virtual memory, that
contiguous region is promoted to a large page. To prepare for this,
the operating system places small pages that might be promoted in
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the future into large page reservations. In a reservation, 4KB pages
are aligned within a 2MB region of physical memory correspond-
ing to their alignment within their 2MB region of virtual memory.
This means that within a reservation, consecutive virtual pages will
also be consecutive physical pages [19].

Processor architectures must evolve to meet the demands of
modern operating systems [18]. The challenges involved in address
translation require innovative architectural solutions that provide
support for such reservation-based physical memory allocators. In
this paper, we present the SpecTLB, a novel TLB-like structure that
exploits the contiguity and alignment generated by a reservation-
based physical memory allocator to interpolate address translations
based on the physical address of nearby pages. While the under-
lying page table still must be walked to verify these speculative
translations, this walk can be done concurrently with speculative
memory access and execution. This new capability allows the op-
erating system to maintain fine-grained protection and allocation
over memory while hiding the latency of the resulting TLB misses.

We show that the SpecTLB is able to eliminate the latency
penalty from a majority of TLB misses with an unmodified version
of FreeBSD. However, one of the key contributions of the SpecTLB
is its ability to achieve large-page like performance when large
pages are impractical to use, such as in virtualization. Traditional
hypervisors implement I/O by marking pages of the guest physi-
cal address space that contain memory mapped I/O as unavailable.
When the guest system accesses them, the hypervisor is invoked
which emulates the I/O device. Ideally, the physical memory space
of a virtualized guest would be stored as a small number of 1GB
pages. However, the guest physical pages that the guest operating
system will use for I/O are fixed, defined by the x86 architecture
itself. Therefore, the hypervisor must have fine-grained protection
control over those pages. With a speculative TLB, this space can
be stored in a 1GB reservation with both data and emulated I/O
pages mixed together. All accesses are made speculatively, as if
they were to a data page. Therefore, all guest physical memory ac-
cesses can proceed without blocking for a TLB miss. If the address
turns out to be part of a data region, the speculative work is com-
mitted. However, if an address is part of an emulated I/O region,
the speculative execution will not be committed, and the hypervisor
will be invoked as before.

We evaluate the SpecTLB using a microarchitecture-
independent simulation. We quantify how often TLB misses
are predictable and how many MMU-related memory accesses
can be parallelized with our system. Our results show that the
SpecTLB can remove 40% of the high-latency DRAM accesses
related to memory management from the critical path of execution.
Moreover, prediction accuracy is very high, exceeding 99%
for most benchmarks. Finally, a SpecTLB only needs to be of
moderate size, approaching maximum hit-rate with tens of entries
on our benchmarks.

Additionally, we show that the SpecTLB compares well against
TLB prefetching. We simulate a previously described TLB
prefetching scheme [12] and show that our system adapts more
readily to applications with random access patterns and performs
unused speculative work less frequently.

The rest of this paper is organized as follows. Section 2 de-
scribes the format of the x86-64 page table and the operation of a
reservation-based physical memory manager. Section 3 discusses
the design of the SpecTLB. Section 4 describes our simulator. Sec-
tions 5 and 6 discuss our simulation results for applications running
natively and under nested paging, respectively. Section 7 discusses
related work. Finally, we conclude in Section 8.

63:48 47:39 38:30 29:21 20:12 11:0
se L4 idx L3 idx L2 idx L1 idx page offset

Figure 1: Decomposition of the x86-64 virtual address.

2. BACKGROUND
The SpecTLB is intricately tied to the operation of address trans-

lation and pysical memory allocation. This section provides back-
ground information that explains how traditional x86 address trans-
lation works, how address translation is extended to handle virtu-
alization, and how a reservation-based physical memory allocator
operates. This background provides context to help explain how
the SpecTLB is able to improve performance by hiding the latency
of TLB misses.

2.1 x86 Address Translation
All x86 processors since the Intel 80386 have used a radix tree

to record the mapping from virtual to physical addresses. Although
the depth of this tree has increased, to accommodate larger physi-
cal and virtual address spaces, the procedure for translating virtual
addresses to physical addresses using this tree is essentially un-
changed. A virtual address is split into a page number and a page
offset. The page number is further split into a sequence of indices.
The first index is used to select an entry from the root of the tree,
which may contain a pointer to a node at the next lower level of the
tree. If the entry does contain a pointer, the next index is used to
select an entry from this node, which may again contain a pointer
to a node at the next lower level of the tree. These steps repeat until
the selected entry is either invalid (in essence, a NULL pointer in-
dicating there is no valid translation for that portion of the address
space) or the entry instead points to a data page using its physical
address. In the latter case, the page offset from the virtual address
is added to the physical address of this data page to obtain the full
physical address. In a simple memory management unit (MMU)
design, this procedure requires one memory access per level in the
tree.

Figure 1 shows the precise decomposition of a virtual address by
x86-64 processors [1]. Standard x86-64 pages are 4KB, so there
is a single 12-bit page offset. The remainder of the 48-bit virtual
address is divided into four 9-bit indices, which are used to select
entries from the four levels of the page table. The four levels of
the x86-64 page table are named PML4 (Page Map Level 4), PDP
(Page Directory Pointer), PD (Page Directory) and PT (Page Table).
In this paper, however, for clarity, we will refer to these levels as
L4 (PML4), L3 (PDP), L2 (PD) and L1 (PT). Finally, the 48-bit
virtual address is sign extended to 64 bits (the se field). As the
virtual address space grows, additional index fields (e.g., L5) may
be added, reducing the size of the sign extension.

An entry in the page table is 8 bytes in size regardless of its level
within the tree. Since a 9-bit index is used to select an entry at
every level of the tree, the overall size of a node is always 4KB,
the same as the page size. Hence, nodes are commonly called page
table pages. The tree can be sparsely populated with nodes—if at
any level, there are no valid virtual addresses with a particular 9-bit
index, the sub-tree beneath that index is not instantiated. For exam-
ple, if there are no valid virtual addresses with L4 index 0x03a,
that entry in the top level of the page table will indicate so, and the
262,657 page table pages (1 L3 page, 512 L2 pages, and 262,144
L1 pages) beneath that entry in the radix tree page table will not
exist. This yields significant memory savings, as large portions of
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Figure 2: An example page walk for virtual address (0b9,
00c, 0ae, 0c2, 016). Each page table entry stores the
physical page number for either the next lower level page ta-
ble page (for L4, L3, and L2) or the data page (for L1). Only
12 bits of the 40-bit physical page number are shown in these
figures for simplicity.

the 256 TB virtual address space are never allocated for typical ap-
plications.

Figure 2 illustrates the radix tree page table walk for the virtual
address 0x0000 5c83 15cc 2016. For the remainder of the
paper, such 64-bit virtual addresses will be denoted as (L4 index,
L3 index, L2 index, L1 index, page offset) for clarity. In this case,
the virtual address being translated is (0b9, 00c, 0ae, 0c2,
016). Furthermore, for simplicity of the examples, only 3 hex-
adecimal digits (12 bits) will be used to indicate the physical page
number, which is actually 40 bits in x86-64 processors.

As shown in the figure, the translation process for this address
proceeds as follows. First, the page walk hardware must locate the
top-level page table page, which stores L4 entries. The physical
address of this page is stored in the processor’s CR3 register. In
order to translate the address, the L4 index field (9 bits) is extracted
from the virtual address and appended to the physical page num-
ber (40 bits) from the CR3 register. This yields a 49-bit physical
word address that is used to obtain the appropriate 8-byte L4 entry
(offset 0b9 in the L4 page table page in the figure). The L4 entry
may contain the physical page number of an L3 page table page
(in this case 042). In which case, the process is repeated by ex-
tracting the L3 index field from the virtual address and appending
it to this physical page number to obtain the appropriate L3 entry.
This process repeats until the selected entry is invalid or specifies
the physical page number of the actual data in memory, as shown
in the figure. Each page table entry along this path is highlighted in
grey in the figure. The page offset from the virtual address is then
appended to this physical page number to yield the data’s physical
address. Note that since page table pages are always aligned on
page boundaries, the low order bits of the physical address of the
page table pages are not stored in the entries of the page table.

Given this structure, the current 48-bit x86-64 virtual address
space requires four memory references to “walk” the page table
from top to bottom to translate a virtual address (one for each level
of the radix tree page table). As the address space continues to
grow, more levels will be added to the page table, further increas-
ing the cost of address translation. A full 64-bit virtual address
space will require six levels, leading to six memory accesses per
translation.

Figure 3: The two-dimensional page walk used in nested pag-
ing. Each intermediate guest physical address must be trans-
lated through the hypervisor page table.

Alternatively, an L2 entry can directly point to a contiguous and
aligned 2MB data page instead of pointing to an L1 page table page.
In Figure 2, virtual address (0b9, 00d, 0bd, 123f5d7) is
within a large page. This large-page support greatly increases max-
imum TLB coverage. In addition, it lowers the number of memory
accesses to locate one of these pages from four to three. Finally, it
greatly reduces the number of total page table entries required since
each entry maps a much larger region of memory. Similarly, an L3
entry can directly point to a 1GB page.

2.2 Nested Paging
To reduce virtualization overhead, AMD and Intel have imple-

mented nested paging on recent processors [5, 26]. Nested paging
uses two sets of page tables to translate the virtual addresses used
by programs in guest virtual machines to host physical addresses.
A process running in the guest accesses memory through a guest
virtual address. This is first translated into an intermediate “guest
physical address” through the guest’s page table. Then, the guest
physical address is itself translated into a host physical address us-
ing the hypervisor’s page table.

On a TLB miss, the guest virtual address must first be translated
to a guest physical address, then to a host physical address. This
process is complicated by the fact that the guest page table uses
guest physical addresses to point to each lower level of the page
table. These references must themselves be translated. An example
of this is shown in Figure 3. The guest page table walk is shown
vertically, starting with the guest CR3 register in the upper left and
proceeding downwards. However, each pointer in the guest page
table must be translated through the hypervisor page table. These
translations are shown as the five horizontal page table walks (hL4
through hL1). Overall, twenty-four accesses are required to various
page tables per guest TLB miss.

To reduce the number of page table references required, AMD
has introduced a Nested TLB (NTLB). This caches the results of
the hypervisor translations from guest to host physical addresses
for the first four translations that are for the guest page table, al-
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Figure 4: An example of a typical nested page walk.

lowing a nested page walk to be skipped on a NTLB hit, as shown
in Figure 4. The NTLB does not cache the fifth translation, since
those translations are already cached by the normal system TLB,
which is far larger than the NTLB.

The cost of the fifth hypervisor translation can be reduced by us-
ing large pages in the hypervisor table. This reduces the number of
memory or cache references from four to three. Ideally, a hyper-
visor would use a page size that is close in magnitude to the size
of the entire guest physical memory space, such as the 1GB page
available in x86-64. However, the hypervisor emulates guest I/O
devices using permissions in the hypervisor page table. This pre-
cludes the use of very large pages because memory mapped I/O, in-
cluding devices using fixed addresses within the “ISA hole”, must
be emulated by the hypervisor using permission bits, which can
only be set on a page granularity.

2.3 FreeBSD Reservation System
The ability to dynamically select the optimal page size is im-

portant because incorrect page size selection (either too big or too
small) can have significant overhead in execution time. For exam-
ple, in 2009, Google identified “dynamic huge pages, which can
be assembled and broken down on demand” as a key objective for
their Linux kernel work [8]. Allocating a large page when only a
small part of it will be used has the obvious effect of wasting phys-
ical memory. However, a more important side-effect is increased
I/O traffic. Since the OS can only track application memory use on
a page granularity, it must write back an entire page to disk when
a memory mapped file is modified. The overhead of writing back
two megabytes to disk when only a single byte is changed can over-
whelm the performance gained by using large pages [19].

One approach to dynamically selecting page size is a reservation-
based physical memory allocator, as first suggested by Talluri and
Hill [24]. Navarro, et al. ([19]) extended this idea to a practical
memory allocation system and implemented it under FreeBSD. For
example, this extended design reclaims partially filled reservations,
allowing the empty pages to be used by other processes.

When a process allocates virtual memory, through mmap() or
indirectly through malloc(), the operating system does not im-
mediately allocate any physical memory. Instead, it creates a book-
keeping entry that describes the allocation and what virtual ad-
dresses are being used. Physical memory is only allocated and the
page table updated when the program first tries to access that virtual
memory. Since the page table does not have mappings for those vir-
tual addresses until then, that first access causes a page fault. Then,
the fault handler locates the bookkeeping entry associated with the
faulting virtual address and actually allocates memory.

The fault handler uses that bookkeeping entry to predict if the
virtual memory space used is likely to be contiguous and larger
than a large page. For example, a memory mapped 5KB file will
not use an entire 2MB page, so it will not be placed in a reservation.
If the handler decides that a superpage is appropriate, it will reserve
an entire large physical page, and allocate the small page within it

that is virtually and physically aligned to the faulting virtual ad-
dress. When the program faults again on the same region of virtual
memory, the fault handler will recognize that the address is part of
a reservation, and it will again return the virtually and physically
aligned small page within that reservation. When all small pages in
the reservation are allocated, the mapping is promoted, that is, the
small page mappings are replaced by a single large page mapping.
However, under memory pressure, this reservation may be broken
down if it is never fully utilized. The virtual memory system can
then return the unused pages back to the free pool of small pages.

3. PAGE TABLE SPECULATION
The SpecTLB is a translation-lookaside buffer that tracks par-

tially filled large-page reservations instead of large pages them-
selves. On a TLB miss, the SpecTLB is consulted to see if the
virtual page that missed in the TLB may be part of a large page
reservation. If so, the physical address of the missing page can
be interpolated between the starting and ending physical addresses
of the reservation using the small page’s position within the large
reservation.

The primary difference between the SpecTLB and a traditional
TLB is that mappings generated by the SpecTLB are predictions;
they are not guaranteed to be correct. An entry in the SpecTLB
indicates that the operating system may have placed small pages
within a particular physical reservation in the past, but it does not
guarantee that any particular virtual page was placed in the reser-
vation or even that the page is valid. This distinction means that
a TLB miss that does hit in the SpecTLB must still be validated
against the underlying page table. However, the interpolated trans-
lation can be used for speculative execution while the page walk
itself continues in parallel. If the interpolated translation matches
the result from the page walk, the speculative work can be com-
mitted and execution continues. If the results differ, the speculative
work is not committed and execution restarts from the first incor-
rect prediction. While the SpecTLB does not reduce the overall
memory bandwidth required by the MMU, it does reduce the la-
tency penalty from TLB misses by removing the page walk from
the critical path of execution.

This relaxed requirement of correctness allows two different
variants of the SpecTLB to be built: one that requires software sup-
port and one that does not. We describe both in this section.

3.1 Explicit page table marking
The SpecTLB maintains a set of large page reservations it be-

lieves the operating system is assigning to the current process. This
set is maintained by monitoring which small page page table en-
tries are marked by the operating system as being part of a large
page reservation. These marks are implemented using one of the
currently unused bits in bottom level (L1) page table entries in x64-
64. They do not effect how these entries are translated; they are still
standard small pages and they are only used to maintain the con-
tents of the SpecTLB.

310



For purposes of describing the operation of the SpecTLB, we
will use a similar simplified address representation as described in
Section 2.1. Virtual addresses are split up into four indices and
an offset: e.g., (0b9, 00c, 0ae, 0c2, a2e). Physical ad-
dresses are similarly divided into the nine-bit parts of a physical
page number and a page offset: e.g., {0ac, 0c2, a2e}. For
simplicity, only eighteen bits (two parts) of the 40-bit physical page
number are used in the following description.

The SpecTLB associates the bits of the virtual address corre-
sponding to a 2MB virtual page number with the physical address
of the reservation Note that only the upper bits of the transla-
tion, those that select a particular large physical or virtual page
are stored. A SpecTLB entry for a particular address is effectively
whatever the standard TLB entry would be if that address were part
of a large page.

On a subsequent TLB miss, the SpecTLB is searched like a nor-
mal TLB. If a subsequent TLB miss is for virtual address (0b9,
00c, 0ae, 0c3, 001), the newly added SpecTLB entry will
match. This means that the new virtual address is part of that same
virtual large page and that the operating system likely placed the
corresponding physical page within the physical reservation. The
speculative translation concatenates the stored physical page num-
ber of the matching reservation with the large page offset from the
virtual address, yielding {0ac, 0c3, 001}. This speculative
translation is provided to the core, which uses it to speculatively
execute subsequent instructions.

Of course, this translation may not be valid. The underlying
reservation may have been broken down by the operating system or
the virtual address may not even be valid. Therefore, while the pro-
cessor can use this translation, it must do so speculatively. While
program execution continues, the standard x86 page walk happens
concurrently. If the predicted physical address matches the actual
address, the speculative work may be committed. Otherwise, exe-
cution must roll back to the point of the misprediction. This roll-
back capability is important because it is useful to be able to make
predictions even on reservations that were previously broken down.
In this case, the pages that were allocated when the reservation still
existed will still be stored in predictable physical page numbers.

Since SpecTLB translations are always confirmed against the un-
derlying architectural page table, implementations can be more lazy
about SpecTLB invalidation than they can be with a TLB. Stale en-
tries do not lead to incorrect operation, as they do in a TLB. Invalid
translations generated by stale entries will be corrected automati-
cally. Our implementation only invalidates the SpecTLB on a con-
text switch, though even this is not strictly necessary.

The SpecTLB can support multiple reservation sizes by main-
taining a structure for both 2MB and 1GB reservations. The con-
tents of the 1GB structure is maintained by monitoring the reserva-
tion bit of 2MB pages while the contents of the 2MB structure is
maintained by monitoring the bit in 4KB pages.

3.2 Heuristic reservation detection
The above description of the SpecTLB requires explicit mark-

ing of the page table. This requires both a modification of the x86
page table architecture and the operating system itself. However, it
is possible to build a variant of the SpecTLB that detects reserva-
tions and requires no modification to existing system software that
supports large page reservations.

To allow a region of memory to be promoted to a large
page, small pages must be aligned within their large page reser-
vation. In the example above, virtual address (0b9, 00c,
0ae, 0c2, a2e) is mapped to physical address {0ac, 0c2,
a2e}. The virtual page’s offset within a 2MB virtual page is

0c2, equal to the physical page’s offset within a 2MB phys-
ical page. Specifically, (virtual address)[20:12] ==
(physical address) [20:12]. This equality can be used
as a heuristic to signal that the operating system has placed this
page within a reservation. While it has a false positive rate of 1:512
(assuming 4K pages that are not part of a reservation are placed
randomly), it has a zero false negative rate.

The heuristic based SpecTLB uses this detection scheme to
maintain its contents. Translations are inserted when (virtual
address)[20:12] == (physical address)
[20:12] and entries are removed when they lead to false
predictions.

3.3 Memory side-effects
TLB entries in modern processors store the effective memory

type of the memory region, enabling the processor to know that the
memory region has special properties, such as being uncacheable
and/or being used for I/O. Care must be taken when memory ac-
cesses are made to such regions, as they can have irreversible side
effects.

With the use of a SpecTLB, it is important to prevent memory
references made using speculative translations from causing irre-
versible side effects before the translation has been validated. This
may occur when a reservation is broken down and pages are re-
claimed from that reservation. The reclaimed pages could be re-
tasked for any purpose, including for I/O. With heuristic reservation
detection, it is possible to improperly speculate on these reclaimed
regions. Therefore, hardware mechanisms may be necessary to pre-
vent speculative I/O accesses.

Tagging requests throughout the memory system as being spec-
ulative should be sufficient to ensure safety. Current systems do
not need such a tag because speculative accesses are always made
to a page that is already known to be safe. While the exact archi-
tectural implementation is beyond the scope of this paper, this tag
could be used to prevent speculative accesses from reaching an I/O
controller or writing to memory. Additionally, this will allow new
speculative execution from other systems such as the prefetcher or
branch predictor to make similar memory accesses without going
through the TLB.

Alternatively, the explicit marking SpecTLB can avoid these
problems entirely by ensuring that uncachable and I/O memory is
never mapped into 2MB regions of memory that also contain data
pages with the reservation bit set. In effect, the reservation bit be-
comes a reservation-safe bit, indicating that speculative accesses to
nearby pages are safe.

3.4 Virtualization
The extra overhead of nested paging (see Section 2.1) magnifies

the possible benefit of the SpecTLB. While I/O emulation require-
ments preclude the use of 1GB pages in the hypervisor page table
(see Section 2.2), it is still possible to use 2MB pages within a 1GB
reservation. This means that even a small SpecTLB will be able
to keep track of all the reservations used by the hypervisor. Thus,
it can speculatively translate any guest physical address into a host
physical address.

In the nested page walk, if there is a NTLB miss, the SpecTLB
provides a speculative translation that allows the next guest page
table entry to be read immediately. Similarly, the SpecTLB can
provide a speculative translation for the fifth hypervisor translation
(guest physical to host physical translation for the underlying data)
that is never provided by the NTLB. We call this process “horizon-
tal speculation” (Figure 5). In our design, the nested page walk can
defer all accesses to the hypervisor page table until after the spec-
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Figure 5: Horizontal and diagonal speculation.

ulative page walk. These accesses are only needed to verify the
SpecTLB translations and can occur in parallel with other specula-
tive work. If any of the speculative translations end up being incor-
rect (primarily due to a region of memory being an emulated I/O
device), the speculative work is canceled and the page walk starts
over. In the common case, however, all the additional memory and
cache accesses to the hypervisor page table are removed from the
critical path of execution. This leaves five SpecTLB or NTLB ac-
cesses as the only additional unhidden latency of the nested page
walk above the native page walk.

The largest possible performance benefit from the SpecTLB is
seen when large page reservations are used in both the hypervisor
and the guest. In this case, the SpecTLB is modified to associate the
guest virtual address of a guest reservation directly to a host phys-
ical address. This is analogous to how the normal TLB functions.
On a TLB miss, the SpecTLB can immediately provide a specula-
tive host physical address while the entire nested page walk occurs
in parallel. We call this process diagonal speculation because both
the guest and hypervisor page table entries are skipped.

If a speculative diagonal translation is not available for a partic-
ular address, the CPU can perform horizontal speculation to hide
the latency from the nested portions of the walk.

4. METHODOLOGY
The actual execution time benefit of speculative execution de-

pends greatly on the parallelism of the underlying microarchi-
tecture. Instead of evaluating the SpecTLB against any partic-
ular current-generation machine, we used a microarchitecture-
independent simulation that shows the memory-level parallelism
that we expose. As memory systems continue to become more and
more parallel, the SpecTLB will have an increasingly significant
impact on the overhead of address translation.

4.1 Full-system simulator
The AMD SimNow [4] full-system simulator was used to run

various benchmarks under an unmodified version of FreeBSD 8.0-
Release for x86-64. A custom analyzer plugin to SimNow records
each virtual memory access made by the simulated system along
with the associated physical address and page size. This trace in-
cludes all memory loads and stores made by the guest operating
system and processes, but it does not include instruction or page
table loads. Instruction loads are not modeled by SimNow, so they

are not included in this study. Page table loads are simulated by
the SpecTLB simulator. Context switches are monitored by track-
ing the value of the CR3 register. These trigger TLB invalidations
in our simulator. Finally, our custom analyzer plugin to SimNow
counts the total number of instructions executed during the trace.

4.2 Benchmarks
Traces were collected for several popular benchmarks, in-

cluding the SPEC CPU2006 suite [11], SPECjbb2005 [23], the
NASA Advanced Computing Parallel Benchmarks (NAS) suite [2],
benchw [7] and an ad-hoc Python microbenchmark. However, not
all of the benchmarks in the SPEC CFP2006 suite could be com-
piled with the standard tool chain in FreeBSD 8.0, so soplex, cal-
culix and wrf are not included in this study. SPECjbb2005 was
run on one warehouse, and Sweep3d was run on a 150x150x150
grid. The NAS benchmarks are configured to use a class-C problem
size for all benchmarks but dc, which was too large to run within
our simulator. The class-B size was used for this benchmark. The
benchw benchmark functions similarly to TPC-H. Specifically, this
benchmark executes a JOIN between two tables of approximately
one gigabyte in size under PostgreSQL 8.4 using default tunings.
The Python benchmark is a custom microbenchmark that initializes
a large array of long integers.

4.3 SpecTLB Simulation
A custom memory system simulator was built to simulate the

SpecTLB design with heuristic reservation detection, both in nested
and native execution. This simulator models an MMU that closely
resembles that of the Family 10h AMD Opteron [5]. It includes
a 64-entry, fully-associative L1 TLB with random replacement, a
512-entry, 4-way set associative L2 TLB with LRU replacement
for small pages, a 128-entry L2 TLB for large pages, a 16-entry
Nested TLB, and a 24-entry Page Walk Cache.

A 1MB L2 cache was included in the model, simulated using the
Dinero IV cache simulator [9]. Both application data accesses and
MMU page table accesses are simulated using a shared L2 cache
model. Instruction loads are not instrumented and are not included
in this study. The L1 cache was not simulated, since the page walk
hardware does not use it on the Opteron.

The simulator reads the memory trace, running each virtual ad-
dress through the TLB and data cache model. On a TLB miss, the
SpecTLB is searched to see if a possible matching reservation can
be found. If so, a speculative physical page number is generated.
If this page number matches the actual page number stored in the
trace, the speculation is correct. The MMU simulator then performs
the native or nested page walk and keeps track of memory accesses
made to the page table.

Since explicit reservation marking is not yet included in any op-
erating system, the heuristic based SpecTLB is implemented. As a
baseline, the number of reservations tracked by the SpecTLB is set
at 24, the number of entries in the AMD Page Walk Cache. This
size is varied from one to forty-eight.

We included a model of the distance-based TLB prefetcher de-
scribed by Kandiraju and Sivasubramaniam [12] in our simulator
for comparison. Our model was configured to use 32 entries for
both the distance and prefetch buffers, which is the size explored
by Kandiraju and Sivasubramaniam that most closely matched the
size of our simulated SpecTLB. We had to modify the original de-
sign of the TLB prefetcher to support multiple page sizes, which
was not addressed by the original paper. We chose a simple ap-
proach, replicating the entire prefetcher for each page size. After
each TLB miss which is filled by a page of a particular size, that
size TLB prefetcher attempts to fetch the next page of that size that
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will be used. This is an optimistic design since it greatly increases
the amount of history tracked by the overall system. A more practi-
cal implementation would combine prefetch history from different
page sizes which could lead to conflict between entries.

For nested operation, we assume that the 1GB SpecTLB is large
enough to hold all reservations in use by the hypervisor and is never
flushed.

5. SIMULATION RESULTS
This section evaluates the SpecTLB using the aforementioned

applications. The ability to accurately predict translations and hide
MMU-related cache and DRAM accesses are examined. These re-
sults show that even a small SpecTLB is effective at accurately
predicting the majority of translations for many benchmarks and
enabling parallelization of much of the overhead of address trans-
lation.

5.1 TLB miss parallelization
When a translation is able to be accurately predicted, all mem-

ory and page walk cache accesses required to serve the TLB miss
are removed from the critical path of execution. Instead, the pre-
dicted translation can be used immediately to enable the memory
reference to proceed in parallel with the page walk.

Table 2 shows the potential TLB miss parallelization benefits of
the SpecTLB. The first columns of the table show the average num-
ber of instructions between TLB misses as well as the average num-
ber of memory accesses and DRAM accesses made by the program
between TLB misses. Some applications, like povray, incur a TLB
miss for every 1.3 DRAM accesses. Since TLB miss handling is
memory intensive, we report the frequency of TLB misses in rela-
tion to memory system activity.

A speculative translation is only attempted when a matching
reservation is found. The rate at which this happens varies sig-
nificantly by workload. As shown in Table 2 in the attempts per
walk column, some benchmarks, such as mcf find a reservation
and attempt a speculative translation over 99% of the time. Oth-
ers, such as libquantum never attempt a speculative translation.
Over half the benchmarks have speculation rates greater than 62%.
The ability to speculatively translate addresses depends on the lo-
cality in which a program uses its address space and if it is used
in a fragmented manner, leading to partially filled reservations that
were never able to be promoted to a large page.

Even using heuristic-based reservation detection, most bench-
marks have a prediction accuracy above 99%. While some bench-
marks have particularly low prediction accuracies (less than 35%
in the case of dc.B), speculation happens comparatively rarely in
these workloads. In this case, a speculative prediction is only at-
tempted for 8.3% of TLB misses. The low rate of speculation here
is likely due to its small working set, which would lead to compar-
atively few reservations being made. An explicit reservation mark-
ing based SpecTLB would eliminate these mispredictions.

When addresses are accurately predicted, the page table walk
can be overlapped with speculative execution using the predicted
address. A high prediction rate combined with high accuracy al-
lows useful work to be performed in parallel with much of the
overhead of virtual memory. This is quantified by counting the
number of total L2 data cache misses made by the MMU as well
as the fraction that are overlapped through successful prediction.
Since DRAM accesses are so slow, this fraction should translate
into a proportional speedup of overall TLB miss handling. Tested
benchmarks have an average of 40% of their MMU-related DRAM
accesses overlapped with speculative execution by successful pre-
diction. The benchmark which sees a particularly large number

of TLB misses per program DRAM access, mcf, has 96% of its
MMU-related DRAM accesses overlapped.

5.2 Overlap opportunity
Superscalar microprocessors can speculatively execute only a

limited number of instructions as constrained by the size of their re-
order buffer. If the instructions after a TLB miss complete quickly,
the reorder buffer may fill before the parallelized page walk com-
pletes. The processor then has to stall until the page walk is com-
plete, as it does without the SpecTLB. However, the load or store
which triggered the TLB miss is by definition to an address not re-
cently accessed, or else it would have hit in the TLB. Therefore,
it is less likely to be cached and may be a long-latency operation
itself. The high-latency TLB miss can be overlapped with the high-
latency load or store before the reorder buffer starts to fill.

To examine this, our simulator was instrumented to determine
the fraction of memory operations that cause TLB misses and a
read miss in the L2 cache for the data itself. The per-benchmark
average of this fraction is 40% and is as high as 93% (sphinx3).
These results are presented for all workloads in Table 2. These
long-latency read operations present significant latency in a single
instruction that can be executed while the parallelized page walk
completes.

5.3 Misprediction Cost
On a misprediction, unnecessary work will be performed, which

may lead to increased resource contention and power consumption.
However, since the SpecTLB does not provide a speculative trans-
lation when a request is not part of a tracked reservation, mispre-
diction rates are extremely low (Table 2). Therefore, even when the
SpecTLB is unable to provide predicted translations, the penalty
from its use should be low. Misprediction rates are below 1% for
over half the benchmarks tested.

The mispredictions that are present are either for pages that are
not present, that were allocated after a reservation was broken down
or were made using a incorrect SpecTLB entry. Incorrect SpecTLB
entries are generated when a page is aligned by chance, not because
it was part of a reservation. Using explicit marking avoids these
incorrect entries.

5.4 Sizing and replacement considerations
Even a relatively small SpecTLB is effective. Each entry covers

512 small pages, or 2MB of virtual address space, so even a small
device is effective. For SPECjbb2005, the benchmark that requires
the most entries, reducing device size from 24 to 12 entries only
reduces successful speculation rate by 3%. Other benchmarks are
impacted even less. Additionally, we simulated both LRU and ran-
dom replacement policies and found both to be equally effective.

5.5 Comparison to TLB prefetching
Both the SpecTLB and TLB prefetching are speculative tech-

niques for hiding the latency of TLB misses. The SpecTLB uses
large-page reservations to predict the translation for the current
TLB miss, and the TLB prefetcher uses access patterns to predict
future TLB misses. The SpecTLB does speculative work in the
form of the instructions that are executed while a speculative trans-
lation is confirmed. The TLB prefetcher does speculative work in
the form of page table walks to prefetch page table entries.

When simulated with the parameters described in Section 4, the
SpecTLB handles a larger fraction of TLB misses than the TLB
prefetcher does in all but seven of the benchmarks tested (dc.B,
ep.C, bzip2, GemsFDTD, lbm, libquantum and milc). Of these,
the TLB prefetcher handles less than 20% of TLB misses for all
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benchmarks other than ep.C, bzip2 and milc. These three bench-
marks are well suited for a TLB prefetcher because they have a
very regular access pattern. However, this regular access pattern
also means that TLB miss rates are comparatively low, and thus ac-
celerating address translation will have a proportional small impact
on execution time.

Finally, simulation shows that while misprediction rates are very
low for the SpecTLB (less than 1% for over half the benchmarks),
the TLB prefetcher must perform a large number of unnecessary
page walks to achieve a reasonable hit rate. For example, with a
TLB prefetcher, the MMU performs 1.118 page walks per TLB
miss for PostgreSQL, an application which has a relatively high
TLB miss rate. Over half the benchmarks tested require 1.3 page
walks per TLB miss.

While TLB prefetching does not rely on any specific operating
system behavior, it does require that applications access memory
in predictable patterns. As a result, the SpecTLB handles a higher
fraction of TLB misses for nearly all applications tested that have
significant TLB miss rates.

6. NESTED PAGING SUPPORT
Virtualization compounds the overhead of virtual memory by

forcing every guest physical address to be translated into a host
physical address. While the use of large pages in the guest reduces
this overhead, recent work has shown that the overall execution
time penalty as compared to native execution is still between 7-
14% [5]. In this section, we argue that diagonal and horizontal
speculation (see Section 3.4) can significantly reduce this overhead.

Figure 4 shows a timeline of a typical nested page walk. In the
common case, the Nested TLB translates the guest physical ad-
dresses of guest page table entries to host physical addresses. Since
the Nested TLB does not translate guest physical addresses of data
(non-page table) pages, the bottom level nested translation (nL0)
must be performed by walking the hypervisor page table.

If both the guest and hypervisor use large page reservations, di-
agonal speculation can allow this entire process to occur during
speculative execution. The rate at which diagonal speculation is
possible in nested paging is identical to the rate at which specu-
lation is possible in native execution. These results are shown in
detail in Table 2. However, when diagonal speculation fails or is
not possible, horizontal speculation can allow the nested phases of
the nested page walk to occur in parallel with speculative execution.

Table 1 shows the number of memory and DRAM accesses made
in each phase of the nested page walk as shown in Figure 4. These
results are split into those TLB misses where diagonal speculation
was successful and those where it was not. When diagonal specu-
lation is successful, all cache and DRAM accesses are overlapped
with speculative execution. When diagonal speculation is not suc-
cessful, horizontal speculation can overlap the memory accesses
in the nested (nL4, nL3, nL2, nL1, nL0) phases with speculative
work.

When the SpecTLB performs horizontal speculation, the hyper-
visor page walks (and the memory accesses contained in the nested
phases) do not contribute to the critical-path latency of the TLB
miss. The SpecTLB can immediately translate any guest physical
address into a speculative host physical address. This means that
all four guest page table entries can be loaded in succession, just
as in the native translation, without access to the hypervisor page
table. The five nested phases must be performed at some point to
verify that the speculative translations were correct, but these can
be done later in execution. As long as sufficient memory band-
width is available, this hides all of the additional latency generated
by using nested paging.

For example, on a TLB miss, the processor will use the SpecTLB
to translate the guest physical address of the gL4 page table entry
into a host physical entry. This entry is loaded, which provides
the guest physical address of the gL3 page table entry. Again, the
SpecTLB translates this into a host physical entry. This process re-
peats until the gL1 entry provides the guest physical address of the
underlying data. This is translated with a fifth and final SpecTLB
access, and the data is loaded. At this point, the nL4, nL3, nL2,
nL1 and nL0 phases are performed in parallel with speculative ex-
ecution and in any order.

7. RELATED WORK
The SpecTLB implements a very limited form of value predic-

tion. Martin, et al. show that simply verifying that the value
predicted and the value actually fetched match is not sufficient
to guarantee correctness on shared-memory multiprocessors [14].
One process could incorrectly predict a value while another pro-
cess modifies the underlying address. This could lead to a false
positive verification which could be a correctness violation under
some strict memory consistency models. Fortunately, the page ta-
ble uses a weak ordering consistency model since the TLB must be
explicitly be flushed when the page table is changed. When a TLB
flush occurs for a given address space, any speculative translations
not yet verified by the SpecTLB should be cancelled. This should
be sufficient to guarantee correctness. Romanescu, et al. discuss
memory consistency issues in virtual memory in more detail [20].
They show that in multithreaded applications, global TLB synchro-
nization may be necessary to guarantee correctness. This will also
be needed for the SpecTLB.

Talluri and Hill first proposed a reservation based memory al-
locator for using a partial-subblock TLB [24]. This device, like
the SpecTLB, provides direct support for translating small pages
within a large page reservation. However, unlike the SpecTLB, the
partial-subblock TLB explicitly tracks which small pages within
the reservation are valid. While this also increases TLB cover-
age compared to a standard TLB, the partial-sublock TLB needs
a much larger structure than the SpecTLB does. Each entry must
have a valid and modified bit for each small page within a large
page reservation. With the 4KB and 2MB page sizes explored in
this paper, 1024 bits per entry are required in a partial-subblock
TLB.

This explicit tracking approach also means that the partial-
subblock TLB is unable to hide access latencies that the SpecTLB
can. Assuming you do not preload each subblock TLB entry (which
would require accessing 512 page table entries for each TLB miss),
the subblock TLB must suffer a TLB miss and access to the page
table for each 4KB page upon first access to that page. In contrast,
the SpecTLB also hides the TLB miss latency of the first access
to each 4KB page in the region, as the mapping can be predicted
immediately.

Navarro, et al. extended this idea into a completely auto-
matic system for superpage management and implemented it under
FreeBSD [19]. Most critically, this extension developed the recla-
mation of partially filled superpage reservations. Additionally, their
work extended the system to support multiple page sizes and de-
fragmentation of physical memory. While these systems are trying
to create promotable reservations, as a by-product they also create
the contiguity in the page table that is exploited by the SpecTLB.

Earlier approaches to supporting superpages in general-purpose
operating systems, such as IRIX, Solaris, and HP-UX, relied upon
the program to explicitly specify a static page size for a region of
the virtual address space [10, 16, 15]. These operating systems
would then allocate and map the entire superpage at once. Conse-
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nL4 gL4 nL3 gL3 nL2 gL2 nL1 gL1 nL0
No diagonal L2 accesses 0.005 0.109 0.066 0.149 0.105 0.359 0.279 1.000 1.062
speculation DRAM accesses 0.000 0.048 0.033 0.075 0.049 0.161 0.142 0.372 0.199

After diagonal L2 accesses 0.000 0.029 0.028 0.033 0.031 0.044 0.057 0.946 0.946
speculation DRAM accesses 0.000 0.028 0.028 0.028 0.029 0.031 0.033 0.197 0.046

Table 1: Memory accesses to the page table in different phases of the nested page walk for an average of all benchmarks examined.
The table is split into those TLB misses where diagonal speculation was not attempted or failed and those where diagonal speculation
was successful.

quently, there would never be any partially filled reservations to be
exploited by the SpecTLB. However, in such systems, a program
had to be conservative in its use of superpages to avoid wasted
physical memory and increased I/O. In contrast, with FreeBSD’s
promotion-based approach, it is possible for the system to be very
aggressive in speculatively allocating reservations, most of which
may never be promoted, because of the low impact of breaking
reservations. Thus, the SpecTLB may have many opportunities
to exploit partially filled reservations in situations where the same
program running under these earlier operating systems would not
have used superpages.

Romer, et al. propose the creation of superpages by moving ex-
isting pages, previously scattered throughout physical memory, into
contiguous blocks [21]. While this process may be prohibitively
expensive for very large superpages, it may have more success with
the architecture described here that does not require a full reserva-
tion.

Saulsbury, et al. propose a prefetching scheme for TLBs that
preload pages based recently accessed pages [22]. Unlike the sys-
tem presented in this paper, their techniques require page table
modification. More recent work has proposed architecturally inde-
pendent prefetching techniques based on access patterns and inter-
core cooperation [12, 6]. We simulated the work of Kandiraju and
Sivasubramaniam [12] in Section 5.5.

Bhargava, et al. first described the AMD page walk cache and
their extensions to it to support virtualization [5]. Barr, et al.
explored the design space of these dedicated MMU caches and
showed that they are often successful at eliminating memory ac-
cesses for upper level page table entries [3].

Alternatively, page table accesses can be accelerated by replac-
ing the page table format with one that requires fewer accesses.
In terms of space, a radix tree-based page table can be an ineffi-
cient representation for a large, sparsely-populated virtual address
space. Liedtke introduced Guarded Page Tables to address this
problem [13]. In particular, Guarded Page Tables allow for path
compression. If there is only one valid path through multiple levels
of the tree, then the entry prior to this path can be configured such
that the page walk will skip these levels. Talluri and Hill presented
an alternate form of the inverted page table, the clustered page ta-
ble, that derives from their subblock-TLB [25]. This technique can
dramatically reduce the size of an inverted page table.

Aside from the prefetchers simulated in Section 5.5, these tech-
niques focus on reducing either the frequency of TLB misses or
their cost in terms of main memory accesses. In contrast, the
SpecTLB allows whatever cost a TLB miss has to be parallelized
with other work. It does not prevent the page table walk, it hides
its latency. Therefore, all of the hardware techniques discussed
above could be combined with the SpecTLB to reduce the memory
bandwidth required by the paralellized page table walks. They are
complementary to, not competitive with, the SpecTLB.

8. CONCLUSIONS
With memory capacity growing faster than TLB sizes, the in-

creasing footprint of modern applications will lead to higher and
higher virtual memory overhead. While much progress has been
made to accelerate TLB miss handling with various techniques
such as caching and large pages, the footprint and access pattern
of popular workloads is making address translation more and more
difficult. We have presented a device, the SpecTLB, that effectively
decouples the address translation from the allocation and permis-
sion setting of large pages. Our device exploits a reservation based
physical memory allocator to deliver much of the benefit of large
pages without incurring their limitations.

Operating systems that use reservation based memory allocation
are currently designed to use reservations in the hope that those
reservations will fill and memory will be promoted to a large page.
FreeBSD is tuned to reserve memory only when there is a possi-
bility that it will be able to promote a region to a large page. Our
results show that even with these tunings, there are enough partially
filled reservations that an accurate prediction can be made for over
62% of TLB misses for the majority of benchmarks tested. More-
over, we show that these predictions can enable 40% of the MMU
related DRAM accesses to be performed in parallel with data ac-
cess.

When compared to the TLB prefetcher, a different architectural
approach to hiding the latency of TLB miss handling, we show
that the SpecTLB is able to handle a higher percentage of TLB
misses in virtually all applications tested that have significant TLB
miss rates. Moreover, the SpecTLB is far more sensitive in when it
performs speculative work. It mispredicts translations less than 1%
of the time for most benchmarks while the TLB prefetcher causes
an 30% increase in the number of page walks which must be done.

Finally, we show that our device can hide the increased latency
from nested paging. Recent work has shown that nested paging
comes with significant performance penalty. While the use of very
large pages (1GB on x86-64) would greatly reduce the frequency of
TLB misses, they cannot typically be used because the hypervisor
needs to maintain fine-grained control over guest physical address
space permissions. Speculative address translation allows the per-
formance of large pages while maintaining fine-grained control.

Although neither Windows nor Linux currently implement a
reservation-based physical memory allocator, the limitations of the
current large page support in Linux are widely recognized [8].
Therefore, rather than restricting the scope of our work to devel-
oping hardware features that benefit the current versions of these
operating systems, this paper has stepped outside that box. It has,
instead, explored innovative hardware that complements a new ap-
proach to physical memory management that is now being used
by at least one operating system, FreeBSD. Arguably, this paper’s
results strengthen the case for other operating systems to adopt
a reservation-based approach to physical memory management,
because of the potential gains from synergistic hardware. More
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broadly, this paper provides a compelling example of the benefits
of coordinated innovation in hardware and software.
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