
System Software for Persistent Memory

Subramanya R Dulloor1,3 Sanjay Kumar1 Anil Keshavamurthy2 Philip Lantz1

Dheeraj Reddy1 Rajesh Sankaran1 Jeff Jackson1

1Intel Labs, 2Intel Corp, 3Georgia Institute of Technology

Abstract
Emerging byte-addressable, non-volatile memory technolo-

gies offer performance within an order of magnitude of

DRAM, prompting their inclusion in the processor mem-

ory subsystem. However, such load/store accessible Persis-

tent Memory (PM) has implications on system design, both

hardware and software. In this paper, we explore system

software support to enable low-overhead PM access by new

and legacy applications. To this end, we implement PMFS,

a light-weight POSIX file system that exploits PM’s byte-

addressability to avoid overheads of block-oriented storage

and enable direct PM access by applications (with memory-

mapped I/O). PMFS exploits the processor’s paging and

memory ordering features for optimizations such as fine-

grained logging (for consistency) and transparent large page

support (for faster memory-mapped I/O). To provide strong

consistency guarantees, PMFS requires only a simple hard-

ware primitive that provides software enforceable guaran-

tees of durability and ordering of stores to PM. Finally,

PMFS uses the processor’s existing features to protect PM

from stray writes, thereby improving reliability.

Using a hardware emulator, we evaluate PMFS’s perfor-

mance with several workloads over a range of PM perfor-

mance characteristics. PMFS shows significant (up to an or-

der of magnitude) gains over traditional file systems (such as

ext4) on a RAMDISK-like PM block device, demonstrating

the benefits of optimizing system software for PM.

1. Introduction
In recent years, NAND flash has helped bring down the his-

torically high performance gap between storage and mem-

ory [30]. As storage gets faster, the trend is to move it closer

to the CPU. Non-Volatile DIMMs (NVDIMMs), for instance,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EuroSys 2014, April 13-16, 2014, Amsterdam, ST, Netherlands.
Copyright c© 2014 ACM 978-1-4503-2704-6/14/04. . . $15.00.
http://dx.doi.org/10.1145/2592798.2592814

attach storage directly to the scalable memory (DDR) in-

terface [15, 38]. NVDIMMs are gaining popularity due to

their ability to provide low-latency predictable performance

at high rated IOPS [29, 38] But, despite being attached to

the CPU, large capacity NAND-based NVDIMMs are still

accessed as block devices [38] in a separate address space,

due to the inherent properties of NAND [36].

Platform

PMFS

PM(Volatile) DRAM

OS
VMM

Applications

OS

PMLib

Extended
Memory

CPU P
M

D
R
A
M

Direct to
PM

mmapmmap

Figure 1: PM System Architecture

However, this appears likely to change in the near future

due to emerging non-volatile memory technologies that are

suited for use as large capacity, byte-addressable, storage

class memory. Table 1 shows per-device characteristics of

some of these technologies. We refer to such memory as

Persistent Memory (PM).
PM has implications on system architecture, system soft-

ware, libraries, and applications [26, 27, 36, 40]. In this pa-

per, we address the challenge of system software support to

enable efficient access of PM by applications.

Traditionally, an OS separates the management of volatile

memory (e.g., using a Virtual Memory Manager or VMM)

and storage (e.g., using a file system and a block driver).

Since PM is both byte-addressable (like volatile memory)

and persistent (like storage), system software could manage

PM in several ways, such as:

(1) extending VMM to manage PM;

(2) implementing a block device for PM for use with an

existing file system (such as ext4);

Parameter
Densityy

Read Latencyy
Write Speedp
Endurance

Byte-Addressable

DRAM
1X

60ns
~1GB/s

1016

eee Yes

M NAND Flash
4X

25μs
ss

μ
2.4MB/s

104

No

hhh RRAM
2X-4X

200-300ns
~140MB/s

106

Yes

PCM
2X-4X

ss 200-300ns
ss ~100MB/s

106 to 108

Yes

Table 1: Comparison of Memory Technologies [14, 36]

(3) implementing a file system optimized for PM without

going through a block layer.

PMFS adopts the strategy of implementing a POSIX-

compliant file system optimized for PM. Figure 1 shows a

high-level overview of the proposed PM system architecture,

with PMFS as the system software layer managing PM.

PMFS has many advantages over the other two approaches:

(1) Support for legacy applications. Many storage-intensive

applications rely on a traditional file system interface. PMFS

implements a fully POSIX-compliant file system interface.

(2) Support for a light-weight file system. Given the an-

ticipated performance characteristics of PM, the overheads

from maintaining a separate storage address space (e.g., op-

erating at block granularity and copying data between stor-

age and DRAM) become dominant [21, 30, 44]. By optimiz-

ing for PM and avoiding the block layer, PMFS eliminates

copy overheads and provides substantial benefits (up to 22×)

to legacy applications. Figure 2 shows a high-level com-

parison of the two approaches. PMFS exploits PM’s byte-

addressability to optimize consistency using a combination

of atomic in-place updates, logging at cacheline granularity

(fine-grained journaling), and copy-on-write (CoW).

(3) Optimized memory-mapped I/O. Synchronously ac-

cessing fast storage with memory semantics (e.g., using

memory-mapped I/O) has documented advantages [21, 44].

However, with traditional file system implementations, memory-

mapped I/O would first copy accessed pages to DRAM, even

when storage is load/store accessible and fast. PMFS avoids

this overhead by mapping PM pages directly into an applica-

tion’s address space. PMFS also implements other features,

such as transparent large page support [18], to further opti-

mize memory-mapped I/O.

Block Device
Direct IO

Kernel

mmap mmap

PMFS mmu
mappings

Page Cache

file IO file IO

Traditional FS

VFS

User Applications

 PM

Block-based
File System PMFS

Figure 2: PMFS vs Traditional File Systems

PMFS presented us with several interesting challenges.

For one, PMFS accesses PM as write-back (WB) cacheable

memory for performance reasons [22], but still requires a

way to enforce both ordering and durability of stores to

PM. To further complicate this situation, memory writes in

most modern architectures are posted, with memory con-

trollers scheduling writes asynchronously for performance.

This problem is common to all PM software and not just

PMFS. To address this issue, we propose a hardware prim-

itive, which we call PM write barrier or pm wbarrier, that

guarantees durability of stores to PM that have been flushed

from CPU caches (§2).

For performance and simplicity, PMFS maps the entire

PM into kernel virtual address space at the time of mount-

ing. As a result, PM is exposed to permanent corruption from

stray writes due to bugs in the OS or drivers. One solution is

to map PM pages as read-only in the CPU page tables, and

temporarily upgrade specific PM pages as writable in code

sections that need to write to them. However, this requires

expensive global TLB shootdowns [18]. To avoid these over-

heads, we utilize processor write protection control to imple-

ment uninterruptible, temporal, write windows (§3.3).

Another challenge in PMFS is validation and correct-

ness testing of consistency. Though a well-known problem

for storage software [34], consistency in PMFS is further

complicated by the need for careful consideration of pro-

cessor memory ordering and use of pm wbarrier for enforc-

ing durability. For PMFS validation, we use a hypervisor-

based validation tool that uses record-replay to simulate

and test for ordering and durability failures in PM soft-

ware (§3.5) [31].

Finally, while memory-mapped I/O (mmap) does provide

memory-like access to storage, the interface is too low-level

for many applications. Recently researchers have proposed

new programming models to simplify direct use of PM by

applications [26, 39, 40]. We envision such programming

models and libraries, referred to as PMLib in Figure 1, build-

ing on PMFS using mmap for direct access to PM. We intend

to explore PMLib, including integration with PMFS, in the

future.

Contributions of this paper are as follows:

• A high-level PM system architecture, including a sim-

ple new hardware primitive (pm wbarrier) that provides

software enforceable guarantees of durability and order-

ing of stores to PM.

• Design and implementation of PMFS, a light-weight

POSIX file system with optimizations for PM and the

processor architecture, such as fine-grained logging for

consistency (§3.2), direct mapping of PM to applications

with transparent large page support (§3.1), and a low-

overhead scheme for protecting PM from stray writes by

the kernel (§3.3).

• Detailed performance evaluation of PMFS with a PM

hardware emulator, comparing PMFS with traditional file

systems on a RAMDISK-like Persistent Memory Block

Device (PMBD).

In next section, we describe the proposed system archi-

tecture and pm wbarrier primitive in detail (§2). We then

present the design and implementation of PMFS (§3), fol-

lowed by a detailed performance evaluation of PMFS (§4).

Finally, we conclude the paper with a brief survey of related

research and thoughts on future work.

2. System Architecture
Figure 1 shows the high-level system architecture assumed

in the paper. For illustration purposes, we assume stan-

dard high-volume server platforms and processors based on

Intel R© 64-bit architecture, but the concepts are applicable

to other architectures as well.

We assume a processor complex with one or more in-

tegrated memory controllers, capable of supporting both

volatile DRAM and PM. The OS VMM continues to manage

DRAM, while PMFS is responsible for managing PM.

A common flow for consistency in storage software such

as PMFS requires a set of writes (A) to be durable before

another set of writes (B) [4, 27]. Earlier research explored

different approaches to managing ordering and durability of

stores to PM, and implications on volatile CPU caches and

store buffers. These include mapping PM as write-through

(WT) [22], limiting PM writes to use non-temporal store

instructions to bypass the CPU caches, or a new caching

architecture for epoch based ordering [27].

In our evaluation, we encountered practical limitations

with these approaches. While WT mapping offers the sim-

plest solution to avoid caching related complications, it is

not suited for use with PM due to both WT overheads [22]

and limited PM write bandwidth (Table 1). Meanwhile, re-

stricting PM stores to non-temporal instructions imposes

programming challenges; for instance, in switching between

cacheable loads and non-temporal stores. Non-temporal in-

structions also suffer from performance issues for partial

cacheline writes, further discouraging general use. Finally,

while an epoch-based caching architecture offers an ele-

gant solution, it would require significant hardware modi-

fications, such as tagged cachelines and complex write-back

eviction policies. Such hardware mechanisms would involve

non-trivial changes to cache and memory controllers, espe-

cially for micro-architectures with distributed cache hierar-

chies.

Based on our analysis, we found that using PM as WB

cacheable memory and explicitly flushing modified data

from volatile CPU caches (using clflush for instance) works

well, even for complex usage. However, that alone is not

sufficient for desired durability guarantees. Although clflush
enables software to evict modified PM data and enforce its

completion (using sfence for instance), it does not guarantee

that modified data actually reached the durability point; i.e,

to PM or some intermediate power-fail safe buffer.

In most memory controller designs, for performance and

scheduling reasons, writes to memory are treated as posted

transactions and considered complete once accepted and

queued. Also, for all memory write requests accepted, the

memory controller enforces processor memory ordering

(e.g., read-after-write ordering) [19] by servicing reads of

in-flight writes from internal posted buffers. For existing

volatile memory usage, such behavior is micro-architectural

and transparent to software. But PM usage has additional im-

plications, particularly since the durability point is beyond

the memory controller’s posted buffers.

To provide PM software with durability guarantees in

such an architecture, we propose a simple new hardware

primitive (pm wbarrier) that guarantees durability of PM

stores already flushed from CPU caches. We envision two

variants of this primitive: (1) an on-demand variant that al-

lows software to synchronously enforce durability of stores

to PM; and (2) a lazy variant that utilizes residual platform

capacitance to asynchronously enforce durability of all in-

flight accepted writes on detecting power failure. We assume

an on-demand (synchronous) pm wbarrier in this paper.

Consider the above mentioned software flow again. For

the desired ordering (A before B) with the proposed prim-

itive, PM software first writes back cachelines dirtied by

stores to A (for instance, using clflush), issues an sfence for

completion, and finally issues a single pm wbarrier. At this

point, A is guaranteed to be durable and software can pro-

ceed to the writes in B.

PMFS requires only pm wbarrier for correct operation.

The performance of cache write back is vital to the pro-

posed PM architecture. However, as reported by previ-

ous work [22, 40], current implementations of clflush are

strongly ordered (with implicit fences), and therefore suf-

fer from serious performance problems when used for batch

flush operations. For this paper, we assume and emulate an

optimized clflush implementation that provides improved

performance through weaker ordering on cache write back

operations. Ordering is enforced in software with the use

of memory fence operations (e.g., sfence). We used spe-

cial write-combining stores to emulate the optimized clflush
instruction, and observed up to 8× better performance com-

pared to the strongly ordered clflush instruction (depending

on the cacheline state).

For the remainder of the paper, we refer to optimized

clflush simply as clflush. Also, unless specified otherwise,

by making A durable, we mean the successful completion of

the sequence of flushing dirty data in A from CPU caches

(using clflush), completing the operation with an sfence or

mfence, and enforcing durability with a single pm wbarrier.

One drawback of the proposed scheme is that software

is required to keep track of dirty cachelines in PM. Our

evaluation shows that the resulting performance gains jus-

tify the additional programming complexity. Moreover, for

normal applications, most of the nuances of PM program-

ming can be hidden behind programming models and li-

braries [26, 39, 40]. PMFS itself uses the proposed hardware

primitives and the above mentioned software flow for most

usage (for instance, in consistency and logging), and uses

non-temporal stores sparingly for specific streaming write

operations (e.g., in write system call).

Another important architectural decision is that of wear-

leveling. As mentioned before, memory-mapped I/O in

PMFS is optimized to grant direct PM access to applica-

tions. But, in doing so, one has to consider the issue of

wear-leveling. We assume that wear-leveling is done in the

hardware (e.g., in the PM modules), which simplifies our

decision to map PM directly into the application’s address

space. We believe that software-based wear-leveling would

be overly complicated, particularly when dealing with a

large number of PM modules behind multiple memory con-

trollers. We plan to explore this issue further in the future.

3. PMFS Design and Implementation
Figure 2 shows a high-level software architecture of a system

using PMFS, including a comparison with a traditional file

system. PMFS design goals are:

(1) Optimize for byte-addressable storage. PMFS ex-

ploits PM’s byte addressability to avoid the overheads of

the block-based design of traditional file systems, such as

copies to DRAM during file I/O and read-modify-write at

block granularity (as opposed to cacheline granularity) for

consistency. PMFS design, including layout (§3.1) and con-

sistency (§3.2), is optimized for PM and the processor archi-

tecture.

(2) Enable efficient access to PM by applications. Be-

cause PM performance is comparable to DRAM, it is impor-

tant to eliminate software overheads in accessing PM [44].

For this reason, PMFS optimizes file read, write, and mmap

by avoiding unnecessary copies and software overheads

(§3.1). File read/write in PMFS, for instance, requires only

a single copy between PM and user buffers, while mmap

avoids copying altogether.

(3) Protect PM from stray writes. PMFS maps the entire

PM into kernel virtual address space for performance, which

exposes PM to permanent corruption from stray writes due

to bugs in the OS or drivers. To prevent this, PMFS imple-

ments a prototype low-overhead write protection scheme us-

ing a write protect control feature in the processor (§3.3).

3.1 Optimizations for memory-mapped I/O

PMFS Layout: PMFS data layout is shown in Figure 3. The

superblock and its redundant copy are followed by a journal

(PMFS-Log) and dynamically allocated pages. As in many

other file systems, metadata in PMFS is organized using a

B-tree, one of the best options for indexing large amounts of

possibly sparse data. The B-tree is used to represent both the

inode table and the data in inodes.

Allocator: Most modern file systems use extent-based
allocations (e.g., ext4, btrfs), while some older ones are indi-

Directory File

B-Tree
Pointers

File System Root

In
od

e
Ta

bl
e

B-
Tr

ee

Inode
Pages

Directory
Inode New File

Inode

Directory Entry
for New File

File
Inode

Data File

S
B

S
B

PMFS-Log … PMFS Data Pages ...

Figure 3: PMFS data layout

rect block-based (e.g., ext2). Allocations in PMFS are page-
based, with support for all processor page sizes (4KB, 2MB,

1GB), to enable transparent large page support [18]. By de-

fault, the allocator uses 4KB pages for metadata (internal)

nodes of a data file’s B-tree, but data (leaf) nodes can be

4KB, 2MB, or 1GB.

In many aspects, PMFS allocator is similar to the OS vir-

tual memory allocator, except for consistency and durabil-

ity guarantees (§3.2). Therefore, well-studied memory man-

agement issues, such as fragmentation due to support for

multiple allocation sizes, apply to PMFS. In the current im-

plementation, the PMFS allocator only coalesces adjacent

pages to avoid major fragmentation. We plan to explore more

strategies in the future.

(b)

/* log-entry : 64B */
typedef struct {

u64 addr;
u32 trans_id;
u16 gen_id;
u8 type;
u8 size;
char data[48];

} pmfs_logentry_t;

PMFS-Log entry

Head

Tail

(a)

PMFS-Log

Old File Inode data (128B)()
Old Dir Entry (64B)

Old Dir Inode data (64B)
COMMIT Marker (64B)

Figure 4: PMFS journaling data structures

Memory-mapped I/O (mmap): Mmap in PMFS maps

file data directly into the application’s virtual address space,

so users can access PM directly. PMFS’s mmap transparently

chooses the largest hardware page table mappings, depend-

ing on mmap and file data node size. Using large page map-

pings has several benefits, such as efficient use of TLBs,

fewer page faults, and shorter page table walks. Another

benefit of using large pages is smaller page table structures,

which is even more important at large PM capacities since

page table pages are allocated from limited DRAM.

However, using large pages without application hints

could cause internal fragmentation. Therefore, by default,

file data nodes in PMFS are 4KB. This default behavior can

be overridden using one of the following strategies:

(1) Changing the default page size at mount time. This op-

timization works well for applications that use large files of

fixed or similar sizes [7].

(2) Using existing storage interfaces to provide file size

hints. If an application expects a file to grow to 10GB, for

example, it can communicate this to PMFS using either

fallocate (to allocate immediately) or ftruncate (to allocate

lazily). These hints cause PMFS to use 1GB pages instead

of 4KB pages for the file’s data nodes. In our experience,

modifying the applications to provide such file size hints

is usually trivial. For instance, we were able to add basic

fallocate support to Linux GNU coreutils [3] with just two

lines of code, enabling large page allocations for file utilities

such as cp and mv.

Finally, PMFS uses large page mappings only if the file

data is guaranteed not to be copy-on-write (i.e., for files that

are opened read-only or are mmap’ed as MAP SHARED).

Otherwise, we use 4KB mappings. We plan to provide

switching between large page and 4KB mappings in the

future, so we can use large pages in more cases.

3.2 Consistency

A file system must be able to survive arbitrary crashes or

power failures and still remain consistent. To provide this

guarantee, file systems must implement some form of con-

sistent and recoverable update mechanism for metadata and

(optionally) data writes. From the file system’s view, an op-

eration is atomic if and only if updates made by the operation

are committed in all or none fashion. In PMFS, every system

call to the file system is an atomic operation. Note that ap-

plications directly accessing PM via mmap have to manage

consistency of the file contents on their own, either within

the application or using language, library, and runtime sup-

port [26, 40].

Modern file systems and databases use one of the fol-

lowing three techniques to support consistency: copy-on-

write (CoW) [2, 27], journaling (or logging) [4], and log-

structured updates [30, 37].

CoW file systems and log-structured file systems perform

CoW or logging at block or segment granularity, respec-

tively. The block or segment size is typically 4KB or larger.

These CoW and log-structured file systems are often accom-

panied by large write amplification, especially for metadata

consistency which typically requires only small metadata

updates. Journaling, particularly with PM, can log the meta-

data updates at much finer granularity.

We performed an analysis of the above mentioned tech-

niques for PM, assessing the cost (number of bytes written,

number of pm wbarrier operations, etc.) of metadata con-

sistency for various system calls. Based on this study, we

found that logging at cacheline or 64-byte granularity (called

fine-grained logging) incurs the least overhead for metadata

updates, compared to both CoW (with or without atomic in-

place updates) and log-structured file systems.

Journaling, however, has the drawback that all the up-

dates have to be written twice; once to the journal, and then

to the file system. For updates larger than a CoW file sys-

tem’s block size or a log-structured file system’s segment

size, journaling becomes less desirable due to this double

copy overhead and the associated write amplification. There-

fore, in PMFS, we use atomic in-place updates and fine-

grained logging for the (usually small) metadata updates,

and CoW for file data updates. We show (§4.2.3) that PMFS

incurs much lower overhead for metadata consistency com-

pared to BPFS, a PM-optimized file system that uses CoW

and atomic in-place updates for metadata and data consis-

tency [27].

Undo vs. Redo: Journaling comes in two flavors: 1) redo

and 2) undo. In redo journaling, the new data to be written

is logged and made durable before writing the data to the

file system. This new data is written to the file system only

when the transaction commits successfully. In undo journal-

ing, the old data (in the file system) is first logged and made

durable. The new data is written directly (in-place) to the

file system during the transaction. In the event the transac-

tion fails, any modifications to the file system are rolled back

using the old data in the undo journal. Both redo and undo

have pros and cons. Undo journaling in PMFS requires a

pm wbarrier for every log entry within a transaction while

redo journaling requires only two pm wbarrier operations

per transaction, irrespective of the number of log entries. On

the other hand, redo journaling is more complex to imple-

ment. Since the new data is written only to the redo journal

during a transaction, all reads done as part of the transac-

tion have to first search the redo journal for the latest copy.

As a result, redo journaling incurs an additional overhead

for all the read operations in a transaction, therefore placing

practical restrictions on the granularity of logging in redo –

the finer the logging granularity, the larger the overhead of

searching the redo journal.

Undo journaling is simpler to implement and allows fine-

grained logging of shared data structures (e.g., inode table).

In PMFS, we use undo journaling for its above mentioned

advantages and simplicity. However, we realize that undo

is not always better than redo. For instance, redo could

be expected to perform better than undo if the transaction

creates a large number log entries but modifies only a small

number of data structures. We plan to analyze the respective

benefits of redo and undo journaling in the future.

As noted above, in PMFS, the original data is written and

committed to the PMFS-Log (Figure 4) before the file sys-

tem metadata is modified, thereby following undo seman-

tics. If a failure occurs in the middle of a transaction, PMFS

recovers on the next mount by reading the PMFS-Log and

undoing changes to the file system from uncommitted trans-

actions. To minimize journaling overhead, PMFS leverages

processor features to use atomic in-place updates whenever

possible, sometimes avoiding logging altogether. For oper-

ations where in-place updates to the metadata are not suffi-

cient, PMFS falls back to use fine-grained logging.

To summarize, PMFS uses a hybrid approach for con-

sistency, switching between atomic in-place updates, fine-

grained logging, and CoW. We now describe atomic in-place

updates and fine-grained logging in more detail.

Atomic in-place updates: As suggested by previous

work, PM provides a unique opportunity to use atomic in-

place updates to avoid much more expensive journaling or

CoW [27]. However, compared to prior work, PMFS lever-

ages additional processor features for 16-byte and 64-byte

atomic updates, avoiding logging in more cases. PMFS uses

the various atomic update options in the following ways:

• 8-byte atomic updates: The processor natively supports

8-byte atomic writes. PMFS uses 8-byte atomic writes to

update an inode’s access time on a file read.

• 16-byte atomic updates: The processor also supports 16-

byte atomic writes using cmpxchg16b instruction (with

LOCK prefix) [17]. PMFS uses 16-byte in-place atomic

updates in several places, such as for atomic update of an

inode’s size and modification time when appending to a

file.

• 64-byte (cacheline) atomic updates: The processor also

supports atomic cacheline (64-byte) writes if Restricted
Transactional Memory (RTM) is available [20]. To atom-

ically write to a single cacheline, PMFS starts a RTM

transaction with XBEGIN, modifies the cacheline, and

ends the RTM transaction with XEND, at which point

the cacheline is atomically visible to rest of the system.

On a subsequent clflush, the modified cacheline is written

back to PM atomically, since the processor caching and

memory hardware move data at least at cacheline granu-

larity. PMFS uses cacheline atomicity in system calls that

modify a number of inode fields (e.g., in deleting an in-

ode). Note that if RTM is not present, PMFS simply falls

back to use fine-grained logging.

Journaling for Metadata Consistency: PMFS uses

undo journaling and fine-grained logging. The main logging

data structure is a fixed-size circular buffer called PMFS-

Log (Figure 4(a)). The head and tail pointers mark the

beginning and end, respectively, of the sliding window of

active logged data. For every atomic file system operation

that needs logging, PMFS initiates a new transaction with a

unique id (trans id).

PMFS-Log consists of an array of 64-byte log entries,

where each log entry describes an update to the file system

metadata. A log entry consists of a header and data portion,

as shown in Figure 4(b). The 2-byte gen id is a special field.

For a log entry in PMFS-Log to be considered valid by re-

covery code, the gen id field in the log entry must match

a similar gen id field in PMFS-Log metadata. PMFS-Log’s

gen id field is incremented after every log wrap-around and

after every PMFS recovery, thereby automatically invalidat-

ing all of the stale log entries.

To be able to identify valid entries in PMFS-Log, one of

two requirements must hold: either PMFS must atomically

append entries to PMFS-Log or the recovery code must be

able to detect partially written log entries. One possible solu-

tion is to use two pm wbarrier operations: append the log en-

try to PMFS-Log and make it durable, then atomically set a

valid bit in the log entry before making the valid bit durable.

Other approaches include using a checksum in the log entry

header [35] or tornbit RAWL [40], which converts the log-

ging data in to a stream of 64-bit words, with a reserved torn

(valid) bit in each word. However, all these approaches have

high overhead from either additional serializing operations

(double barrier) or compute (checksum, tornbit RAWL). In

PMFS, we fix the size of log entries to a single (aligned)

cacheline (64 bytes) and exploit the architectural guarantee

in the processor caching hierarchy that writes to the same

cacheline are never reordered. For example, if A and B are

two separate 8-byte writes to the same cacheline and in that

order, then A will always complete no later than B. PMFS

uses the gen id field in log entry header as a valid field.

When writing a log entry to PMFS-Log, gen id is written

last, before the log entry is made durable. To ensure this

scheme works, we instruct the compiler not to reorder writes

to a log entry.

At the start of an atomic operation (or transaction), PMFS

allocates the maximum number of required log entries for

the operation by atomically incrementing the tail. When a

transaction is about to modify any metadata, it first saves the

old values by appending one or more log entries to PMFS-

Log and making them durable, before writing the new values

in-place. This process is repeated for all the metadata up-

dates in the transaction. After all the metadata updates are

done, the transaction is committed by first flushing all of

the dirty metadata cachelines in PM and then using a sin-

gle pm wbarrier to make them durable. Finally, we append

a special commit log entry to the transaction and make that

durable, to indicate that the transaction has been completed.

As an optimization, we (optionally) skip the pm wbarrier
after the commit log entry. Some subsequent pm wbarrier,

either from another transaction or the asynchronous log
cleaner thread will ensure that the commit log entry is

made durable. This optimization avoids one pm wbarrier
per transaction, but the last committed transaction may be

rolled back if PMFS has to recover from a failure. A log

cleaner thread periodically frees up log entries correspond-

ing to the committed transactions by first issuing a single

pm wbarrier to make the commit log entries durable, and

then atomically updating the head pointer in PMFS-Log.

PMFS recovery: If PMFS is not cleanly unmounted, due

to a power failure or system crash, recovery is performed

on the next mount. During recovery, PMFS scans through

the PMFS-Log from head to tail and constructs a list of

committed and uncommitted transactions, by looking for

commit records with a valid gen id. Committed transactions

are discarded and uncommitted transactions are rolled back.

Consistency of Allocator: Using journaling to maintain

the consistency of PMFS allocator data structures would in-

cur high logging and ordering overhead, because of the fre-

quency of alloc/free operations in the file system. Therefore,

we maintain allocator structures in volatile memory, using

freelists. PMFS saves the allocator structures in a reserved

(internal) inode on a clean unmount. In case of a failure,

PMFS rebuilds the allocator structures by walking the file

system B-tree during recovery.

PMFS Data Consistency: As mentioned before, the

journaling overhead for large file data updates could be pro-

hibitive due to double copy. Hence, PMFS uses a hybrid ap-

proach, switching between fine-grained logging for metadata

updates and CoW for data updates. For instance, on a multi-

block file data update with the write system call, PMFS uses

CoW to prepare pages with the new data and then updates

the metadata using journaling.

In the current implementation, PMFS only guarantees

that the data becomes durable before the associated meta-

data does. This guarantee is the same as the guarantee pro-

vided by ext3/ext4 in ordered data mode. We plan to explore

stronger consistency guarantees in the future.

One open issue with CoW, however, is its use with large

pages; for instance, CoW of a 1GB file data node, even if

it is to write a few hundred megabytes, would cause sig-

nificant write amplification. As this problem also occurs in

OS virtual memory management, we plan to explore the best

known practices (e.g., breaking down large pages to regular

4KB pages on CoW) in the future.

3.3 Write Protection

Since software can access PM as regular memory, we must

be concerned about permanent corruption to PM from inad-

vertent writes due to bugs in unrelated software.

User Kernel

User Process Isolation SMAP

Kernel Privilege Levels Write windows

Table 2: Overview of PM Write Protection

Table 2 shows a brief overview of how PM write pro-

tection (from stray writes) works in the assumed processor

architecture. The row name refers to the address space in

which PM is mapped and the column name refers to the priv-

ilege level at which stray writes occur. Protection within a

process (e.g., between multiple threads) is not covered here,

but will be explored in the future. Protecting “kernel from

user”, and “user from user” follow from existing isolation

mechanisms based on privilege levels and paging, respec-

tively. Also, “user from kernel” follows from use of Super-

visor Mode Access Prevention (SMAP) feature in the pro-

cessor [13]. When SMAP is enabled, supervisor-mode (i.e.,

ring 0 or kernel) accesses to the user address space are not al-

lowed. This feature is important since memory-mapped I/O

in PMFS provides the user-level applications with direct ac-

cess to PM. Due to SMAP, the mmap’ed memory is pro-

tected from stray writes in kernel. Protecting “kernel from

kernel”, however, could be challenging, particularly if mul-

tiple OS components sharing the same kernel address space

are allowed to write to PM. Since PMFS is the only system

software that manages PM, the solution space is much sim-

pler in our case.

// CR0.WP in x86

if (ring0 && CR0.WP == 0)
 write(P) is allowed;
else
 write(P) causes GP;

P: Read-only PM page in kernel virtual address
write(P): Write to page P in ring 0 (kernel)
GP: General protection fault

// Using CR0.WP in PMFS
disable_write_protection() {
 CR0.WP = 0;
 disable_interrupts();
}
enable_write_protection() {
 enable_interrupts();
 CR0.WP = 1;
}

// Writes to PM in PMFS
disable_write_protection();
write(P);
enable_write_protection();

Figure 5: Write Protection in PMFS

One solution for “kernel to kernel” write protection is

to not map PM into the kernel virtual address space at all,

and to use only temporary mappings private to a physical

core (similar to kmap in Linux for 32-bit x86 platforms).

However, this approach adds complexity to PMFS software

due to not being able to use fixed virtual addresses to access

PM. The benefits of shared page table pages and large page

mappings are also lost with temporary mappings.

Therefore, PMFS implements an alternate protection

scheme, wherein it maps the entire PM as read-only during

mount and upgrades it to writeable only for the sections of

code that write to PM, called write windows. We could im-

plement write windows by toggling write permission in the

page table [18], but that would require an expensive global

TLB shoot-down per write window. Instead, PMFS lever-

ages the processor’s write protect control (CR0.WP) [18]

to implement the protection scheme described in Figure 5.

PMFS exploits the following key attribute of CR0.WP: ring

0 or kernel writes to pages marked read-only in the ker-

nel virtual address are allowed only if CR0.WP is not set.

Therefore, by toggling CR0.WP, PMFS is able to open small

temporal write windows without modifying the page tables,

thereby avoiding expensive TLB shootdowns.

One issue with CR0.WP, however, is that it is not saved/re-

stored across interrupts or context-switches. To ensure PMFS

doesn’t lose control while PM pages are writeable, we

disable interrupts for the duration of the write window.

To ensure that interrupts aren’t disabled for long, dis-
able write protection() is invoked only when PMFS is about

to write to PM. PMFS restricts the number of writes done in

each write window to a few cachelines during fine-grained

logging and to a small tunable limit (default 4KB) in the

write system call. Following these writes, PMFS immedi-

ately invokes enable write protection(), thereby enabling

the interrupts. We found this compromise to be reasonable

in the prototype implementation for the given processor ar-

chitecture.

Architectures with more generic protection key mecha-

nisms (e.g., Itanium R© and PowerPC R©) would have fewer

such limitations with write protection in PMFS [28]. For

instance, in Itanium, it is possible to group sets of pages,

each assigned a protection key. The TLB entry for a page

has a tag that associates the page with the assigned protec-

tion key that now resides in the processor’s protection key
registers (PKRs). For a given process, the access right for a

page is determined by combining the access bits on the cor-

responding page table entry and the PKR. Since modifying

a PKR does not necessitate a global TLB shootdown, pro-

tection keys can be used to implement write windows with

very low overhead, as we do with CR0.WP. However, with

protection keys, PMFS can control access to PM at a page

granularity and without disabling interrupts.

3.4 Implementation

The protoype PMFS implementation for the Linux 3.9 ker-

nel, available open source [11], is written as a Linux kernel

module and has about 10K lines of code. PMFS uses and ex-

tends the eXecute In Place (XIP) interface in the Linux ker-

nel. When the underlying storage is byte-addressable, XIP

provides a set of VFS callback routines that offer a clean and

efficient way to avoid the page cache and block device layer.

In PMFS, the read, write, and mmap callbacks registered

with VFS are modeled after xip file read, xip file write, and

xip file mmap, respectively. PMFS also implements the call-

back routine (get xip mem) that is used by XIP to translate a

virtual address to a physical address in PM.

To support direct mapping of PM to the application,

PMFS registers a page fault handler for the ranges in the ap-

plication’s address space that are backed by files in PMFS.

This handler, which is invoked by the OS virtual memory

subsystem, is modeled after xip file fault and extended to

support transparent large page mappings.

During mount, PMFS maps PM as write-back cacheable,

read-only memory. We found that both PMFS mount time

and memory consumed by page table pages were very

high using existing ioremap interfaces, even for moderately

large PM (256GB in our case). Therefore, we implemented

ioremap hpage to automatically use the largest page size

available (e.g., 1GB on Intel R© 64-bit server processors)

for mapping PM in to the kernel virtual address space. As

expected, ioremap hpage dramatically improves the mount

time and significantly reduces memory consumed by page

table pages.

POSIX System Calls: We now describe a few common

file system operations in PMFS.

Creating a file: Creating a new file in PMFS involves

three distinct metadata operations: 1) initializing a newly

allocated inode, 2) creating a new directory entry in the

directory inode and pointing it to the new file inode, and 3)

updating the directory inode’s modification time.

In the create system call, PMFS begins a new transaction

and allocates space in PMFS-Log for the required log entries

(5 total). PMFS first retrieves an inode from the freelist,

logs the inode (two log entries), prepares it, and marks it as

allocated. Next PMFS scans the directory inode’s leaves for

a new directory entry. Once found, PMFS logs the directory

entry (one log entry) and updates it to point to the new file

inode. Finally, PMFS logs and updates the directory inode’s

modification time (one log entry) and writes a commit record

(one log entry) to complete the transaction.

Figure 3 shows the metadata updates for this operation (in

dark shade). Figure 4(a) shows the corresponding log entries

written during the transaction.

Writing to a file: In the write system call, PMFS first

calculates the number of pages required to complete the

operation. If no new allocations are needed and if we are

only appending, PMFS writes the new data to the end of

the file and uses a single 16-byte atomic write to update the

inode size and modification time.

PMFS creates a new transaction for write only if it has to

allocate new pages to complete the request. In this transac-

tion, PMFS first allocates space for log entries in PMFS-Log,

allocates the pages, and then writes data to PM using non-

temporal instructions. Finally, PMFS logs and updates the

inode’s B-tree pointers and modification time, before writing

a commit record to complete the transaction. Figure 3 shows

the metadata updates for this operation (in light shade).

Deleting an inode: A file inode can be deleted only when

there are no directory entries referencing it. When all the

directory entries of an inode are deleted (e.g., using rm), the

inode is marked for deletion. Once all of the handles to the

inode are freed, VFS issues a callback to PMFS to delete the

inode.

Freeing the inode involves atomically updating a set of

fields in the inode, including the root of the inode’s B-tree.

By design, the inode fields for this operation are all in the

same cacheline in PMFS. If RTM is available, PMFS uses

a single 64-byte atomic write to free the inode. Otherwise,

PMFS uses fine-grained logging. After successfully freeing

the inode, all the inode data and metadata pages are returned

to the allocator. Since the allocator structures are maintained

in DRAM and reconstructed on failure, freeing the pages to

the allocator doesn’t require logging.

3.5 Testing and Validation

Maintaining consistency in PMFS is challenging due to the

requirement that PM software track dirty cachelines and

flush them explicitly before issuing pm wbarrier, to ensure

PM store ordering and durability (§2). A natural conse-

quence is additional complexity in testing and validation

of PMFS. The same concern applies to any PM software.

To address this challenge, we built Yat, a hypervisor-based

framework designed to help validate that PMFS correctly

and consistently uses cache flushes and pm wbarrier [31].

Yat operates in two phases. In the first phase, Yat records

a trace of all the writes, clflush instructions, ordering (sfence,

mfence) instructions, and pm wbarrier primitives executed

while a test application is running. In the second phase, Yat

replays the collected traces and tests for all the possible sub-

sets and orderings of these operations, thereby simulating

architectural failure conditions that are specific to PM. Yat

includes an fsck-like tool to test the integrity of PM data in

PMFS. For every simulated failure in PMFS testing, Yat au-

tomatically runs this tool, and provides diagnostic informa-

tion if the verification fails. We found Yat to be extremely

useful in catching several hard to find bugs in PMFS. Fur-

ther discussion of Yat is beyond the scope of the paper.

4. Evaluation
We now describe the experimental setup and baselines for

the evaluation of PMFS (§4.1). Then we present results from

a detailed evaluation with several micro-benchmarks (fio, file

utilities) and application benchmarks (Filebench, Neo4j).

4.1 Experimental Setup

PM Emulator System-level evaluation of PM software is

challenging due to lack of real hardware. Publicly available

simulators are either too slow and difficult to use with large

workloads [36] or too simplistic and unable to model the

effects of cache evictions, speculative execution, memory-

level parallelism and prefetching in the CPU [10]. To enable

the performance study of PM software for a range of latency

and bandwidth points interesting to the emerging NVM tech-

nologies, we built a PM performance emulator: PM Emula-

tion Platform (PMEP).

PMEP partitions the available DRAM memory into em-

ulated PM and regular volatile memory, emulates config-

urable latencies and bandwidth for the PM range, allows

configuring pm wbarrier latency (default 100ns), and em-

ulates the optimized clflush operation.

PMEP is implemented on a dual-socket Intel R© Xeon R©
processor-based platform, using special CPU microcode and

custom platform firmware. Each processor runs at 2.6GHz,

has 8 cores, and supports up to 4 DDR3 Channels (with up to

2 DIMMs per Channel). The custom BIOS partitions avail-

able memory such that channels 2-3 of each processor are

hidden from the OS and reserved for emulated PM. Channels

0-1 are used for regular DRAM. NUMA is disabled for PM

channels to ensure uniform access latencies. Unless speci-

fied otherwise, PMEP has 16GB DRAM and 256GB PM, for

a 1:8 capacity ratio. Next we describe the details of PMEP

operation.

PM Latency Emulation: Emulating read latency is com-

plicated due to CPU features such as speculative execution,

memory parallelism, prefetching, etc. In PMEP, we exploit

the fact that the number of cycles that the CPU stalls wait-

ing for data to be available on a LLC miss (Cstalled) is pro-

portional to the actual memory access latency (Ldram). We

made use of debug hooks in the CPU and special microcode

to program the hardware performance counters and monitor

Cstalled over very small intervals (by default, every 32 LLC

misses). Smaller intervals lead to better emulation, but in-

terval sizes smaller than the default could cause noticeable

emulation overhead for memory-intensive applications. The

CPU microcode emulates the desired PM latency (Lpm) by

injecting (Cstalled ∗ (Lpm/Ldram)) additional stall cycles for

each interval. Correctness of this model follows from above

mentioned proportionality. For the evaluations in the paper,

Lpm is always set at 300ns (per Table 1), unless specified

otherwise. Latency to local DRAM memory is 90ns.

PM Bandwidth Emulation : Emerging NVM technolo-

gies have significantly lower write bandwidth than DRAM

(Table 1). While the overall write bandwidth could be im-

proved using ample hardware scale-out of PM devices and

power-fail-safe caches in the PM modules, the sustained

bandwidth would still be lower than that of DRAM. For this

reason, PMEP supports bandwidth throttling, by using a pro-

grammable feature in the memory controller [16] that can

limit the maximum number of DDR transactions per μsec

on a per-DIMM basis. Maximum sustained PM bandwidth

(Bpm) for the entire platform is set to 9.5GB/s, about 8×
lower than available DRAM bandwidth on the unmodified

system.

PMBD : For a fair comparison of PMFS with traditional

file systems designed for block devices, it is important to

not only use the same storage media (emulated PM in our

case), but to also choose a representative and optimized im-

plementation of block device. Previous work used a Linux

RAMDISK-like block device that relies on OS VMM for

memory management [26, 27, 40]. However, RAMDISK

cannot partition between PM and DRAM and is subject to

interference from OS paging. For this reason, we use Per-

sistent Memory Block Driver (PMBD) [23], an open-source

implementation that assumes partitioned PM and DRAM.

For block writes, PMBD uses non-temporal stores followed

by a pm wbarrier operation (§3.2).

We compare PMFS with both ext4 and ext2 on PMBD.

Ext2, a much simpler file system with no consistency mech-

anisms, provides an interesting baseline for comparison with

1
10

10
0

10
00

10
00

0

64 256 1K 4K 16K 64K 256K

B
an

dw
id

th
 (i

n
M

B
/s

)

Size (in Bytes)

●

●

●

●
● ● ●

● PMFS
EXT4+PMBD
EXT2+PMBD 1

10
10

0
10

00
10

00
0

64 256 1K 4K 16K 64K 256K

B
an

dw
id

th
 (i

n
M

B
/s

)

Size (in Bytes)

●

●

●

●

●

● ●

● PMFS
EXT4+PMBD
EXT2+PMBD 1

10
10

0
10

00
10

00
0

64 256 1K 4K 16K 64K 256K

B
an

dw
id

th
 (i

n
M

B
/s

)

Size (in Bytes)

●

●

●

●

● ● ●

● PMFS
EXT4+PMBD
EXT2+PMBD 1

10
10

0
10

00
10

00
0

64 256 1K 4K 16K 64K 256K

B
an

dw
id

th
 (i

n
M

B
/s

)

Size (in Bytes)

●

●

●

●

●
● ●

● PMFS
EXT4+PMBD
EXT2+PMBD

a) Sequential read b) Sequential write c) Random read d) Random write

Figure 6: Evaluation of File I/O performance; X-axis is the size of the operation; Y-axis is the bandwidth in MB/s.

PMFS. We first evaluate the performance of traditional file-

based I/O (using fio) and file system operations (with file

utilities and Filebench). We demonstrate the performance

benefits of atomic in-place updates and fine-grained jour-

naling in PMFS, by comparing the (raw) overhead of meta-

data consistency in PMFS with that in ext4 and BPFS [27].

Then we evaluate the performance of memory-mapped I/O

with both micro-benchmarks (fio) and application workloads

(Neo4j). Finally, we evaluate the performance of the PMFS

write protection scheme.

4.2 File-based Access

4.2.1 File I/O

Many applications use traditional file I/O interfaces (read
and write system calls) to access file data. In a block-based

file system, this usually requires two copies, one between the

block device and the page cache, and one between the page

cache and the user buffers. PMFS requires only one copy,

directly between the file system and the user buffers. In Fig-

ure 6, we show a comparison of raw read and write perfor-

mance using fio, a highly tunable open source benchmarking

tool for measuring the performance of file I/O (read, write,

mmap) for various access patterns [6]. We measure the per-

formance of a single fio thread reading from or writing to a

single large file (64GB). In case of the write tests, we flush

data explicitly (using fdatasync) after every 256KB bytes.

As seen in Figure 6, PMFS performs better than both

ext2 and ext4 for all the tests, with improvements ranging

from 1.1× (for 64B sequential reads) to 16× (for 64B ran-

dom writes). The drop in performance of writes for sizes

larger than 16KB is due to the use of non-temporal instruc-

tions. These instructions bypass the cache but still incur the

cache-coherency overhead from snooping CPU caches to in-

validate the target cacheline. At larger sizes, this overhead

is large enough to congest the write-combining buffers and

cause a drop in performance. We found that the performance

using non-temporal instructions is still better than if normal

cacheable writes were used along with (optimized) cache

flushes.

4.2.2 File Utilities

Next we evaluate the performance of common file and di-

rectory operations. We perform these tests with a tarball of

PMFS
EXT2+PMBD
EXT4+PMBD

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

No
rm

ali
ze

d
Ti

m
e

cp untar find grep cp−r rm−r

Figure 7: Evaluation of File utilities

Linux Kernel sources in the file system under test. cp cre-

ates a copy of the tarball in the same directory. untar un-

compresses and unpacks the tarball. find searches for an ab-

sent file in the uncompressed directory and grep searches for

an absent pattern in the same directory. Finally, cp-r copies

the entire directory and rm-r deletes the old copy. We mea-

sured the time taken for each of these operations. Figure 7

shows the relative performance. In all the tests other than

rm-r, PMFS is faster than both ext2 and ext4, even while

providing same consistency guarantees as ext4. PMFS per-

formance gains, ranging from 1.01× (for untar) to 2.8×
(for cp), are largely attributable to fewer copies. However,

PMFS sees significant benefits from optimized consistency

and atomic in-place updates as well, as seen with metadata

intensive rm-r (in comparison with ext4). PMFS shows very

little improvement with untar because untar involves only

sequential writes from a single thread and is not very sensi-

tive to latency.

Ext2 is faster than ext4 by up to 70% for some metadata

intensive operations, due to the absence of journaling-related

overheads. For the same reason, ext2 is about 20% faster

than PMFS for rm-r.

4.2.3 PMFS Consistency

Next we evaluate the benefits of atomic in-place updates in

PMFS and the raw logging overhead in PMFS logging com-

pared to both block-based ext4 and PM-optimized BPFS.

Atomic in-place updates: PMFS exploits atomic updates

to avoid logging whenever possible. To illustrate the benefits

EXT2+PMBD
EXT4+PMBD
PMFS

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

N
or

m
al

iz
ed

 O
pe

ra
tio

ns
/s

Fileserver Webserver Webproxy OLTP

PM:300ns
PM:400ns
PM:500ns

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

N
or

m
al

iz
ed

 O
pe

ra
tio

ns
/s

Fileserver Webserver Webproxy OLTP

pm_wbarrier:100ns
pm_wbarrier:500ns
pm_wbarrier:1000ns

0.
0

0.
5

1.
0

1.
5

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

untar cp−r rm −fr Fileserver

a) Comparison with traditional file systems b) Effect of PM latency c) Effect of pm wbarrier latency

Figure 8: Evaluation of Filebench performance

of 16-byte atomic updates, we measured the performance

of a write system call that uses 16-byte atomic updates as

described in §3.4. Using atomic updates, instead of fine-

grained logging, speeds up the operation by 1.8×.

For the evaluation of 64-byte atomic updates, since RTM
is not available in PMEP, we measured the RTM perfor-

mance on Intel R© Core
TM

i7-4770 processor [20]. Then we

simulated the RTM performance in PMFS by replacing fine-

grained logging with timed loops based on the above mea-

surement. For deleting an inode (as described in §3.4), using

64-byte atomic updates is 18% faster than fine-grained log-

ging.

Logging overhead : To illustrate the benefits of fine-

grained (cacheline-sized) logging in PMFS, we measured

the raw overhead of metadata consistency in PMFS, ext4,

and BPFS. For PMFS and ext4, we measured the amount

of metadata logged; for BPFS, we measured the amount of

metadata copied (using CoW).

Table 3 shows the results for a number of file system

operations that modify only the metadata. touch creates an

empty file, mkdir creates an empty directory, and mv moves

the file to the newly created directory. Since PMFS uses 64-

byte log-entries instead of 4KB log-entries (ext4) or 4KB

CoW blocks (BPFS), the raw overhead is 1-2 orders of

magnitude lower for PMFS, even though BPFS itself uses

in-place updates to reduce CoW overhead.

PMFS BPFS (vs PMFS) ext4 (vs PMFS)

touch 512 12288 (24x) 24576 (48x)

mkdir 320 12288 (38x) 32768 (102x)

mv 384 16384 (32x) 24576 (64x)

Table 3: Metadata CoW or Logging overhead (in bytes)

4.2.4 Filebench
Filebench is a file system and storage benchmark that can

simulate a variety of complex application workload I/O pat-

terns [5]. In Figure 8, we present results from the evalua-

tion of four multi-threaded application workloads from the

Filebench suite.

Fileserver emulates I/O activity of a simple file server

with workload similar to SPECsfs, and consists of creates,

deletes, appends, reads, and writes. Webserver emulates a

web-server with activity mostly comprised of complete file

reads and log appends. Webproxy emulates a simple web

proxy server, with a mix of create-write-close, open-read-

close, and delete operations simultaneously from a large

number of threads, combined with a file append to simulate

proxy log. Finally, OLTP is a database emulator modeled

after Oracle 9i, and consists of small random reads and

writes coupled with synchronous writes to the log file.

In each case, we used the default number of threads

— Fileserver has 50 threads; Webserver has 100 threads;

Webproxy has 100 threads; and OLTP has a single thread do-

ing log writes, 10 database writer threads, and 200 database

reader threads. In each case, we scaled the dataset to at least

32GB to ensure that it does not fit in the page cache.

Figure 8(a) compares these workloads for PMFS, ext4,

and ext2. PMFS performs better than both ext4 and ext2

for all the workloads, with gains ranging from 1.15× (for

OLTP) to 2.9× (for Fileserver), confirming that PMFS does

not have any obvious scaling issues for multi-threaded ap-

plications. As with the micro-benchmarks, the performance

improvements with PMFS are due to fewer copies and opti-

mized consistency.

OLTP shows relatively modest improvement with PMFS

(about 15%), which is attributable to its low access rates to

the file system. The small improvement with PMFS is due to

the lower average latency of synchronous writes to the log

file.

Effect of PM latency: Since PMFS accesses PM di-

rectly, we study its sensitivity to PM latency using Filebench

as a case study. Figure 8(b) shows Filebench performance

with PMFS as PM latency increases from 300ns to 500ns.

For workloads other than OLTP, the observed drop is only

about 10− 15%, accumulated over both data and metadata

accesses. Once again, OLTP shows minimal impact because

it is sensitive only to synchronous write latency.

Effect of pm wbarrier latency: PMFS uses the pm wbarrier
primitive to enforce durability of stores evicted from the

cache. Figure 8(c) shows the performance of several file

utilites (described above) and one of the Filebench work-

loads (Fileserver), as the latency of pm wbarrier primitive

is varied from 100ns to 1000ns. The drop in performance di-

rectly corresponds to the rate of pm wbarrier operations for

the workload. For instance, we measured a pm wbarrier rate

of over 1M/sec for metadata intensive rm-r, which shows the

largest drop in performance (85%). This observation justi-

fies the optimizations described in §3.2 to reduce the number

of pm wbarrier operations. Without these optimizations, the

drop in performance would have been double that observed.

Fileserver, on the other hand, has a pm wbarrier rate of

only around 40K/sec and doesn’t show any noticeable drop

in performance. We observed similarly low rates and results

for other Filebench workloads.

4.3 Memory-mapped I/O

Memory-mapped I/O (mmap) in PMFS eliminates copy

overheads by mapping PM directly to application’s address

space. In Figure 9(a)(b), we use fio to compare the per-

formance of random reads and writes with mmap’ed data.

We use fallocate to create a single large (64GB) file for

the mmap test, thereby allowing the use of large (1GB)

pages with mmap (§3.1). PMFS-D refers to the default

case where mmap is done using regular 4KB pages. PMFS-

P is exactly the same as PMFS-D, except for the use of

MAP POPULATE option with mmap. MAP POPULATE

causes the mmap system call to pre-populate the page ta-

bles at the time of mmap, thereby eliminating the runtime

overhead of page faults. Finally, PMFS-L refers to the con-

figuration where mmap is done using large (1GB) pages.

Compared to ext2 and ext4 on PMBD, PMFS-D is better

by 2.3× (for 256KB random writes) to 14.3× (for 64B ran-

dom writes) and PMFS-L is better by 5.9× (for 1KB random

reads) to 22× (for 64B random writes). This significant im-

provement with PMFS is due to the fact that mmap in PMFS

has zero copy overhead. Ext2 and ext4 have the overhead of

moving the data between the page cache and PMBD. This

overhead is much higher if the mmap’ed data does not fit in

DRAM.

Compared to PMFS-D, PMFS-L is 1.3× to 2.3× better

for random reads and 1.6× to 3.8× better for random writes.

Performance gains with PMFS-L are due to several reasons:

fewer page faults, better TLB efficiency, and shorter page ta-

ble walks. In Figure 9(a), we quantify the overhead of page

faults alone with PMFS-P. By eliminating the page faults,

PMFS-P is able to improve the performance by 1.0× to 1.8×
over PMFS-D. However, PMFS-L is still faster than PMFS-

P by 1.1× to 1.4× due to better TLB efficiency and shorter

page table walks. Figure 9(c) shows a more detailed break-

down of mmap performance, using 4KB random reads as an

example. “Kernel” refers to the time spent in ring 0, either

servicing page faults or copying data between DRAM and

PMBD. “Page Table Walk” is the time that hardware spends

walking the page table structures due to a TLB miss. “User”

represents the time spent doing actual work in the applica-

tion. Ext2 and ext4 spend only about 10% of the time doing

useful work. As expected, PMFS-L has negligible overhead

from page faults and page table walks, and therefore spends

most of the time in “User”. Counter-intuitively, PMFS-L

also achieves a reduction in the actual application work. This

behavior is attributable to the fact that PMFS-L has fewer

instruction and LLC misses, because the fewer and shorter

page walks in PMFS-L do not pollute the cache.

Note that apart from the above mentioned performance

gains, PMFS-L also uses far less DRAM for page table

pages. In the Intel 64-bit architecture, each page table leaf

entry is 8B. PMFS-L requires only a 2-level page table, with

each leaf entry covering a 1GB region. PMFS-D and PMFS-

P require a 4-level page table in which each leaf entry covers

only 4KB. To cover a 1GB region, PMFS-D and PMFS-P

need 256K leaf entries or 2MB (256K×8B). These savings

are particularly important, given the large PM capacities and

limited DRAM.

4.3.1 Neo4j Graph Database

We use Neo4j to evaluate the benefits of PMFS to an un-

modified application that uses memory-mapped I/O to ac-

cess storage. Neo4j is a fully ACID (NoSQL) graph database

aimed at connected data operations [9], with the database

itself comprised of multiple store files. By default, Neo4j

accesses these files by mmap’ing them, using Java’s NIO

API [8].

Neo4j supports both embedded (stand-alone) and client-

server applications. For the evaluation in this paper, we

wrote a sample Neo4j embedded application to measure the

performance of common graph operations. We created a

Neo4j graph database from the Wikipedia dataset [12]. Ti-

tles in the dataset are the nodes in the graph and links to

the titles are the edges or relationships. The resulting graph

has about 10M nodes and 100M edges. Both the nodes and

edges have no other properties. We ran the following tests

on this graph database :

(1) Delete: Randomly deletes 2000 nodes and their asso-

ciated edges from the database, in a transaction.

(2) Insert: Transactionally adds back the previously

deleted 2000 nodes and their relationships to the database.

(3) Query: For each query, selects two nodes at random

and finds the shortest path between them. Traversal depth is

bounded to avoid runaway queries. The test measures time

taken for 500 such queries.

Since the size of the entire Neo4j database is less than

8GB, we limit the amount of DRAM in the system to 4GB

for these tests, thereby ensuring that the database does not

completely fit in the page cache. We ran these tests three

times and measured their average run times. There was very

little variation in the run times across the different runs.

Figure 10 shows a comparison of PMFS with ext2 and ext4

over PMBD. In all the tests, PMFS is faster than both ext2

and ext4, with performance gains ranging from 1.1× (for

Insert) to 2.4× (for Query). This improvement is attributable

1
10

10
0

10
00

10
00

0

64 256 1K 4K 16K 64K 256K

B
an

dw
id

th
 (i

n
M

B
/s

)

Size (in Bytes)

●

●

●

●

●
● ●

● PMFS−L
PMFS−P
PMFS−D
EXT4+PMBD
EXT2+PMBD 1

10
10

0
10

00
10

00
0

64 256 1K 4K 16K 64K 256K

B
an

dw
id

th
 (i

n
M

B
/s

)

Size (in Bytes)

●

●

●

●

● ● ●

● PMFS−L
PMFS−D
EXT4+PMBD
EXT2+PMBD

EXT2 EXT4 PMFS−D PMFS−P PMFS−L

User
Page Table Walk
Kernel

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

iz
ed

 T
im

e

a) Random read b) Random write c) Breakdown of mmap performance

Figure 9: Evaluation of memory-mapped I/O performance

to the fact that memory-mapped I/O in PMFS has no copy

overhead.

Insert in Neo4j involves writing modifications to a Write-

Ahead-Log (WAL) first, and then updating the graph store

asynchronously. As with OLTP, performance of the Insert
operation is sensitive only to synchronous sequential write

latency. As a result, we see only a modest (11%) improve-

ment with PMFS vs. ext2 and ext4.

Similarly, Delete in Neo4j uses WAL. But, the Delete
operation requires more traversals to gather all of the nodes’

relationships and properties, which will also be deleted in

the transaction. PMFS is 20% faster than both ext2 and

ext4. About half of this speedup is attributable to faster

synchronous writes (as with Insert), and the remainder is due

to faster traversals with PM.

EXT2+PMBD
EXT4+PMBD
PMFS

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

No
rm

ali
ze

d
Op

er
at

ion
s/s

Insert Delete Query

Figure 10: Evaluation of Neo4j performance

Although the performance gains, particularly for Query,

are impressive for an unmodified application, they could be

further improved by re-designing applications as suggested

by prior work [26, 40] and using PMFS’s memory-mapped

I/O to access PM.

4.4 Write Protection

As described in §3.3, PMFS protects PM from stray writes

in the OS using an existing processor write control feature

(CR0.WP). In this section, we evaluate the performance

overhead of this write protection scheme.

1
10

10
0

10
00

10
00

0

64 256 1K 4K 16K 64K 256K

B
an

dw
id

th
 (i

n
M

B
/s

)

Size (in Bytes)

●

●

●

●

●

● ●

● No−WP
CR0−WP
PGT−WP

No−WP
CR0−WP
PGT−WP

0.
0

0.
4

0.
8

1.
2

N
or

m
al

iz
ed

 O
pe

ra
tio

ns
/s

Fileserver OLTP Webserver

a) fio file write b) Filebench
Figure 11: Evaluation of PMFS write protection overhead

In Figure 11, we compare the write protection scheme

in PMFS (CR0-WP) with the baseline case of no write

protection at all (No-WP), and an alternate implementa-

tion that uses page table permissions (PGT-WP) (§3.3). As

shown in Figure 11(a), CR0-WP is close to No-WP in per-

formance and 1.2× to 11× faster than PGT-WP for file

writes. Figure 11(b) shows a similar comparison for se-

lect Filebench workloads. For Fileserver, a multi-threaded

workload with writes from several threads, CR0-WP is 23%

slower than No-WP, but still 5× faster than the alternate

PGT-WP scheme. The slowdown with CR0-WP is because

writes to a processor control register (to toggle CR0.WP) are

serializing operations with latency close to an uncacheable

(UC) write.

With OLTP, where writes are mostly sequential and from

a single log thread, CR0-WP overhead is negligible com-

pared to No-WP, while PGT-WP is still 20% slower. For less

write-intensive workloads, such as Webserver, the overheads

are negligible for both CR0-WP and PGT-WP (as expected).

5. Related Work
File systems have always been optimized for the storage

media [30, 37, 41]. As an example, recently several file

systems have either been completely designed for flash or

optimized for flash [1]. DirectFS, a file system optimized

for (vendor-specific) flash-based storage, is one such exam-

ple [30]. PMFS is optimized for PM and the processor archi-

tecture.

Researchers have long explored attaching storage to the

memory interface. eNVy is one such system that proposed

attaching flash to the memory bus, using controller logic and

SRAM to achieve high throughput at fairly low latency [42].

However, it is only recently that NVDIMM solutions are en-

tering the mainstream, with a number of vendors providing

either small capacity, byte-addressable NVDIMMs [15] or

large capacity, block-addressable NVDIMMs [38]. Large ca-

pacity, byte-addressable PM is a natural evolution made pos-

sible by emerging NVM technologies.

Systems such as Rio File Cache [24] and, more recently,

ConquestFS [41] suggested using a hybrid NVM-Disk or

NVM-Flash for better performance, with the file system re-

sponsible for managing NVM efficiently. PMFS is designed

for large capacity PM. We intend to explore tiering with

other, possibly cheaper, storage technologies in the future.

Some researchers have proposed using a single-level

store for managing PM, obviating the need to translate be-

tween memory and storage formats [32]. However, this re-

quires significant changes to applications and does not ben-

efit legacy storage applications. PMFS allows for a smooth

transition from file-based access to memory-like semantics

with PM by implementing a light-weight POSIX file inter-

face and optimizing memory-mapped I/O.

PMFS is more directly comparable to file systems opti-

mized for PM-only storage, such as BPFS [27]. BPFS uses

copy-on-write (CoW) and 8-byte in-place atomic updates to

provide metadata and data consistency. PMFS, in contrast,

uses larger in-place atomic updates with fine-grained log-

ging for metadata consistency, and CoW for data consis-

tency. PMFS optimizes memory-mapped I/O, through direct

mapping of PM to the application’s address space and use of

transparent large page mappings with mmap. BPFS doesn’t

support mmap. In PMFS, we also provide low overhead pro-

tection against stray kernel writes. BPFS doesn’t address

this issue. Finally, BPFS is designed assuming a very ele-

gant hardware extension (epochs) for software enforceable

guarantees of store durability and ordering. However, sup-

port for epochs requires complex hardware modifications.

We assume only a simple pm wbarrier primitive to flush PM

stores to a power fail-safe destination. The decoupled order-

ing and durability primitives proposed in this paper are sim-

ilar to the file system primitives, osync() and dsync(), pro-

posed for OptFS [25].

SCMFS, like PMFS and BPFS, is a file system that is op-

timized for PM [43]. SCMFS leverages the OS VMM and

the fact that the virtual address space is much larger than

physical memory to layout the files as large contiguous vir-

tual address ranges. PMFS, on the other hand, manages PM

completely independent of the OS VMM, by implementing

a page allocator that is optimized for the goals of PMFS.

While the authors note that SCMFS uses only clflush/mfence

for ordering, the details of consistency (in the presence of

failures) are unclear. On the other hand, in PMFS, the design

and implementation of consistency mechanisms are among

the key contributions. Furthermore, consistency in PMFS

has undergone careful and thorough validation (§3.5).

Programming for PM is tricky, particularly when PM ac-

cesses are cached write-back. We faced many challenges

with PMFS ourselves, not least of which was validating and

testing PMFS for correctness. Applications that want to op-

erate directly on PM (for performance) encounter similar is-

sues too. While mmap in PMFS does provide (efficient) di-

rect access to PM, it is too low-level for many application

programmers. Failure-atomic msync [33] addresses this by

enabling atomic commit of changes to mmap’ed files. Imple-

menting failure-atomic msync in PMFS is not difficult, but it

is unclear if it is the right approach for PM. We will explore

that in the future. Other researchers have proposed interest-

ing programming models [26, 40] and library solutions [39]

to simplify PM programming. These solutions, referred to

as PMLib in Figure 1, complement our work in this paper,

and can be built on the system-level PMFS services, such as

naming, access control, and direct access to PM with mmap.

6. Conclusions and Future Work
This paper presents a system software architecture optimized

for Persistent Memory (PM). We believe that the file sys-

tem abstraction offers a good trade-off between supporting

legacy applications and enabling optimized access to PM.

We demonstrate this by implementing PMFS, a file system

that provides substantial benefits (up to an order of magni-

tude) to legacy applications, while enabling direct memory-

mapped PM access to applications.

However, a memory-mapped interface is too low level for

use by many applications. User level libraries and program-

ming models built on PMFS’s memory-mapped interface

could provide simpler abstractions (e.g., persistent heap) to

applications. We are exploring this further, along with op-

timizations in PMFS for NUMA and PM’s read and write

performance asymmetry.

Acknowledgments
We thank Sergiu Gheti, Feng Chen, Vish Viswanathan,

Narayan Ranganathan, and Ross Zwisler for their contribu-

tions to PMEP, PMBD, and PMFS. We also thank Karsten

Schwan, Michael Mesnier, Alain Kägi, and Andy Rudoff for

their feedback. Finally, we thank the anonymous Eurosys

reviewers and our shepherd Kimberly Keeton for their help

with the final revision.

References
[1] Solid State Drives. https://wiki.archlinux.org/

index.php/Solid_State_Drives.

[2] Btrfs Wiki. https://btrfs.wiki.kernel.org.

[3] GNU Core Utilities. http://www.gnu.org/
software/coreutils/.

[4] Ext4 Wiki. https://ext4.wiki.kernel.org.

[5] Filebench. http://sourceforge.net/apps/
mediawiki/filebench.

[6] Flexible IO (fio) Tester. http://freecode.com/
projects/fio.

[7] HDFS Architecture Guide. http://hadoop.apache.
org/docs/stable/hdfs_design.html.

[8] Oracle Java Package java.nio. http://docs.
oracle.com/javase/7/docs/api/java/nio/
package-summary.html.

[9] Neo Technology. http://www.neo4j.org.

[10] pcmsim: A Simple PCM Block Device Simulator for Linux.
https://code.google.com/p/pcmsim/.

[11] PMFS source code. https://github.com/linux-pmfs/pmfs.

[12] Wikimedia Downloads. http://dumps.wikimedia.
org.

[13] Intel Architecture Instruction Set Extensions Programming
Reference (sec 9.3), 2012.

[14] Crossbar Resistive Memory: The Future Tech-
nology for NAND Flash. http://www.
crossbar-inc.com/assets/img/media/
Crossbar-RRAM-Technology-Whitepaper-080413.
pdf, 2013.

[15] Hybrid Memory: Bridging the Gap Between DRAM Speed
and NAND Nonvolatility. http://www.micron.com/
products/dram-modules/nvdimm, 2013.

[16] Intel Xeon Processor E5 v2 Product Family (Vol
2). http://www.intel.com/content/dam/
www/public/us/en/documents/datasheets/
xeon-e5-v2-datasheet-vol-2.pdf, 2013.

[17] Intel64 Software Developer’s Manual (Vol 2, Ch 3.2), 2013.

[18] Intel64 Software Developer’s Manual (Vol 3, Ch 4.5), 2013.

[19] Intel64 Software Developer’s Manual (Vol 3, Ch 8.2), 2013.

[20] Intel64 Software Developer’s Manual (Vol 1, Ch 14), 2013.

[21] A. Badam and V. S. Pai. SSDAlloc: Hybrid SSD/RAM Mem-
ory Management Made Easy. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Im-
plementation, NSDI’11, 2011.

[22] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm. Impli-
cations of CPU Caching on Byte-addressable Non-Volatile
Memory Programming. http://www.hpl.hp.com/
techreports/2012/HPL-2012-236.pdf, 2012.

[23] F. Chen, M. Mesnier, and S. Hahn. A Protected Block De-
vice for Non-volatile Memory. LSU/CSC Technical Report
(TR-14-01). 2014. URL http://www.csc.lsu.edu/
˜fchen/publications/abs/TR-14-01.html.

[24] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani,
and D. Lowell. The Rio File Cache: Surviving Operating
System Crashes. In Proceedings of the Seventh International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS VII, 1996.

[25] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Optimistic Crash Consistency. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, pages 228–243, 2013.

[26] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. NV-Heaps: Making Persis-
tent Objects Fast and Safe with Next-generation, Non-volatile
Memories. In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 105–118, 2011.

[27] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O Through Byte-
addressable, Persistent Memory. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles,
SOSP ’09, pages 133–146, 2009.

[28] C. Gray, M. Chapman, P. Chubb, D. Mosberger-Tang, and
G. Heiser. Itanium: A System Implementor’s Tale. In Pro-

ceedings of the USENIX 2005 Annual Technical Conference,
ATC ’05, 2005.

[29] K. Grimsrud. IOPS schmIOPS! What Really Matters in SSD
Performance (Intel Corp). In Proceedings of the 2013 Flash
Memory Summit, 2013.

[30] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn. DFS:
A File System for Virtualized Flash Storage. ACM Trans.
Storage, 6(3):14:1–14:25, Sept. 2010.

[31] P. Lantz, S. Dulloor, S. Kumar, R. Sankaran, and J. Jackson.
Yat: A Validation Framework for Persistent Memory Soft-
ware. Under Submission, 2014.

[32] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu. A
Case for Efficient Hardware/Software Cooperative Manage-
ment of Storage and Memory. In Proceedings of Fifth Work-
shop on Energy Efficient Design, WEED, 2013.

[33] S. Park, T. Kelly, and K. Shen. Failure-atomic Msync(): A
Simple and Efficient Mechanism for Preserving the Integrity
of Durable Data. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages 225–
238, 2013.

[34] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Model-Based Failure Analysis of Journaling File
Systems. In Proceedings of the 2005 International Conference
on Dependable Systems and Networks, DSN ’05, pages 802–
811, 2005.

[35] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S.
Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
IRON File Systems. In Proceedings of the Twentieth ACM
Symposium on Operating Systems Principles, SOSP ’05,
pages 206–220, 2005.

[36] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scal-
able High Performance Main Memory System Using Phase-
change Memory Technology. In Proceedings of the 36th
Annual International Symposium on Computer Architecture,
ISCA ’09, pages 24–33, 2009.

[37] M. Rosenblum and J. K. Ousterhout. The Design and Im-
plementation of a Log-structured File System. ACM Trans.
Comput. Syst., 10(1):26–52, Feb. 1992.

[38] J. Scaramuzzo. Reaching the Final Latency Frontier (SMART
Storage Systems). In Proceedings of the 2013 Flash Memory
Summit, 2013.

[39] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Camp-
bell. Consistent and Durable Data Structures for Non-
volatile Byte-addressable Memory. In Proceedings of the
9th USENIX Conference on File and Storage Technologies,
FAST’11, pages 5–5, 2011.

[40] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight Persistent Memory. In Proceedings of the Six-
teenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
XVI, pages 91–104, 2011.

[41] A.-I. A. Wang, G. Kuenning, P. Reiher, and G. Popek.
The Conquest File System: Better performance Through A
Disk/Persistent-RAM Hybrid Design. ACM Trans. Storage,
2(3):309–348, Aug. 2006.

[42] M. Wu and W. Zwaenepoel. eNVy: A Non-volatile, Main
Memory Storage System. In Proceedings of the Sixth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS VI, pages 86–
97, 1994.

[43] X. Wu and A. L. N. Reddy. SCMFS: A File System for
Storage Class Memory. In Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, 2011.

[44] J. Yang, D. B. Minturn, and F. Hady. When Poll is Better than
Interrupt. In Proceedings of the 10th USENIX Conference on
File and Storage Technologies, FAST’12, 2012.

