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ABSTRACT
Emerging non-volatile memory (NVM) technologies, such as phase-
change memory, spin-transfer torque magnetic memory, memristor,
and 3D Xpoint, are encouraging the development of new architec-
tures that support the challenges of persistent programming. An
important remaining challenge is dealing with the high logging over-
heads introduced by durable transactions.

In this paper, we propose a new logging approach, Proteus for
durable transactions that achieves the favorable characteristics of
both prior software and hardware approaches. Like software, it has
no hardware constraint limiting the number of transactions or logs
available to it, and like hardware, it has very low overhead. Our
approach introduces two new instructions: log-load creates a log
entry by loading the original data, and log-flush writes the log entry
into the log. We add hardware support, primarily within the core,
to manage the execution of these instructions and critical ordering
requirements between logging operations and updates to data. We
also propose a novel optimization at the memory controller that is
enabled by a persistent write pending queue in the memory controller.
We drop log updates that have not yet written back to NVMM by the
time a transaction is considered durable.

We implemented our design on a cycle accurate simulator, MarssX86,
and compared it against state-of-the-art hardware logging, ATOM [19],
and a software only approach. Our experiments show that Proteus
improves performance by 1.44-1.47⇥ depending on configuration,
on average, compared to a system without hardware logging and
9-11% faster than ATOM. A significant advantage of our approach
is dropping writes to the log when they are not needed. On average,
ATOM makes 3.4⇥ more writes to memory than our design.

CCS CONCEPTS
• Computer systems organization ! Serial architectures; • Hard-
ware ! Memory and dense storage;

KEYWORDS
Non-Volatile Main Memory, Software Supported Hardware logging,
Failure Safety

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3124539

ACM Reference format:
Seunghee Shin Satish Kumar Tirukkovalluri James Tuck Yan Solihin.
2017. Proteus: A Flexible and Fast Software Supported Hardware Logging
approach for NVM. In Proceedings of MICRO-50, Cambridge, MA, USA,
October 14–18, 2017, 13 pages.
https://doi.org/10.1145/3123939.3124539

1 INTRODUCTION
Emerging non-volatile memory (NVM) technologies, such as phase-
change memory, spin-transfer torque magnetic memory, memristor,
and 3D Xpoint, are expected to be in the market soon [1, 16, 20,
22, 27, 40]. For example, Intel and Micron announced that their 3D
Xpoint memory will be in the market in 2017 [16]. Due to their non-
volatility and byte addressability, a subset of them which have low
read latencies are being considered for use as main memory, either
to augment or replace DRAM [11]. A non-volatile main memory
(NVMM) can be directly accessed using load and store instructions.
This gives an opportunity for programmers to persist important data
in data structures in main memory, skipping the need or overheads
of serializing it to the file system.

Persisting data structures in main memory must be implemented
in a way that ensures data consistency, so that software can recover
to a consistent state in the event of software or hardware failures.
Data consistency is difficult to ensure in systems with volatile caches
because the order in which values are persisted (e.g. written back to
the NVMM) depends on the cache replacement policy, which often
differs from program order. To deal with these ordering challenges,
architects have proposed memory persistency models [2, 9, 18, 37]
to give programmers a guarantee of the ordering in which stores are
persisted to NVMM.

One model that is easier for programmers to reason about is that
of durable transactions [2, 23, 43]. With a durable transaction, all
stores in a transaction persist or none of them do.1 This is a simple
and useful abstraction for programmers.

In this paper, we explore a key challenge of using durable trans-
actions: how to perform logging efficiently and flexibly. Durable
transactions require logging, either through redo or undo logging.
The log allows the transaction to be recovered if a failure occurs dur-
ing the transaction. Each log entry can be created through software
code inserted by the programmer, through a library [2], or directly in
hardware without additional code [19]. Software approaches (SW)
incur large performance overheads due to additional instructions but
offer the greatest flexibility, including unlimited transaction size and

1Note a fundamental difference between durable transaction and transactional memory
(TM): a durable transaction specifies when data is made durable in NVMM, whereas
TM deals with when data is visible to other threads. Consequently, durable transactions
apply even to sequential code.
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Figure 1: Logging model taxonomy.

control over logging operations. The latter approach (HW) [19] has
low performance overheads, but it is typically less flexible.

In this paper, we propose a new logging approach, referred to as
Proteus, that achieves the favorable characteristics of both software
and hardware approaches: software controls it’s own log area, it can
support unlimited transactions of arbitrary size, it can manage its own
recovery, and it has low overhead. Our approach introduces two new
instructions that a log-load instruction creates a log entry by loading
the original data, and a log-flush instruction writes the log entry
to NVMM. We presume no additional programming effort beyond
specifying transaction boundaries, since the compiler can generate
instructions appropriately for code inside transactions. Additional
hardware support is introduced, largely within the core, to manage
the execution of these instructions and critical ordering requirements
between logging operations and updates to data to ensure durable
transaction semantics. Proteus avoids any limitation on the size or
number of transactions through judicious design of the interface:
software remains in control of allocating the log area, and hardware
keeps the cost of updating the log low. The taxonomy in Table 1
illustrates each logging model’s pros and cons.

We also consider integrating Proteus with a battery backed WPQ,
allowing the WPQ to be considered part of the persistency domain.
Once writes reach the WPQ they are considered durable. The pres-
ence of a battery-backed WPQ is consequential: it presents a new
opportunity to avoid writes to the NVMM. A key observation that
we exploit is that most log entries are created and discarded, because
failures are rare. Thus, we apply an optimization where we distin-
guish whether data blocks in the WPQ are there for logging or not.
This distinction allows us to treat them differently, where log entries
are kept as long as possible in the WPQ and discarded when a trans-
action commits, whereas non-log write-backs are allowed to drain
from the WPQ to the NVMM. Although this optimization offers an
insignificant improvement in performance, more importantly it helps
in extending the lifespan of NVMM by avoiding many unnecessary
writes to the NVMM [3–5, 12, 28, 39, 47, 49].

We implemented Proteus on a cycle accurate simulator, MarssX86,
and compared it against state-of-the-art hardware logging (ATOM [19])
and a software only approach. Our experiments show that Proteus
improves performance by 1.44-1.47⇥ depending on configuration,
on average, compared to a system without hardware logging and
9-11% faster than ATOM. A significant advantage of our approach

is dropping writes to the log when they are not needed. On average,
ATOM makes 3.4⇥ more writes to memory. Even though stores are
often not on the critical path, persistent writes are critical given the
store-ordering constraints required for durable transactions.

The remainder of the paper is organized as follows. Section 2 pro-
vides background on memory persistency, new PMEM instructions,
and previous logging implementations for transactions. Section 3
introduces our software supported hardware logging approach. Sec-
tion 4 describes the design of Proteus in detail, Section 5 describes
the evaluation methodology, and Section 6 evaluates our design and
presents our key findings. Section 7 presents a sensitivity study of
alternative architectural configurations and their impacts on perfor-
mance. Section 8 discusses related work. Section 9 concludes.

2 BACKGROUND
2.1 Memory Persistency Models
A persistency model is a specification of the allowable orderings
in which stores persist (i.e. are made durable in the NVMM) with
respect to the order in which stores appear in the program order.
Persistency models give programmers a means to reason about the
order of persists, when persists become durable, and failure-safety.
Previous research proposed several memory persistency models,
starting from a very high level of abstraction based on durable trans-
actions [23, 43], where all stores in a transaction persist entirely
or none of them do. In this model, stores within a transaction are
not ordered. Only the ordering of stores in a transaction with stores
outside the transaction are enforced.

At a lower level of abstraction, strict persistency, epoch persis-
tency, buffered epoch persistency, and strand persistency, have been
proposed [24, 37]. They give programmers a guarantee of the order-
ing in which stores are persisted to the NVMM, regardless of the
presence of durable transactions. Strict persistency [37] piggy-backs
on the sequential consistency model by specifying that a store that
is globally visible must also have persisted. Due to this constraint,
before each store persists to NVMM, all previous stores must have
persisted to NVMM. While it is easier to reason about failure safety
under this model, it comes with significant performance costs of not
allowing write reordering and write coalescing that naturally occur
in write back caches. Epoch persistency relaxes the ordering con-
straint in strict persistency [9, 37]. It allows the programmer to put a
persist barrier which defines an epoch in the program. Stores from
an epoch (i.e. between two persist barriers) can persist in any order,
but they must all persist before the persist barrier. Write coalescing
can occur for stores from the same epoch. At the persist barrier, the
processor may stall waiting for all stores from the epoch to persist.
The buffered epoch persistency model [9, 18] relaxes the persist
barrier by not forcing prior stores to persist right away (hence the
processor may not stall), as long as stores from one epoch persist
prior to any stores from the next epoch. Strand persistency [37], on
the other hand, relaxes the ordering constraints for persists separated
by a strand barrier. No ordering is enforced on persists in different
strands other than those implied by persist atomicity.

Even lower in the abstraction level is a set of primitives that can
be used to specify the ordering of store persistence. Intel PMEM [2]
is an example of this approach. PMEM was designed to be compat-
ible with x86 systems, and includes a few new instructions, such
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as clwb, clflushopt, and pcommit. clwb and clflushopt flush a dirty
block from caches to a write pending queue (WPQ) in the memory
controller (MC), while pcommit flushes the dirty block from WPQ
to the NVMM. By appending either clflushopt or clwb and pcommit
after stores that need to persist, programmers can selectively choose
which stores should persist and when they persist. clflushopt is or-
dered with respect to other stores on the same cache block, however
clwb is only ordered with respect to stores to the same address. To
force an ordering among two of these instructions, a store fence
instruction (sfence) is required. sfence, which was originally intro-
duced as a memory barrier to control the visibility of a store with
respect to other threads, is extended in PMEM so that it waits for
all pending PMEM instructions to complete before retiring. This
prevents following stores and PMEM instructions from executing
until the sfence completes.

Another important concept, related to the persistency model, is
the pesistency domain. The persistency domain is an architectural
description of which components in the system are persistent. Once
a store reaches the persistency domain, it can be considered durable.
Often, only the NVM itself is in the persistency domain. However,
moving the persistency domain on-chip and closer to a core can
significantly reduce the time to complete a persist operation. Intel
has proposed such an optimization called Asynchronous DRAM
Refresh (ADR). While the name refers to DRAM, a key feature of
this specification is that data in the WPQ in the memory controller
can be considered part of the persistency domain. This change makes
pcommit unnecessary since pending operations in the WPQ are
already in the persistency domain and do not need to be forced to
NVM. Consequently, Intel has deprecated the pcommit instruction.

Due to its lower abstraction level, PMEM instructions can be used
to implement some of the other persistency models. For example,
if a sequence of (clflushopt, clwb) is inserted after each store, strict
persistency is achieved. An example is illustrated in the following
code. The first column shows strict persistency where st X, st Y, and
st Z are strictly ordered. The second column shows epoch persistency
where st X and st Y fall within one epoch, but st Z is in the next
epoch.

Strict Persistency Epoch Persistency
i1: st X, 1; i8: st X, 1;
i2: clwb X; i9: st Y, 1;
i3: sfence; i10: clwb X;
i4: st Y, 1; i11: clwb Y;
i5: clwb Y; i12: sfence;
i6: sfence; i13: st Z, 1;
i7: st Z, 1;

In this paper, we assume durable transactions as our persistency
model, where all stores in a transaction either persist together or
not at all [23]. Similar to ADR, we include the memory controller
in the persistency domain, which allows our scheme a significant
opportunity to reduce the number of writes to NVMM.

2.2 Failure Safety
Applications manipulating important data such as database or file-
system must ensure that the data is consistent under power failure
(failure safety). To construct a durable transaction, where a group
of stores are made durable atomically, two approaches are popular:

copy-on-write (COW) and write-ahead logging (WAL), With COW,
a write triggers data to be copied to a new location where the write
will occur. The original data is left intact. COW requires address
remapping so that future reads can be redirected to the new location.
This remapping is generally considered expensive. For block-based
storage, the cost can be amortized by applying copying to a large
granularity such as a page, and committing updates infrequently [9].
However, NVMM access is byte-based and stores occur much more
frequently than file writes. Thus, COW may be prohibitively expen-
sive to use in NVMM.

With WAL, a redo/undo log for all desired changes is persisted in
NVMM prior to committing any modifications. If a failure occurs
in the middle of transaction processing, the saved log is used to
redo/undo the transaction [42]. Although each update requires two
writes, it is not as expensive as an update in COW. WAL can be
performed frequently in a small granularity such as the cache block
size. The following steps show an example of how undo logging in
software can be constructed to ensure failure safety:

Step 1 Perform undo-logging and persist undo log.
Step 2 Set logFlag and persist it, indicating transaction start.
Step 3 Update data structure and persist it.
Step 4 Unset logFlag and persist it, indicating transaction completion.

Figure 2: Steps needed to implement fail-safe undo logging in
software.

logFlag is used to indicate the progress status of the transaction. If
failure occurs before Step 2 completes, the transaction is retried. At
re-execution, the log will be overwritten. If failure occurs after Step
2 completes but before Step 4 completes, the log is used to undo the
transaction, prior to transaction re-execution. In this implementation,
each step must persist before the next step is executed. If PMEM
is used, at the end of each step, modifications in the cache must be
flushed using clwb and sfence. These instructions are inserted to
prevent reordering with the next step. In this paper, we adopt this
implementation as our baseline.

3 HARDWARE LOGGING
In the previous section, we have discussed how logging is neces-
sary to support durable transactions that are critical in achieving
failure-safe applications. In this section, we introduce our new de-
sign, Proteus, which performs logging in hardware in a flexible
way.

3.1 Software Supported Hardware Logging
As discussed earlier, with durable transaction support, program-
mers can achieve failure safety by grouping related writes into an
atomic section. The atomic section requires WAL to ensure a log is
created prior to making modifications to data in the NVMM. Log
creation, maintenance, and truncation, can be performed in software
(software logging or SL) or in hardware (hardware logging or HL).
SL, traditionally a popular technique for persistent (block-based)
storage devices, has recently been adapted for use in NVMM, e.g.
Mnemosyne [43] and NV-Heap [8]. SL is flexible: it is compatible
with a wide range of systems, it does not impose any restrictions on

180



MICRO-50, October 14–18, 2017, Cambridge, MA, USA S. Shin et al.

Time

Program 
order

log A

log B

log C

st A

st B

st C

fence

Time

log A

log B

log C

st A

st B

st C

(a) Software Logging (b) Hardware Logging
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the transaction size or count, and can be changed without impacting
the underlying architecture. However, the flexibility also comes with
significant costs. First, there are additional instructions that must
be executed for creating and maintaining logs, including stores and
cache line write-back instructions. Second, a log must persist prior
to data modifications, hence the log creation directly lengthens the
critical path of transaction execution. Third, when implemented with
PMEM, memory fences are needed to impose ordering between the
steps shown in Figure 2. In our experiments, across a variety of
benchmarks, on average SL makes the execution time 1.51x longer.

In response to the execution time and instruction overheads of SL,
hardware logging (HL) has recently been proposed, e.g. ATOM [19].
With HL, software indicates the transaction start and end, while
a hardware transaction manager creates and manages the log au-
tomatically. HL has several advantages over SL. First, no logging
memory instructions are needed. Second, since the processor can
distinguish logging memory updates from data updates, their order-
ing can be ensured in hardware at a finer granularity without reliance
on memory fences. The effect of this on execution time is illustrated
in Figure 3. Finally, the awareness of logging updates allows new
optimizations. For example, in ATOM, the posted log optimization
allows stores to complete before logging updates are made durable
by locking the cache block in the MC, thereby preventing subsequent
data updates from being persisted until the logging update becomes
durable. Source log optimization relegates the creation of log en-
tries to the memory controller instead of the cache controller. This
allows log entries to be created with a lower latency. Both of these
optimizations are important for reducing the overhead of logging.

In order to get the high performance of HL without losing the
flexibility of SL, we propose a third approach: software supported
hardware logging (SSHL). The key idea behind SSHL is to still rely
on software to perform log creation and maintenance, but allow soft-
ware to inform hardware which operations are performing logging.
This removes the need for hard-wiring log creation/maintenance into
hardware, thereby preserving SL flexibility. On the other hand, since
hardware can now distinguish which operations are logging opera-
tions as opposed to regular loads/stores, it can optimize specifically
for logging operations differently from regular loads/stores.

We exploit the combined effect of knowing which operations are
logging and the fact that the memory controller is in the persistency
domain to drop logging operations from the MC once they are no
longer needed. When a transaction ends, we can be sure that all of

its data updates are durable, either in the NVMM or in the WPQ at
the memory controller. Hence, the logging operations that ensure
failure safety are no longer needed. Since we can differentiate them
from regular stores or necessary persists, we can simply discard them.
This not only helps to save power, but also avoids write amplification
due to logging updates that may wear out the NVMM.

3.2 New Logging Instructions
Proteus requires software to inform hardware of logging operations.
Each logging operation requires two memory addresses: the log-from
address to hold the address of the original data and the log-to address
to hold the corresponding address in the log. In order to indicate
logging updates to hardware, Proteus needs instruction support. We
consider two approaches in designing the logging instructions. In the
first approach, we consider using a single instruction to do the entire
logging operation. However, this requires the log-from and log-to
addresses to be specified in a single instruction. This leads to the
complexity of possibly handling two page faults in one instruction.
Thus, we consider an alternative approach where we rely on two
instructions to specify a logging operation. The first instruction reads
data from the log-from address. The second flushes it to the log-to
address making the log entry durable. The two instructions have the
following format:

log-load $LR1 M1 Load 32B block from log-from address
M1 to log register LR1

log-flush $LR1 M2 flush data from LR1 to the log entry in
NVMM at log-to address M2

Here, LR is a register that holds a full log entry consisting of the
log data, the log-from address, and some other metadata (see Sec-
tion 4). The LR registers are added to support the logging operation.
The log-load reads a 32-byte block from address M1 (the log-from
address) into the log register LR1 along with the log-from address.
The log-flush writes the value in LR1 to the log-to address M2. The
log-load completes when data is received at the log register. The
log-flush completes when the flush is received at the WPQ in the
memory controller and after the memory controller acknowledges
receipt.

When a durable transaction is defined by programmers using tx-
begin and tx-end, a compiler expands each store in the transaction
into three instructions, log-load, log-flush, and store. Figure 4 shows
an example of such transformation. On the left column, the program
expresses a durable transaction region with two stores to addresses
A and B. On the right column, the compiler replaces each store with
a sequence of log-load, log-flush, and store. LR1 and LR2 are two
40-byte log registers. The number of log registers is selected such
that it does not cause a structural hazard in the pipeline. The number
of log registers determines the number of stores that can be logged
concurrently. LTA is a special register that records the log-to address.
In the figure, the auto-increment addressing mode is used to indicate
that after a log-flush the LTA is incremented automatically. At the
end of a transaction, tx-end instruction is inserted by a compiler
in order to inform the end of the transaction to the processor. The
actions taken by the architecture when executing tx-end are discussed
in Section 4.

In the figure, the write to A is represented by instructions i2, i3,
and i4, while the write to B is represented by instructions i5, i6, and

181



Proteus: Flexible and Fast Logging for NVM MICRO-50, October 14–18, 2017, Cambridge, MA, USA

tx-begin
  A = ...
  B = ...
tx-end

i1: tx-begin
i2: log-load LR1, A
i3: log-flush LR1, (LTA)+
i4: st A
i5: log-load LR2, B
i6: log-flush LR2, (LTA)+
i7: st B
i8: tx-end

Durable 
transaction

After code 
generation

Figure 4: Example code transformation for our SSHL ap-
proach.

i7. Instructions i2 (log-load) and i3 (log-flush) show a read-after-
write (RAW) register dependence on LR1. However, instruction i3
(log-flush) and i4 (st) do not show register or memory dependences
between them. This allows i4 to be committed from the pipeline and
placed in the store buffer. However, an additional ordering must be
added here, where i4 cannot be released to the cache until the prior
log-flush completes. Enforcing the ordering requires an additional
hardware structure, which will be discussed later.

4 DESIGN DETAILS
4.1 Log area allocation and log granularity
Prior to using the log, an application needs to create and initialize
the log area. One design question is how the log area is accessed.
To answer it, we must consider how recovery after a failure will be
supported, and in particular, whether the log is accessible through
virtual memory or not. Choosing a virtual address (VA) for the log
area implies that the application may be responsible for restoring
its state. On the other hand if a physical address (PA) is used, the
operating system (OS) must be responsible for restoring the state of
all applications. Using PA for logging requires that both data and log
pages are fixed and never swapped out. On the other hand, using VA
for logging allows data or log pages to be swapped in/out, but this
implies that the page table mapping can be restored across crashes,
possibly by making the page table persistent or by leveraging relo-
catable objects [2].

Implementation complexity is important to consider. PA logging
incurs significant hardware complexity because the logging opera-
tion breaks the virtual address space abstraction of programs, hence
the OS and hardware need to be modified accordingly. For exam-
ple, address space protection and isolation now require separate
OS/hardware mechanisms. A fault cannot be handled by a conven-
tional page fault handler. The HL approach is bound to use PA
logging in order to avoid the memory controller from having to
interact with an application’s page table. On the other hand, SL and
SSHL can use VA logging, because an application is responsible for
the log area allocation and management. Consequently, our Proteus
uses VA logging. Specifically, each thread in the application can
allocate one log area. The log area is treated as a circular buffer, so
that the log can wrap around when space runs out. We assume that
the programmer chooses a log area size that is sufficiently large to
accommodate the durable transaction size. If the logs overflow the
assigned size in a transaction, the processor raises an exception.

Figure 5 shows a high level diagram of our Proteus architecture.
At the top left, it shows four new registers. log-start and log-end
record the start and end address of the log area, respectively. The cur-
log register tracks the current free log entry. Finally, txID records
the current transaction ID being executed in the core.

The Logging Data Register (LDR) file contains a number of log
entries. Each log entry contains a logging data value and metadata,
which contains the log-from address for the log entry and the trans-
action ID. The logging data value has a size that corresponds to
the logging granularity, i.e. the number of consecutive bytes that
are logged together with a single logging operation. The choice of
logging granularity affects performance: if too small, there is little
opportunity for coalescing that leads to a high number of log-flushes
and writes to NVMM. If too large, data and metadata may not fit in
a single cache line, requiring two writes to perform one log-flush
and more writes overall to NVMM. Thus, we choose the logging
data size to be 32B, leaving the reminder for metadata. Both data
and metadata fit into one cache line (64B).

4.2 Proteus Architecture
Proteus adds hardware structures shown in grey in Figure 5. Several
40-byte log registers (LR) are added to the register file (LDR), to
keep the log data and log-from address while logging instructions
are executing in the processor pipeline. An LR is allocated when
a log-load instruction enters the out-of-order (OOO) pipeline, and
deallocated when it is no longer needed for detecting register depen-
dences, i.e. when dependent log-flush instructions have committed.
Because LRs can be recycled quickly, we found that eight LRs are
sufficient.

LogQ is a structure that keeps track of each logging operation.
When a log-flush instruction enters the OOO pipeline, an entry is
created in the LogQ. It contains the log-from address (location of the
original data in NVMM), log-to address (location of the log entry in
the log area), and log-data (data value to be flushed to NVMM). The
number of entries in the LogQ determines the maximum number
of concurrent log-flush operations. A log-flush operation avoids
write-allocate in the cache by directly passing the request to the
memory controller (MC), avoiding cache pollution. To avoid a cache
coherence issue, the log area is marked uncacheable. When the log-
flush is received at the MC, the MC sends an acknowledgment to the
LogQ and the entry is deallocated from the LogQ. Since an entry is
deallocated relatively quickly, we found that increasing LogQ size
has diminishing returns and 16 entries in our evaluation is a fair size.

The LogQ has another important function: imposing ordering
between a log-flush instruction and a store to the same log-from
address. Recall from our discussion in Section 3.2 that for correct
failure recovery, the log entry must persist prior to the store persist.
Therefore, a store to the same log-from address must remain in the
StoreQ and not be released to the cache until the preceding log-
flush operation is complete. Likewise, log-flushes have to check
preceding stores in the storeQ before they are released to the cache.
Thus, when a store retires and before it’s committed to the cache,
it checks its address against older entries in the LogQ. One corner
case, worth mentioning, is that a full LogQ could prevent a log-flush
from creating an entry. In this case, to ensure that no stores bypass
the log-flush, we stall dispatch if a log-flush fails to find a free LogQ
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Figure 5: Proteus hardware design.

entry. This will ensure we can enforce the required persist ordering
later between log-flush and a following store to the same address.

To achieve higher performance, the LogQ allows log entries to
flush out-of-order. This must be done carefully to ensure correctness,
otherwise it can jeopardize the correctness of recovery. For example,
if two log entries in the same transaction have the same log-from
address but different data, one must include updates from within the
transaction and cannot be used for recovery. Only the first log entry
in program order should be used to recover the state. One solution to
prevent use of the wrong entry is to guarantee that the log-to address
is assigned in program order for all log entries. In that way, recovery
knows to use the earliest log entry and later ones are ignored. To
guarantee this invariant, the log-flush determines its log-to address
only after all previous log-flushes in program order have resolved
their log-to addresses. In spite of the dependency among log-flushes
to compute their log-to address, the LogQ can still hide the latency
of logging by enabling the concurrent execution of the actual flushes
to the MC. This turns out to be an important performance advantage
over ATOM since it serializes log entry creation at store retirement.

Moving on, a structure called the Log Lookup Table (LLT) can
be seen in the figure. Before explaining the structure, we observe
that there is a significant log temporal locality within a transaction.
That is, for our choice of log data size of 32 bytes, it is often the case
that there are multiple stores to different bytes/words of the same
32-byte region. If we are not careful, each of these stores will create

a sequence of log-load and log-flush, leading to a high number of
logging operations and writes to NVMM. As previously mentioned,
any logging after the first one to a given log-from address is simply
unnecessary overhead.

Eliminating unnecessary logging can be achieved through com-
piler analysis. However, the presence of aliased pointers make com-
piler analysis less effective. We prefer to solve it dynamically by
adding the Log Lookup Table (LLT). The LLT keeps the last few
log-from addresses in a transaction. If there is a new log-flush opera-
tion, its log-from address is checked against the LLT. On a match,
the log-load and log-flush instructions complete immediately and
are not given a log-to address. On an LLT miss, the log-load and
log-flush proceed as usual, and the log-from address is added to the
LLT replacing an LRU entry, if necessary, from the LLT. The LLT
prevents repeated logging operations to the same log data, reducing
the memory bandwidth devoted to logging. In addition, the LLT
helps to reduce the size of the log area in NVMM, the LogQ, and
the LPQ in the MC. For an LLT of 64 entries, the overhead is only
410 bytes.

When a transaction ends, triggered by the tx-end instruction, the
LLT is cleared. This prevents the next transaction from finding stale
data in the LLT and mistakenly believing it has already logged data.
This is one of the primary purposes of tx-end, but there is also
another purpose, as described in the next section.

4.3 NVMM Log Write Removal
Another hardware structure in Proteus is the Log Pending Queue
(LPQ) in the MC. However, before going into that, we will first
assume that the MC only has the Write Pending Queue (WPQ) and
there is no LPQ.

With the introduction of ADR, the WPQ is now considered non-
volatile. Thus, log entries can be considered durable when they are
accepted at the WPQ (and before they are written to the NVMM), and
acknowledgement of their completion can be sent to the processor
at that time. This has the effect of allowing log-flush to complete
sooner and stores released to the cache sooner.

We take an even greater advantage from ADR through an addi-
tional optimization. Although not in the critical path, writing log
entries to the log area in NVMM is expensive due to the added power
consumption and reduced write endurance of the NVMM. We note
that log entries are no longer needed after a transaction ends (marked
by the tx-end instruction) because all data updates are guaranteed
to be durable, either in the WPQ or in the NVMM. In the common
case, logs are written once and never read again. Hence, log entries
that have not yet been written to NVMM after the transaction ends
can be flash cleared and never written. This leads to the insight that
we should keep log entries in the WPQ until a transaction ends, if
possible, to avoid ever writing them to NVMM. This not only helps
to save power consumption, but also avoids premature wear-out in
the NVMM by significantly reducing the number of writes.

To achieve this, we must prioritize writing back regular writes
from the WPQ to the NVMM. This requires a priority bit to be
added (or expanded if it is already there) so that log flushes are
de-prioritized and rarely released to the NVMM.

Inevitably, some log entries may have been released to the NVMM
before the end of the transaction anyway. These log entries need to
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be invalidated by reading and marking these log entries invalid in
the NVMM. As a result, the potential savings are not as great as we
might expect. To overcome this issue, ATOM introduces hardware
in the MC to track all active log entries and clear them once a
transaction is completed [19]. Because of this hardware design,
ATOM’s performance benefits are limited to its available resources.
Once the resources run out, ATOM has to search the log area and
invalidates them manually one by one. We address this issue in
Proteus using a simple design. First, we add a transaction ID to the
meta data of each logging operation so that all log entries belonging
to a transaction can be identified quickly. Second, we allocate a
separate log area for each thread. Intuitively, since there is only one
active transaction at any particular time within a thread, only the log
entries belonging to the most recent transaction are the valid logs.

In the above technique, the log area still needs to mark the end of
a transaction (tx-end) to indicate whether the most recent log in the
log area is valid or not. Instead of using one more log entry to mark
the end of a transaction, Proteus utilizes the meta data of the last
log entry for marking the end of the transaction. The last log entry
in a transaction still needs to be flushed to NVMM. However, this
mark is only necessary before the next transaction from the same
thread starts in the log area. So we add a minor optimization that
the last log entry is held in the WPQ (except when WPQ is full) and
is discarded once a log entry from the next transaction reaches the
WPQ.

So far we have described our flash clearing and priority bit op-
timizations. However, we notice that keeping log entries only in
the WPQ has a limitation that logging operations and regular writes
compete for entries in the WPQ. Increasing the number of WPQ
entries can alleviate this, but it adversely increases read latency. An
incoming read must be checked against WPQ entries for a match. A
larger WPQ increases the checking time and directly increases the
critical path of read requests.

To avoid extending the critical path of reads, we add the LPQ,
and log flushes go only to the LPQ freeing the WPQ only for regular
write-backs. An incoming read does not check against the LPQ
because logs are not used again by the processor except during
failure recovery. This also eliminates the additional priority bit in the
WPQ. Prioritizing write requests in the WPQ over logging requests
in the LPQ can be achieved at the arbiter instead. The LPQ contains
log entries, where each entry contains the transaction ID, core ID,
and various information about the log. When a transaction ends, all
LPQ entries matching the particular transaction ID are cleared.

4.4 Context Switch
We also consider the case of supporting a context switch with our
new hardware. The new registers added to the core need to be saved,
namely the txID, log-start, log-end, cur-end, and LR registers. Also,
we need to clear the LLT, just like on a tx-end, to ensure that entries
in the LLT are not mistakenly used by another thread. Note, even if
the same thread is rescheduled, it may simply result in additional
log entries for the same data. However, this can be handled easily
during recovery by recovering from the earlier entries in the log.

The other case we need to handle is ensuring that data in the MC
is flushed to NVMM. Since we do not know how long the thread
may be switched out, we send a message to the MC informing it to

write all LPQ entries for the txID to NVMM. This conservatively
assures correctness. Since context switches are rare, the performance
penalty is minor.

For processors do not have an explicit context switch instruction
that can perform these actions, we add the log-save instruction to
carry out the actions we described.

5 METHODOLOGY
5.1 Simulation configuration
For our experiments, we implemented Intel PMEM instructions,
clwb, clflushopt, and pcommit in a processor simulator built on
MarssX86 [36], which is an open source cycle-accurate full system
simulator for an x86-64 architecture. We also add the appropriate
ordering constraints for memory fences (sfence and mfence) with
respect to PMEM instructions. Of the PMEM instructions, we only
use clwb because pcommit has been deprecated while clflushopt is
not needed (it invalidates a block after flushing it). Our simulation
model supports a detailed out-of-order multicore CPU, coherent
caches, interconnection, and memory controller models. To simulate
a detailed memory system, we also integrated DRAMsim2 into
MarssX86. In our implementation, the ordering constraint of clwb
and pcommit is implemented as described in Intel’s manual [14],
where clwb is ordered with respect to older stores to the same address
and store-fencing operations (e.g. sfence and mfence). After clwb is
retired from the CPU pipeline, it accesses the cache in the same way
as regular stores. If the clwb hits a dirty block in the cache hierarchy,
the dirty cache block is flushed to the WPQ in the MC. Once the
cache block is placed in the WPQ, the clwb becomes globally visible.

In addition to implementing Proteus, we also implement the state-
of-the-art in hardware logging, ATOM [19], for comparison. In
ATOM, a log entry is automatically generated right before a store
gets retired. Logging delays the store’s retirement and the store
is held in the storeQ until the logging operation is completed. In
order to compare with the best-performing version of ATOM, we
implemented and integrated both posted log optimization and source
log optimization into ATOM. Thus, logging is considered complete
once the log entry arrives at the MC which locks the cache line
and sends an acknowledgment back to the cache controller. This
optimization reduces the latency of logging, which is on the critical
path of the store operation. Furthermore, on a cache miss with a
logging operation, a log entry is created in the MC before the data is
sent to the cache.

The simulation parameters and architecture configurations for the
processor and memory systems are listed in Table 1. Our machine
model includes a quad-core processor with each core supporting out-
of-order issue and execution with three levels of cache backed by
DRAM/NVMM. The configuration parameters are similar to Intel’s
Skylake architecture [15] with minor differences. The DRAMsim2
parameters are also listed in the table. To simulate NVMM latencies
for the baseline memory which assumes DDR3-1600, we increased
tRCD to 29 cycles for read and 109 cycles for write (50ns for read
and 150ns for write), in line with numbers assumed in prior work [4,
25, 26, 31, 42, 44, 46].
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Table 1: The baseline system configuration.

Processor OOO, 3.4GHz, 4 cores, 5-wide issue/retire.
ROB: 224, fetchQ/issueQ/LoadQ/StoreQ:
48/64/72/56

L1I and L1D 32KB, 8-way, 64B block, 4 cycles,
private per core

L2 256KB, 8-way, 64B block, 12 cycles,
private per core

L3 8MB, 16-way, 64B block, 42 cycles,
shared by all cores

Interconnect 96B/cycle for CPU-L1, 64B/cycle for L1-L2
Bandwidth 32B/cycle for L2-L3, 16B /cycle for L3-MC

DRAM DDR3-1600 (800MHz), 8GB
1 channel, 16 Banks per rank,
2KB row-buffer

tCAS-tRCD-tRP-tRAS-tRC-tWR-tWTR-tRTP-tRRD-tFAW
11-11-11-28-39-12-6-6-5-24

NVM tRCD 29 for Read, 109 for Write
Proteus LR: 8 registers, LogQ: 16 entries,

LLT: 64 entries (8way), LPQ: 256 entries

5.2 Workloads
Using the PMEM instructions, we constructed a workload consisting
of benchmarks with data structures listed in the Table 2. The bench-
marks are borrowed from or are similar to those used in previous
studies [8, 18, 19, 30, 37, 42, 48]. For each benchmark, we construct
an operation that is either a node insertion or deletion (except for
String Swap). The operation is wrapped inside a durable transac-
tion. Each benchmark receives an operation type and a key for each
operation from an input file which contains the list of operations
generated randomly. We used multiple data structures per benchmark
to avoid excessive lock contention among multiple threads. In this
work, we assumed that multicore shared memory accesses among
transactions are solved by thread synchronization using locks, which
guarantees mutual exclusion between concurrent transactions. We
believe that this is a separate problem and not the focus of our work.
And hence, each operation must obtain a lock for a data structure
before the operation is performed and no other threads can interrupt
the executing thread in the middle of the update. The table shows
the number of initial operations per thread that are executed first
to populate the data structure, which are then fast-forwarded in the
simulator. To eliminate non-determinism from our experiments, the
pthread barrier is used after initial operations so that all threads run
together as they are simulated.

On each benchmark, we created a manual undo-logging version
and a version for ATOM and Proteus. We found that rebalancing
operations in self-balancing tree benchmarks (AVL tree, B tree, and
RB tree) are challenging for the creation of undo logs because it
is difficult to know which nodes will be modified at the start of
the transaction. Therefore, our manual undo-logging assumes the
worst and logs all nodes that could be modified by the operation.
Furthermore, for simplicity, we assume that memory allocations
and deallocations are performed in a failure-safe way so that our
undo-logging need not cover them.

Table 2: Benchmarks constructed for our study. Except for SS
which has 256 bytes for each string, we size each node to be 64
bytes and align them to cache blocks in all benchmarks. Thus,
to persist one node update, one clwb will be required. InitOps
and SimOps are expressed in terms of the number of operations
that are executed per thread.

Benchmark
(Abbrev.)

Description #InitOps #SimOps

Queue Enqueue/dequeue 20000 50000
(QE) in 8 queues
HashMap
(HM)

Insert or delete entries
in 16 hash maps

100000 20000

String Swap
(SS)

Swap strings in a string
array (262144 items)

20000 50000

AVL tree Insert or delete nodes 100000 10000
(AT) in 16 AVL trees
B tree Insert or delete nodes 100000 10000
(BT) in 16 B trees
RB tree Insert or delete nodes 100000 10000
(RT) in 16 RB trees

6 EVALUATION
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Figure 6: Speedup comparison on NVMM, with software log-
ging with PMEM as baseline.

In order to assess the performance benefits of Proteus, we im-
plemented and compared the following schemes: software logging
represented by an Intel PMEM based implementation of WAL, both
with pcommit (PMEM+pcommit) and without it (as the base case),
hardware logging represented by ATOM [19] including all of its
optimizations (ATOM), and software-supported hardware logging
represented by our scheme Proteus (Proteus) and without log write
removal (Proteus+NoLWR). In order to see how close they perform
to an ideal case, we also implemented PMEM but with logging re-
moved (PMEM+nolog). The latter does not provide failure safety
and is devoid of any logging overheads, and thus it is an ideal case.

The result of their speedup over the base case of PMEM with-
out pcommit for all benchmarks and for the geometric mean of
all benchmarks are shown in Figure 6. First, let us observe the
PMEM+pcommit bars. They are significantly below 1.0 in all bench-
marks, with a geometric mean of 0.79. This shows that moving
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the MC and WPQ into the persistency domain is very helpful for
performance. Next, consider the last bars (PMEM+nolog) that are
significantly higher than 1.0, with a geometric mean of 1.51. This
shows that the addition of logging code and its execution causes
very significant performance overheads, whereas its removal speeds
up execution by 51% on average. However, on benchmarks with
complex data structures such as BT and RT, the speedups when
logging is removed are very high: in the case of BT, logging code
removal results in a 2.98⇥ speedup. This is because, for complex
data structures, it is difficult to determine which components of the
data structure will need to be undo logged. For example, tree bal-
ancing operations may affect only a few nodes in the best case or
the entire tree in the worst case. Thus, logging code needs to assume
conservatively that a high number of nodes will be affected by a
transaction.
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Figure 7: The normalized stall cycles of the pipeline front-end.

Now let us examine ATOM and Proteus. ATOM performs quite
well, achieving a 1.33⇥ speedup on average while Proteus achieves
a geometric average of 1.46⇥ speedup. In other words, Proteus
is faster than ATOM by 1.46

1.33 � 1 = 10%. Furthermore, Proteus’s
speedup is only 3.3% lower than the ideal case of no logging. In
ATOM, a log entry is automatically generated right before a store
gets retired and the retirement is delayed until the log entry becomes
durable. Due to this constraint, the rate at which store operations
are completed is reduced. For ATOM’s design, this is necessary
to solve the dependency between log entries and stores. However,
Proteus does not have this limitation because the LogQ manages
the dependency. This allows Proteus to support concurrent logging
as long as log-flushes do not have dependences with preceding
stores. In addition, it allows stores to complete earlier. We found
that concurrent logging provides an important advantage in overall
performance.

To analyze the performance difference between ATOM and Pro-
teus, we investigated the stall cycles at the front-end of the pipeline
before instruction dispatch. The front-end could be stalled by a lack
of free resources in the ROB, physical registers, or LSQ. Figure 7
shows the stall cycles normalized to the stall cycles of PMEM+nolog
in the front-end. ATOM has 12% more stalls than Proteus and 16%
more stalls than the ideal case. On the other hand, the number of stall
cycles in Proteus is fairly close to the ideal case, only 4% more stalls.
These results show that ATOM creates more pressure on the pipeline
and eventually stalls it, but Proteus is free from this limitation.

Figure 8 compares the number of NVMM writes for each bench-
mark, normalized to the number of NVMM writes of PMEM+nolog.
On average, ATOM has three times more writes to NVMM (3.4⇥),
compared to PMEM without logging. In benchmark (QE), it more
than quadruples the writes to NVMM and in the worst case (AT),
it has six times more writes to NVMM. The increase in number of
writes is due to logging (creation and truncation). This is significant
because it cuts the write endurance of NVMM by more than three
quarters. In contrast, Proteus only increases the number of writes
slightly. In the worst case (AT), the increase in writes is still rela-
tively low, at 6%. The reason for Proteus’s advantage is that most
log updates are held at the LPQ and flash cleared when a transaction
ends, thanks to the fact that the MC is part of the persistency domain.
Thus, most log flushes do not even go to the NVMM.
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Figure 8: The number of NVMM writes, normalized to PMEM
with no logging.

7 SENSITIVITY STUDY
In order to quantify the impact of memory latency on the perfor-
mance of the logging schemes we studied, we ran our experiments
with slower NVMM and faster DRAM. Moreover, later in this sec-
tion, we expand our study into the impact of the new components of
Proteus on performance with varied hardware structures and their
tradeoffs.

7.1 Performance on slow NVM
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Figure 9: Speedup comparison on slow NVMM (300ns for
write), with SW logging as baseline(PMEM).
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Current NVM read and write latencies, for various technologies,
have not yet reached our previous assumption of fast NVM with
50ns read and 150ns write latencies. In order to see the impact of our
scheme on slower NVM devices, we modeled a higher write latency
at 300ns while keeping the read latency at 50ns. Not surprisingly,
the overall performance of all test cases decreased 10-23% with
slow NVMM compared to faster NVMM, indicating that slow write
latency affects the performance. Figure 9 shows the speedup of each
benchmark on a slow NVMM, with the baseline of PMEM as before.
The geometric mean of speedups are 1.33 for ATOM, 1.49 for Pro-
teus, and 1.53 in the ideal case. Compared to Figure 6, the speedup
of the ideal case is slightly improved since it has fewer writes than
the baseline. On the other hand, Proteus is also less affected by write
latency and still maintains superior performance close to the ideal
case. However, the speedup of ATOM stays the same over the base-
line, indicating that ATOM is more influenced by write latency than
Proteus. On average, Proteus experienced only a 10% performance
decrease compared to the faster NVMM, which is superior than
the 12% decrease of ATOM’s. Hence, Proteus’s advantage becomes
more substantial with longer NVMM write latencies.

7.2 Performance on DRAM
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Figure 10: Speedup comparison on DRAM, with software log-
ging with PMEM as baseline.

Figure 10 shows the speedup comparison on DRAM. The ratio-
nale behind running with DRAM is to study the performance of
logging when battery backed DRAM solutions, like NVDIMM, are
used. On DRAM, we found that Proteus still performs quite well. We
observe average speedups of 1.31 for ATOM, 1.47 for Proteus, and
1.52 for the ideal case. Compared to Figure 6, overall performance
is improved from 11% for ATOM up to 30% for PMEM+pcommit.
Because of its modest performance improvement, ATOM’s speedup
over the baseline decreased slightly. Considering the fact that logging
is completed at the MC with posted log optimization, the speedup
degradation in ATOM over the baseline is the result of the tradeoff
between faster accesses to DRAM and relatively fixed logging la-
tency in ATOM. On DRAM, the overhead of logging plays a slightly
bigger role in the overall performance of ATOM. On the other hand,
Proteus maintains its superior performance with a 13% performance
improvement over NVMM. We found the reason is that it hides the
logging latency more effectively using concurrent logging. Although
it is not described in the figure, the speedup difference obtained

when changing from the LogQ size of 8 to 16 increases notably,
from 0.02 with NVMM to 0.11 with DRAM. The bigger LogQ helps
Proteus hide the logging latency even with fast memories.

7.3 Analysis of logging components

  0

  0.5

  1

  1.5

  2

  2.5

  3

AT BT HM RT SS QE Gmean

S
p
e
e
d
u
p

ATOM
LQ01
LQ02
LQ04
LQ08
LQ16
LQ32
LQ64

Figure 11: Speedup comparison with varying LogQ sizes. The
baseline is software logging with PMEM.

Figure 11 shows the impact on speedup by varying the LogQ size
for each benchmark. From the figure, average speedup shows an
increasing trend as LogQ size is varied from 1 to 64, but we also
can see the diminishing returns as the size increases. These results
suggest that a LogQ size of 8 gives a 1.44x speedup. Speedups start
to saturate with a LogQ size of 8, with very little improvement (1-
2%) as the size is doubled. A LogQ size of 64 gives more than 1.47x
speedup which is only 2.4% below the ideal case. We chose a LogQ
size of 16 as our optimal configuration instead of 8 considering its
superior performance on DRAM and its dominant performance over
ATOM across all benchmarks, particularly since it performs worse
than ATOM in benchmark (SS) with only 8 entries in the LogQ.
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Figure 12: Speedup comparison with varying LPQ and LogQ
sizes. The baseline is software logging with PMEM.

Figure 12 shows the combined interaction of varying LogQ along
with LPQ. From the previous study we pick the optimal LogQ size of
16 and use it to study different LPQ sizes. We found that benchmarks
require a certain LPQ size depending on their transaction size. As
long as a large enough LPQ is provided, overall performance is
unaffected. Otherwise, the performance drops rapidly for smaller
sizes. We select the size of 256 entries as our configuration.
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Table 3: Speedups for large transactions.

Transaction Size 1024 2048 4096 8192
Proteus 1.20 1.24 1.23 1.24

PMEM+nolog(ideal) 1.23 1.25 1.25 1.27

We implemented a microbenchmark with variable-sized, large
transactions based on the linked list benchmark. The number of ele-
ments updated per node is taken as a variable to stress Proteus. Each
transaction completes once all elements on a node are updated, and
we chose the number of elements for our experiments as 1024, 2048,
4096, and 8192. We found that the benchmarks generate 20⇥, 39⇥,
78⇥, and 156⇥ more log entries per transaction compared to the
existing benchmarks. Although a large number of those log entries
are filtered by LLT, we still found that 7⇥, 13⇥, 26⇥, and 52⇥ more
log entries per transaction are flushed to the MC. Table 3 compares
the speedups of Proteus and the ideal case (PMEM+nolog) with
varying transaction sizes. The data suggests that the performance of
Proteus is still very close to the ideal case. The result also suggests
that hardware structures (LogQ, LLT, and LPQ) used in Proteus are
able to sustain large transactions.

Table 4: LLT miss rate (%) for different benchmarks.

Benchmark AT BT HM RT SS QE
miss rate 37.2 36.1 39.2 51.6 24.5 22.5

Table 4 shows the LLT miss rate for the benchmarks collected
with an LLT size of 64 entries. The data shows that the benchmarks
chosen did exhibit varied miss rates from 22.5% to 51.6%. Higher
LLT miss rates indicate more log entries per transaction. The data
shows that the LLT efficiently absorbs half to three quarters of
logging traffic, helping to reduce the memory bandwidth devoted to
logging. Furthermore, the decreased log entries help to reduce the
necessary size of the LogQ, the LPQ, and the log area in NVMM.

8 RELATED WORK
The emergence of new non-volatile memory technologies have paved
the way for designing systems with fast non-volatile main memory,
which has opened many new research directions. Modern systems
are optimized for volatile memory, such as DRAM, which makes it
difficult to maintain data consistency in NVMM after power failure.
In order to maintain data consistency in NVMM, researchers have
borrowed traditional storage techniques such as copy-on-write or
write-ahead logging and applied them in the context of NVMM.
Condit et al. [9] proposed a new file system for NVM and used
shadow paging, one form of the copy-on-write technique, to pro-
vide an atomic file-system update. This paper also proposed epoch
persistency to ensure ordering persists. Ren at al. [41] proposed a
hardware supported failure-safe system using copy-on-write.

Using a copy-on-write approach for data consistency on NVMM
is not easy to implement because remapping in hardware is expensive.
Moreover, a large update granularity, which often amortizes the
remapping overhead, is less suitable for use in byte-addressable
NVMM. Hence, instead of using copy-on-write, the majority of

papers on NVMM have adopted WAL which allows transactions at
smaller granularity and does not require remapping. For example,
Mnemosyne [43] proposed a library to access NVMM directly and
used redo-logging to provide an atomic durable transaction. On
the other hand, NV-Heaps [8] used software undo-logging for its
atomic transaction implementation and improves its performance by
logging at a large granularity instead of logging before every write.
Rewind [7] proposed a library to manage NVMM directly from the
user application and it also utilized a software undo-log approach
for its durable transaction.

In general, logging operations are expensive because they force
an ordering between logging operations and the following stores.
Therefore, recent works discussed about the cost of logging in the
transaction and endeavored to reduce it. For example, Atlas [6]
uses software undo-logging in its durable transaction and proposes
programming models to optimize them. Pelley et al. [38] proposes
NVRAM group commit which groups the transactions executed into
a batch and commits them at once, amortizing its commit overhead.
Similarly, Kolli et al. [23] proposed DCT, which defers a transaction
commit on a multi-threaded application and commits them together
while resolving possible conflicts among them. Recently, Liu et
al. [29] proposed a software logging approach, DudeTM, which
efficiently eliminates the ordering constraint using asynchronous
redo-logging. However, it creates more memory writes and requires
additional memory space from both DRAM and NVMM compared
to previous approaches.

Hardware logging approaches for mitigating logging overheads
were proposed in multiple papers. Lu et al. [30] proposed LOC
which relaxes the ordering constraint in transactions by using asyn-
chronous redo-logging with background hardware supports. Similar
to DudeTM, it requires additional memory accesses and space. Fur-
thermore, it requires redirecting reads to logs or blocking reads
during the logging operation until it has been committed to memory,
which is generally considered an expensive operation. It also needs
additional hardware support for updating memory in the background.
Doshi et al. [10] proposed synchronous hardware redo-logging for
atomic durability. However, their solution is not optimized for the
case with multiple updates to the same address in one transaction. In
this case, they simply create multiple log entries for the same data,
which consumes unnecessary memory bandwidth and also degrades
performance. Recently, Joshi et al. [19] proposed ATOM which uses
synchronous undo logging and includes hardware to help create only
one log entry per update per transaction. They also showed better
performance compared to a previous redo-logging scheme [10]. In
our work, we show that we attain better performance than ATOM,
thanks to concurrent logging and log write removal.

A persistent cache hierarchy has also been proposed and used
in multiple works [17, 32–34, 45, 48]. These works bring the data
caches into the persistency domain. Hence, stores are considered
durable once they leave the store buffer. Obviously, these systems do
not have flushing overheads because data does not need to be forced
out of the cache, but they still need to manage logging schemes. The
ordering constraint between log entries and subsequent stores can
be handled in the processor.

A few works [13, 21, 35] have used NVMM with write-ahead log-
ging for a database system usually placed on disks. NV-Logging [13]
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shows that replacing a whole disk with NVM is an expensive solu-
tion per dollar. Instead, they show it is cost effective to place only
a logging subsystem on NVMM enabling concurrent logging for
multiple transactions. Similarly, Oh et al. [35] proposes PPL which
deploys a similar technique but on a smaller scale with SQLite on
mobile systems. NV-WAL [21] optimizes PPL considering byte-
addressability, write reordering, and user-level heap management on
NVMM.

9 CONCLUSION
We have described a new logging approach, Proteus for durable
transactions that achieves the favorable characteristics of both prior
software and hardware approaches. Like software, it has no hard-
ware constraint limiting the number of transactions or logs available
to it, and, like hardware, it has very low overhead. Our approach
introduces two new instructions: log-load creates a log entry by
loading the original data, and log-flush writes the log entry into the
log. We add hardware support, primarily within the core, to manage
the execution of these instructions and critical ordering requirements
between logging operations and updates to data. We also propose
a novel optimization at the memory controller that is enabled by a
persistent write pending queue in the memory controller. We drop
log updates that have not yet written back to NVMM by the time a
transaction is considered durable.

We compared our design against ATOM [19] and a software only
approach. Our experiments show that Proteus improves performance
by 1.44-1.47⇥ depending on configuration, on average, compared
to a system without hardware logging and 9-11% faster than ATOM.
We also show that our design performs closely to the ideal case. A
significant advantage of our approach is dropping writes to the log
when they are not needed. On average, ATOM makes 3.4⇥ more
writes to memory than our design.
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