
From ARIES to MARS: Transaction Support for
Next-Generation, Solid-State Drives

Joel Coburn∗ Trevor Bunker∗ Meir Schwarz Rajesh Gupta Steven Swanson
Department of Computer Science and Engineering

University of California, San Diego
{jdcoburn,tbunker,rgupta,swanson}@cs.ucsd.edu

Abstract

Transaction-based systems often rely on write-ahead log-
ging (WAL) algorithms designed to maximize perfor-
mance on disk-based storage. However, emerging fast,
byte-addressable, non-volatile memory (NVM) technolo-
gies (e.g., phase-change memories, spin-transfer torque
MRAMs, and the memristor) present very different perfor-
mance characteristics, so blithely applying existing algo-
rithms can lead to disappointing performance.

This paper presents a novel storage primitive, called
editable atomic writes (EAW), that enables sophisticated,
highly-optimized WAL schemes in fast NVM-based stor-
age systems. EAWs allow applications to safely access
and modify log contents rather than treating the log as an
append-only, write-only data structure, and we demonstrate
that this can make implementating complex transactions
simpler and more efficient. We use EAWs to build MARS, a
WAL scheme that provides the same as features ARIES [26]
(a widely-used WAL system for databases) but avoids mak-
ing disk-centric implementation decisions.

We have implemented EAWs and MARS in a next-
generation SSD to demonstrate that the overhead of EAWs
is minimal compared to normal writes, and that they pro-
vide large speedups for transactional updates to hash tables,
B+trees, and large graphs. In addition, MARS outperforms
ARIES by up to 3.7× while reducing software complexity.

∗Now working at Google Inc.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522724

1 Introduction
Emerging fast non-volatile memory (NVM) technologies,
such as phase change memory, spin-torque transfer memory,
and the memristor promise to be orders of magnitude faster
than existing storage technologies (i.e., disks and flash).
Such a dramatic improvement shifts the balance between
storage, system bus, main memory, and CPU performance
and will force designers to rethink storage architectures to
maximize application performance by exploiting the speed
of these memories. Recent work focuses on optimizing read
and write performance in these systems [6, 7, 41]. But these
new memory technologies also enable new approaches to
ensuring data integrity in the face of failures.

File systems, databases, persistent object stores, and other
applications rely on strong consistency guarantees for per-
sistent data structures. Typically, these applications use
some form of transaction to move the data from one con-
sistent state to another. Most systems implement transac-
tions using software techniques such as write-ahead logging
(WAL) or shadow paging. These techniques use sophisti-
cated, disk-based optimizations to minimize the cost of syn-
chronous writes and leverage the sequential bandwidth of
disk. For example, WAL-based systems write data to a log
before updating the data in-place, but they typically delay
the in-place updates until they can be batched into larger se-
quential writes.

NVM technologies provide very different performance
characteristics, and exploiting them requires new ap-
proaches to providing transactional guarantees. NVM stor-
age arrays provide parallelism within individual chips, be-
tween chips attached to a memory controller, and across
memory controllers. In addition, the aggregate bandwidth
across the memory controllers in an NVM storage array will
outstrip the interconnect (e.g., PCIe) that connects it to the
host system.

This paper presents a novel WAL scheme, called Modified
ARIES Redesigned for SSDs (MARS), optimized for NVM-
based storage. The design of MARS reflects an examination
of ARIES [26], a popular WAL-based recovery algorithm
for databases, in the context of these new memories. MARS
provides the same high-level features for implementing effi-

cient and robust transactions as ARIES, but without any of
the disk-based design decisions ARIES incorporates.

To support MARS, we designed a novel multi-part atomic
write primitive, called editable atomic writes (EAW). An
EAW consists of a set of redo log entries, one per object
to be modified, that the application can freely update mul-
tiple times in-place in the log prior to commit. Once com-
mitted, the SSD hardware copies the final values from the
log to their target locations, and the copy is guaranteed to
succeed even in the presence of power or host system fail-
ures. EAWs make implementing ARIES-style transactions
simpler and faster, giving rise to MARS. EAWs are also a
useful building block for other applications that must pro-
vide strong consistency guarantees.

The EAW interface supports atomic writes to multiple
portions of the storage array without alignment or size re-
strictions, and the hardware shoulders the burden for log-
ging and copying data to enforce atomicity. This interface
safely exposes the logs to the application and allows it to
manage the log space directly, providing the flexibility that
sophisticated WAL schemes like MARS require. In con-
trast, recent work on atomic write support for flash-based
SSDs [29, 30] hides the logging in the flash translation layer
(FTL). Consequently, ARIES-style logging schemes must
write data to both a software-accessible log and to its final
destination, resulting in higher bandwidth consumption and
lower performance.

We implemented EAWs in a prototype PCIe-based stor-
age array [6]. Microbenchmarks show that they reduce
latency by 2.9× compared to using normal synchronous
writes to implement a traditional WAL protocol, and EAWs
increase effective bandwidth by between 2.0 and 3.8× by
eliminating logging overheads. Compared to non-atomic
writes, EAWs reduce effective bandwidth just 1-8% and in-
crease latency by just 30%.

We use EAWs to implement MARS, to implement sim-
ple on-disk persistent data structures, and to modify Mem-
cacheDB [10], a persistent version of memcached. MARS
improves performance by 3.7× relative to our baseline ver-
sion of ARIES. EAWs speed up our ACID key-value stores
based on a hash table and a B+tree by 1.5× and 1.4×, re-
spectively, relative to a software-based version, and EAWs
improve performance for a simple online scale-free graph
query benchmark by 1.3×. Furthermore, performance for
EAW-based versions of these data structures is only 15%
slower than non-transactional versions. For MemcacheDB,
replacing Berkeley DB with an EAW-based key-value store
improves performance by up to 3.8×.

The remainder of this paper is organized as follows. In
Section 2, we describe the memory technologies and storage
system that our work targets. Section 3 examines ARIES
in the context of fast NVM-based storage and describes
EAWs and MARS. Section 4 describes our implementation
of EAWs in hardware. Section 5 evaluates EAWs and their
impact on the performance of MARS and other persistent

data structures. Section 6 places this work in the context of
prior work on support for transactional storage. In Section 7,
we discuss the limitations of our approach and some areas
for future work. Section 8 summarizes our contributions.

2 Storage technology
Fast NVMs will catalyze changes in the organization of stor-
age arrays and in how applications and the OS access and
manage storage. This section describes the architecture of
the storage system that our work targets and the memory
technologies it uses. Section 4 describes our implementa-
tion in more detail.

Fast non-volatile memories such as phase-change mem-
ories (PCM) [3], spin-transfer torque [15] memories, and
the memristor differ fundamentally from conventional disks
and from the flash-based SSDs that are beginning to replace
them. The most important features of NVMs are their per-
formance (relative to disk and flash) and their simpler inter-
face (relative to flash).

Predictions by industry [19] and academia [3, 15] suggest
that NVMs will have bandwidth and latency characteristics
similar to DRAM. This means they will be between 500 and
1500× faster than flash and 50,000× faster than disk. In
addition, technologies such as PCM will have a significant
density and cost-per-bit advantage (estimated 2 to 4×) over
DRAM [3, 33].

These device characteristics require storage architectures
with topologies and interconnects capable of exploiting their
low latency and high bandwidth.

Modern high-end SSDs often attach to the host via PCIe,
and this approach will work well for fast NVMs too. PCIe
bandwidth is scalable and many high end processors have
nearly as much PCIe bandwidth as main memory band-
width. PCIe also offers scalable capacity since any num-
ber and type of memory channels (and memory controllers)
can sit behind a PCIe endpoint. This makes a PCIe-attached
architecture a natural candidate for capacity-intensive appli-
cations like databases, graph analytics, or caching. Mul-
tiple hosts can also connect to a single device over PCIe,
allowing for increased availability if one host fails. Finally,
the appearance of NVMExpress [27]-based SSDs (e.g., In-
tel’s Chatham NVMe drive [11]) signals that PCIe-attached
SSDs are a likely target design for fast NVMs in the near
term.

A consequence of PCIe SSDs’ scalable capacity is that
their internal memory bandwidth will often exceed their
PCIe bandwidth (e.g., 8:1 ratio in our prototype SSD). Un-
like flash memory where many chips can hang off a single
bus, the low latency of fast NVMs requires minimal loading
on data buses connecting chips and memory controllers. As
a result, large capacity devices must spread storage across
many memory channels. This presents an opportunity to ex-
ploit this surfeit of internal bandwidth by offloading tasks to
the storage device.

Alternately, fast NVMs can attach directly to the proces-

sor’s memory bus, providing the lowest latency path to stor-
age and a simple, memory-like interface. However, reduced
latency comes at a cost of reduced capacity and availability
since the pin, power, and signaling constraints of a com-
puter’s memory channels will limit capacity and fail-over
will be impossible.

In this work, we focus on PCIe-attached storage archi-
tectures. Our baseline storage array is the Moneta-Direct
SSD [6, 7], which spreads 64 GB of DRAM across eight
memory controllers connected via a high-bandwidth ring.
Each memory controller provides 4 GB/s of bandwidth for
a total internal bandwidth of 32 GB/s. An 8-lane PCIe 1.1
interface provides a 2 GB/s full-duplex connection (4 GB/s
total) to the host system. The prototype runs at 250 MHz on
a BEE3 FPGA prototyping system [2].

The Moneta storage array emulates advanced non-volatile
memories using DRAM and modified memory controllers
that insert delays to model longer read and write latencies.
We model phase-change memory (PCM) in this work and
use the latencies from [23] (48 ns and 150 ns for reads and
writes, respectively, to the memory array inside the memory
chips). The techniques we describe would also work in STT-
MRAM or memristor-based systems.

Unlike flash, PCM (as well as other NVMs) does not re-
quire a separate erase operation to clear data before a write.
This makes in-place updates possible and, therefore, elim-
inates the complicated flash translation layer that manages
a map between logical storage addresses and physical flash
storage locations to provide the illusion of in-place updates.
PCM still requires wear-leveling and error correction, but
fast hardware solutions exist for both of these [31, 32, 35].
Moneta uses start-gap wear leveling [31]. With fast, in-
place updates, Moneta is able to provide low-latency, high-
bandwidth access to storage that is limited only by the PCIe
interconnect between the host and the device.

3 Complex Transaction Support in
Fast SSDs

The design of ARIES and other data management systems
(e.g., journaling file systems) relies critically on the atom-
icity, durability, and performance properties of the underly-
ing storage hardware. Data management systems combine
these properties with locking protocols, rules governing the
order of updates, and other invariants to provide application-
level transactional guarantees. As a result, the semantics and
performance characteristics of the storage hardware play a
key role in determining the implementation complexity and
overall performance of the complete system.

We have designed a novel multi-part atomic write prim-
itive, called editable atomic writes (EAW), that supports
complex logging protocols like ARIES-style write-ahead
logging. In particular, EAWs make it easy to support
transaction isolation in a scalable way while aggressively
leveraging the performance of next-generation, non-volatile

memories. This feature is missing from existing atomic
write interfaces [29, 30] designed to accelerate simpler
transaction models (e.g., file metadata updates in journaling
file systems) on flash-based SSDs.

This section describes EAWs, presents our analysis of
ARIES and the assumptions it makes about disk-based stor-
age, and describes MARS, our reengineered version of
ARIES that uses EAWs to simplify transaction processing
and improve performance.

3.1 Editable atomic writes
The performance characteristics of disks and, more recently,
SSDs have deeply influenced most WAL schemes. Since se-
quential writes are much faster than random writes, WAL
schemes maintain their logs as append-only sets of records,
avoiding long-latency seeks on disks and write amplifica-
tion in flash-based SSDs. However, for fast NVMs, there is
little performance difference between random and sequen-
tial writes, so the advantages of an append-only log are less
clear.

In fact, append- and write-only logs add complexity
because systems must construct and maintain in-memory
copies that reflect the operations recorded in the log. For
large database transactions the in-memory copies can ex-
ceed available memory, forcing the database to spill this
data onto disk. Consequently, the system may have three
copies of the data at one time: one in the log, the spilled
copy, and the data itself. However, if the log data resides in
a fast NVM storage system, spilling is not necessary – the
updated version of the data resides in the log and the sys-
tem reads or updates it without interfering with other writes
to the log. Realizing this capability requires a new flexi-
ble logging primitive which we call editable atomic writes
(EAW).

EAWs use write-ahead redo logs to combine multiple
writes to arbitrary storage locations into a single atomic op-
eration. EAWs make it easy for applications to provide iso-
lation between transactions by keeping the updates in a log
until the atomic operation commits and exposing that log to
the application so that a transaction can see its own updates
and freely update that data multiple times prior to commit.
EAWs are simple to use and strike a balance between imple-
mentation complexity and functionality while allowing our
SSD to leverage the performance of fast NVMs.

EAWs require the application to allocate space for the log
(e.g., by creating a log file) and to specify where the redo
log entry for each write will reside. This avoids the need
to statically allocate space for log storage and ensures that
the application knows where the log entry resides so it can
modify it as needed.

The implementation of EAWs is spread across the storage
device hardware and system software. Hardware support in
the SSD is responsible for logging and copying data to guar-
antee atomicity. Applications use the EAW library interface
to perform common IO operations by communicating di-

Command Description
LogWrite(TID, file, offset, data, len, logfile, logoffset) Record a write to the log at the specified log offset.

After commit, copy the data to the offset in the file.
Commit(TID) Commit a transaction.
AtomicWrite(TID, file, offset, data, len, logfile, logoffset) Create and commit a transaction containing a

single write.
NestedTopAction(TID, logfile, logoffset) Commit a nested top action by applying the log

from a specified starting point to the end.
Abort(TID) Cancel the transaction entirely, or perform a
PartialAbort(TID, logfile, logoffset) partial rollback to a specified point in the log.

Table 1: EAW commands. These commands perform multi-part atomic updates to the storage array and help support
user-level transactions.

rectly with hardware, but storage management policy deci-
sions still reside in the kernel and file system.

Below, we describe how an application initiates an EAW,
commits it, and manages log storage in the device. We also
discuss how the EAW interface makes transactions robust
and efficient by supporting partial rollbacks and nested top
actions. Then, we outline how EAWs help simplify and
accelerate ARIES-style transactions. In Sections 4 and 5
we show that the hardware required to implement EAWs is
modest and that it can deliver large performance gains.

Creating transactions Applications execute EAWs us-
ing the commands in Table 1. Each application access-
ing the storage device has a private set of 64 transaction
IDs (TIDs)1, and the application is responsible for track-
ing which TIDs are in use. TIDs can be in one of three
states: FREE (the TID is not in use), PENDING (the trans-
action is underway), or COMMITTED (the transaction has
committed). TIDs move from COMMITTED to FREE when
the storage system notifies the host that the transaction is
complete.

To create a new transaction with TID, T , the application
passes T to LogWrite along with information that spec-
ifies the data to write, the ultimate target location for the
write (i.e., a file descriptor and offset), and the location for
the log data (i.e., a log file descriptor and offset). This opera-
tion copies the write data to the log file but does not modify
the target file. After the first LogWrite, the state of the
transaction changes from FREE to PENDING. Additional
calls to LogWrite add new writes to the transaction.

The writes in a transaction are not visible to other trans-
actions until after commit. However, a transaction can read
its own data prior to commit by explicitly reading from the
locations in the log containing that data. After an initial
LogWrite to a storage location, a transaction may update
that data again before commit by issuing a (non-logging)

1This is not a fundamental limitation but rather an implementation de-
tail of our prototype. Supporting more concurrent transactions increases
resource demands in the FPGA implementation. A custom ASIC imple-
mentation (quickly becoming commonplace in high-end SSDs) could eas-
ily support 100s of concurrent transactions.

write to the corresponding log location.

Committing transactions The application commits the
transaction with Commit(T). In response, the storage ar-
ray assigns the transaction a commit sequence number that
determines the commit order of this transaction relative to
others. It then atomically applies the LogWrites by copy-
ing the data from the log to their target locations.

When the Commit command completes, the transaction
has logically committed, and the transaction moves to the
COMMITTED state. If a system failure should occur after
a transaction logically commits but before the system fin-
ishes writing the data back, then the SSD will replay the log
during recovery to roll the changes forward.

When log application completes, the TID returns to FREE
and the hardware notifies the application that the transaction
finished successfully. At this point, it is safe to read the
updated data from its target locations and reuse the TID.

Robust and efficient execution The EAW interface pro-
vides four other commands designed to make transactions
robust and efficient through finer-grained control over their
execution. The AtomicWrite command creates and com-
mits a single atomic write operation, saving one IO opera-
tion for singleton transactions. The NestedTopAction
command is similar to Commit but instead applies the log
from a specified offset up through the tail and allows the
transaction to continue afterwards. This is useful for opera-
tions that should commit independent of whether or not the
transaction commits (e.g., extending a file or splitting a page
in a B-tree), and it is critical to database performance under
high concurrency.

Consider an insert of a key into a B-tree where a page
split must occur to make room for the key. Other concurrent
insert operations might either cause an abort or be aborted
themselves, leading to repeatedly starting and aborting a
page split. With a NestedTopAction, the page split oc-
curs once and the new page is immediately available to other
transactions.

The Abort command aborts a transaction, releasing
all resources associated with it, allowing the application

Feature Benefits
Flexible storage Supports varying length data
management
Fine-grained locking High concurrency
Partial rollbacks via Robust and efficient
savepoints transactions
Operation logging High concurrency lock modes
Recovery Simple and robust recovery
independence

Table 2: ARIES features. Regardless of the storage tech-
nology, ARIES must provide these features to the rest of
the system.

to resolve conflicts and ensure forward progress. The
PartialAbort command truncates the log at a specified
location, or savepoint [16], to support partial rollback. Par-
tial rollbacks are a useful feature for handling database in-
tegrity constraint violations and resolving deadlocks [26].
They minimize the number of repeated writes a transaction
must perform when it encounters a conflict and must restart.

Storing the log The system stores the log in a pair of ordi-
nary files in the storage device: a log file and a log metadata
file. The log file holds the data for the log. The application
creates the log file just like any other file and is responsi-
ble for allocating parts of it to LogWrite operations. The
application can access and modify its contents at any time.

The log metadata file contains information about the tar-
get location and log data location for each LogWrite. The
contents of the log metadata file are privileged, since it con-
tains raw storage addresses rather than file descriptors and
offsets. Raw addresses are necessary during crash recov-
ery when file descriptors are meaningless and the file sys-
tem may be unavailable (e.g., if the file system itself uses
the EAW interface). A system daemon, called the metadata
handler, “installs” log metadata files on behalf of applica-
tions and marks them as unreadable and immutable from
software. Section 4 describes the structure of the log meta-
data file in more detail.

Conventional storage systems must allocate space for logs
as well, but they often use separate disks to improve perfor-
mance. Our system relies on the log being internal to the
storage device, since our performance gains stem from uti-
lizing the internal bandwidth of the storage array’s indepen-
dent memory banks.

3.2 Deconstructing ARIES
The ARIES [26] framework for write-ahead logging and
recovery has influenced the design of many commercial
databases and acts as a key building block in providing fast,
flexible, and efficient ACID transactions. Our goal is to
build a WAL scheme that provides all of ARIES’ features
but without the disk-centric design decisions.

At a high level, ARIES operates as follows. Before mod-
ifying an object (e.g., a row of a table) in storage, ARIES

records the changes in a persistent log. To make recovery ro-
bust and to allow disk-based optimizations, ARIES records
both the old version (undo) and new version (redo) of the
data. ARIES can only update the data in-place after the log
reaches storage. On restart after a crash, ARIES brings the
system back to the exact state it was in before the crash by
applying the redo log. Then, ARIES reverts the effects of
any uncommitted transactions active at the time of the crash
by applying the undo log, thus bringing the system back to
a consistent state.

ARIES has two primary goals: First, it aims to provide
a rich interface for executing scalable, ACID transactions.
Second, it aims to maximize performance on disk-based
storage systems.

ARIES achieves the first goal by providing several im-
portant features to higher-level software (e.g., the rest of the
database), listed in Table 2, that make it useful to a variety
of applications. For example, ARIES offers flexible stor-
age management by supporting objects of varying length.
It also allows transactions to scale with the amount of free
disk storage space rather than with available main memory.
Features like operation logging and fine-grained locking im-
prove concurrency. Recovery independence makes it possi-
ble to recover portions of the database even when there are
errors. Independent of the underlying storage technology,
ARIES must export these features to the rest of the database.

To achieve high performance on disk-based systems,
ARIES incorporates a set of design decisions (Table 3) that
exploit the properties of disk: ARIES optimizes for long, se-
quential accesses and avoids short, random accesses when-
ever possible. These design decisions are a poor fit for fast
NVMs that provide fast random access, abundant internal
bandwidth, and ample parallelism. Below, we describe the
design decisions ARIES makes that optimize for disk and
how they limit the performance of ARIES on an NVM-
based storage device.

No-force In ARIES, the system writes log entries to the
log (a sequential write) before it updates the object itself (a
random write). To keep random writes off the critical path,
ARIES uses a no-force policy that writes updated pages
back to disk lazily after commit. In fast NVM-based stor-
age, random writes are no more expensive than sequential
writes, so the value of no-force is much lower.

Steal ARIES uses a steal policy to allow the buffer man-
ager to “page out” uncommitted, dirty pages to disk dur-
ing transaction execution. This lets the buffer manager sup-
port transactions larger than the buffer pool, group writes to-
gether to take advantage of sequential disk bandwidth, and
avoid data races on pages shared by overlapping transac-
tions. However, stealing requires undo logging so the sys-
tem can roll back the uncommitted changes if the transaction
aborts.

As a result, ARIES writes both an undo log and a redo
log to disk in addition to eventually writing back the data in

Design option Advantage for disk Implementation Alternative for MARS
No-force Eliminate synchronous Flush redo log entries Force in hardware

random writes to storage on commit at memory controllers
Steal Reclaim buffer space Write undo log entries before Hardware does in-place updates

Eliminate random writes writing back dirty pages Log always holds latest copy
Avoid false conflicts

Pages Simplify recovery and ARIES performs updates on pages Hardware uses pages
buffer management Page writes are atomic Software operates on objects

Log Sequence Simplify recovery ARIES orders updates to Hardware enforces ordering
Numbers (LSNs) Enable high-level features storage using LSNs with commit sequence numbers

Table 3: ARIES design decisions. ARIES relies on a set disk-centric optimizations to maximize performance on disk-
based storage. However, these optimizations are a poor fit for fast NVM-based storage, and we present alternatives to
them in MARS.

place. This means that, roughly speaking, writing one logi-
cal byte to the database requires writing three bytes to stor-
age. For disks, this is a reasonable tradeoff because it avoids
placing random disk accesses on the critical path and gives
the buffer manager enormous flexibility in scheduling the
random disk accesses that must occur. For fast NVMs, how-
ever, random and sequential access performance are nearly
identical, so this trade-off needs to be re-examined.

Pages and Log Sequence Numbers (LSNs) ARIES uses
disk pages as the basic unit of data management and recov-
ery and uses the atomicity of page writes as a foundation
for larger atomic writes. This reflects the inherently block-
oriented interface that disks provide. ARIES also embeds
a log sequence number (LSN) in each page to establish an
ordering on updates and determine how to reapply them dur-
ing recovery.

As recent work [37] highlights, pages and LSNs com-
plicate several aspects of database design. Pages make it
difficult to manage objects that span multiple pages or are
smaller than a single page. Generating globally unique
LSNs limits concurrency and embedding LSNs in pages
complicates reading and writing objects that span multiple
pages. LSNs also effectively prohibit simultaneously writ-
ing multiple log entries.

Advanced NVM-based storage arrays that implement
EAWs can avoid these problems. The hardware motivation
for page-based management does not exist for fast NVMs,
so EAWs expose a byte-addressable interface with a much
more flexible notion of atomicity. Instead of an append-
only log, EAWs provide a log that can be read and written
throughout the life of a transaction. This means that undo
logging is unnecessary because data will never be written
back in-place before a transaction commits. Also, EAWs
implement ordering and recovery in the storage array itself,
eliminating the need for application-visible LSNs.

3.3 Building MARS
MARS is an alternative to ARIES that implements the
same features but reconsiders ARIES’ design decisions in

the context of fast NVMs and EAW operations. Like
ARIES, MARS plays the role of the logging component of
a database storage manager such as Shore [5, 20].

MARS differs from ARIES in three key ways. First,
MARS relies on the storage device, via EAW operations,
to apply the redo log at commit time. Second, MARS elim-
inates the undo log that ARIES uses to implement its page
stealing mechanism but retains the benefits of stealing by re-
lying on the editable nature of EAWs. Third, MARS aban-
dons the notion of transactional pages and instead operates
directly on objects while relying on the hardware to guaran-
tee ordering.

MARS uses LogWrite operations for transactional up-
dates to objects (e.g., rows of a table) in the database. This
provides several advantages. Since LogWrite does not
update the data in-place, the changes are not visible to
other transactions until commit. This makes it easy for the
database to implement isolation. MARS also uses Commit
to efficiently apply the log.

This change means that MARS “forces” updates to stor-
age on commit, unlike the no-force policy traditionally used
by ARIES. Commit executes entirely within the SSD, so it
can utilize the full internal memory bandwidth of the SSD
(32 GB/s in our prototype) to apply the commits and avoid
consuming IO interconnect bandwidth and CPU resources.

When a large transaction cannot fit in memory, ARIES
can safely page out uncommitted data to the database tables
because it maintains an undo log. MARS has no undo log
but must still be able to page out uncommitted state. In-
stead of writing uncommitted data to disk at its target loca-
tion, MARS writes the uncommitted data directly to the redo
log entry corresponding to the LogWrite for that location.
When the system issues a Commit for the transaction, the
SSD will write the updated data into place.

By making the redo log editable, the database can use
the log to hold uncommitted state and update it as needed.
In MARS, this is critical in supporting robust and complex
transactions. Transactions may need to update the same data
multiple times and they should see their own updates prior to

commit. This is a behavior we observed in common work-
loads such as the OLTP TPC-C benchmark.

Finally, MARS operates on arbitrary-sized objects di-
rectly rather than on pages and avoids using LSNs by relying
on the commit ordering that EAWs provide.

Combining these optimizations eliminates the disk-
centric overheads that ARIES incurs and exploits the per-
formance of fast NVMs. MARS eliminates the data transfer
overhead in ARIES: MARS sends one byte over the stor-
age interconnect for each logical byte the application writes
to the database. MARS also leverages the bandwidth of
the NVMs inside the SSD to improve commit performance.
Section 5 quantifies these advantages in detail.

Through EAWs, MARS provides many of the features
that ARIES exports to higher-level software while reducing
software complexity. MARS supports flexible storage man-
agement and fine-grained locking with minimal overhead
by using EAWs. They provide an interface to directly up-
date arbitrary-sized objects, thereby eliminating pages and
LSNs.

The EAW interface and hardware supports partial roll-
backs via savepoints by truncating the log to a user-specified
point, and MARS needs partial rollbacks to recover from
database integrity constraint violations and maximize per-
formance under heavy conflicts. The hardware also supports
nested top actions by committing a portion of the log within
a transaction before it completes execution. This enables
high concurrency updates of data structures such as B-trees.

MARS does not currently support operation logging with
EAWs. Unless the hardware supports arbitrary opera-
tions on stored data, the play back of a logged operation
must trigger a callback to software. It is not clear if this
would provide a performance advantage over our hardware-
accelerated value logging, and we leave it as a topic for fu-
ture work. MARS provides recovery independence through
a flexible recovery algorithm that can recover select areas
of memory by replaying only the corresponding log entries
and bypassing those pertaining to failed memory cells.

4 Implementation
In this section, we present the details of the implementa-
tion of the EAW interface MARS relies on. This includes
how applications issue commands to the array, how software
makes logging flexible and efficient, and how the hardware
implements a distributed scheme for redo logging, commit,
and recovery. We also discuss testing the system.

4.1 Software support
To make logging transparent and flexible, we leverage the
existing software stack of the Moneta-Direct SSD by ex-
tending the user-space driver to implement the EAW API.
In addition, we utilize the XFS [38] file system to manage
the logs, making them accessible through an interface that
lets the user control the layout of the log in storage.

User-space driver The Moneta-Direct SSD provides a

highly-optimized (and unconventional) interface for access-
ing data [7]. It provides a user-space driver that allows each
application to communicate directly with the array via a pri-
vate set of control registers, a private DMA buffer, and a
private set of 64 tags that identify in-flight operations. To
enforce file protection, the user-space driver works with the
kernel and the file system to download extent and permis-
sion data into the SSD, which then checks that each access
is legal. As a result, accesses to file data do not involve
the kernel at all in the common case. Modifications to file
metadata still go through the kernel. The user-space inter-
face lets our SSD perform IO operations very quickly: 4 kB
reads and writes execute in ∼7 µs. Our system uses this
user-space interface to issue LogWrite, Commit, Abort,
AtomicWrite, and other requests to the storage array.

Storing logs in the file system Our system stores the log
and metadata files that EAWs require in the file system.

The log file contains redo data as part of a transaction
from the application. The user creates a log file and can ex-
tend or truncate the file as needed, based on the application’s
log space requirements, using normal file IO.

The metadata file records information about each update
including the target location for the redo data upon transac-
tion commit. The metadata file is analogous to a file’s inode
in that it acts as a log’s index into the storage array. A trusted
process called the metadata handler creates and manages a
metadata file on the application’s behalf.

The system protects the metadata file from modification
by an application. If a user could manipulate the metadata,
the log space could become corrupted and unrecoverable.
Even worse, the user might direct the hardware to update
arbitrary storage locations, circumventing the protection of
the OS and file system.

To take advantage of the parallelism and internal band-
width of the SSD, the user-space driver ensures the data
offset and log offset for LogWrite and AtomicWrite
requests target the same memory controller in the storage
array. We make this guarantee by allocating space in ex-
tents aligned to and in multiples of the SSD’s 64 kB stripe
width. With XFS, we achieve this by setting the stripe unit
parameter with mkfs.xfs.

4.2 Hardware support
The implementation of EAWs divides functionality between
two types of hardware components. The first is a logging
module, called the logger, that resides at each of Moneta’s
eight memory controllers and handles logging for the local
controller (the gray boxes to the right of the dashed line in
Figure 1). The second is a set of modifications to the central
controller (the gray boxes to the left of the dashed line in
Figure 1) that orchestrates operations across the eight log-
gers. Below, we describe the layout of the log and the com-
ponents and protocols the system uses to coordinate logging,
commit, and recovery.

Logger

Logger

Logger

Logger
Logger

Logger

Logger

8GB

Request
queue

TID
manager

Tag
renamer

Permissions
manager

Ring ctrl

Transfer
buffers

DMA ctrl

Logger

8GB

R
in

g
(4

 G
B

/s
)

Score-
board

Tx status

Request status

DMA

PIO
8GB

8GB

8GB

8GB

8GB

8GB

Figure 1: SSD controller architecture. To support EAWs, our we added hardware support (gray boxes) to an existing
prototype SSD. The main controller (to the left of the dotted line) manages transaction IDs and uses a scoreboard
to track the status of in-flight transactions. Eight loggers perform distributed logging, commit, and recovery at each
memory controller.

Transaction
Table

Metadata
File

Log File

TID 15
 PENDING

Data File

X X

TID 37
 COMMITTED

TID 24
 FREE X

New D

Old D

New B

Old B

New A

Old A

New C

Old C

… … … …

Figure 2: Example log layout at a logger. Each logger maintains a log for up to 64 TIDs. The log is a linked list of
metadata entries with a transaction table entry pointing to the head of the list. The transaction table entry maintains
the state of the transaction and the metadata entries contain information about each LogWrite request. Each link in
the list describes the actions for a LogWrite that will occur at commit.

Logger Each logger module independently performs log-
ging, commit, and recovery operations and handles accesses
to the 8 GB of NVM storage at the memory controller. Fig-
ure 2 shows how each logger independently maintains a per-
TID log as a collection of three types of entries: transaction
table entries, metadata entries, and log file entries.

The system reserves a small portion (2 kB) of the stor-
age at each memory controller for a transaction table, which
stores the state for 64 TIDs. Each transaction table entry in-
cludes the status of the transaction, a sequence number, and
the address of the head metadata entry in the log.

When the metadata handler installs a metadata file, the
hardware divides it into fixed-size metadata entries. Each
metadata entry contains information about a log file entry
and the address of the next metadata entry for the same
transaction. The log file entry contains the redo data that
the logger will write back when the transaction commits.

The log for a particular TID at a logger is a linked list
of metadata entries with the transaction table entry pointing
to the head of the list. The complete log for a given TID
(across the entire storage device) is simply the union of each
logger’s log for that TID.

Figure 2 illustrates the state for three TIDs (15, 24, and
37) at one logger. In this example, the application has per-
formed three LogWrite requests for TID 15. For each re-
quest, the logger allocated a metadata entry, copied the data
to a location in the log file, recorded the request information
in the metadata entry, and then appended the metadata en-
try to the log. The TID is still in a PENDING state until the
application issues a Commit or Abort request.

The application sends an Abort request for TID 24. The
logger then deallocates all assigned metadata entries and
clears the transaction status returning it to the FREE state.

When the application issues a Commit request for TID
37, the logger waits for all outstanding writes to the log file
to complete and then marks the transaction as COMMITTED.

After the loggers transition to the COMMITTED state, the
central controller (see below) directs each logger to apply
their respective log. To apply the log, the logger reads each
metadata entry in the log linked list, copying the redo data
from the log file entry to its destination address. During
log application, the logger suspends other read and write
operations to the storage it manages to make the updates
atomic. At the end of log application, the logger deallocates
the transaction’s metadata entries and returns the TID to the
FREE state.

The central controller A single transaction may require
the coordinate efforts of one or more loggers. The central
controller (the left hand portion of Figure 1) coordinates the
concurrent execution of the EAW commands and log recov-
ery commands across the loggers.

Three hardware components work together to implement
transactional operations. First, the TID manager maps vir-
tual TIDs from application requests to physical TIDs and as-
signs each transaction a commit sequence number. Second,

the transaction scoreboard tracks the state of each transac-
tion and enforces ordering constraints during commit and
recovery. Finally, the transaction status table exports a set
of memory-mapped IO registers that the host system interro-
gates during interrupt handling to identify completed trans-
actions.

To perform a LogWrite the central controller breaks up
requests along stripe boundaries, sends local LogWrites to
the affected loggers, and awaits their completion. To maxi-
mize performance, our system allows multiple LogWrites
from the same transaction to be in-flight at once. If the
LogWrites are to disjoint areas of the log, then they will
behave as expected. However, if they overlap, the results
are unpredictable because parts of two requests may arrive
at loggers in different orders. The application is responsi-
ble for ensuring that LogWrites do not conflict by issuing
a barrier or waiting for the completion of an outstanding
LogWrite.

The central controller implements a two-phase commit
protocol. The first phase begins when the central controller
receives a Commit command from the host. It increments
the global transaction sequence number and broadcasts a
commit command with the sequence number to the loggers
that received LogWrites for that transaction. The log-
gers respond as soon as they have completed any outstand-
ing LogWrite operations and have marked the transaction
COMMITTED. The central controller moves to the second
phase after it receives all the responses. It signals the log-
gers to begin applying the log and simultaneously notifies
the application that the transaction has committed. Notify-
ing the application before the loggers have finished applying
the logs hides part of the log application latency and allows
the application to release locks sooner so other transactions
may read or write the data. This is safe since only a memory
failure (e.g., a failing NVM memory chip) can prevent log
application from eventually completing and the log applica-
tion is guaranteed to complete before subsequent operations.
In the case of a memory failure, we assume that the entire
storage device has failed and the data it contains is lost (see
Section 4.3).

Implementation complexity Adding support for atomic
writes to the baseline system required only a modest in-
crease in complexity and hardware resources. The Verilog
implementation of the logger required 1372 lines, excluding
blank lines and comments. The changes to the central con-
troller are harder to quantify, but were small relative to the
existing central controller code base.

4.3 Recovery
Our system coordinates recovery operations in the ker-
nel driver rather than in hardware to minimize complexity.
There are two problems it needs to solve: First, some log-
gers may have marked a transaction as COMMITTED while
others have not, meaning that the data was only partially
written to the log. In this case, the transaction must abort.

SoftAtomic

LogWrite+Commit

AtomicWrite

Write

C

C

C

WB

WB

WB

Latency (µs)

HW
SW

HW
SW

HW
SW

HW
SW

2 4 6 8 10 12 14 16

C = Committed
WB = Write Back
 Complete

Commit

Software
PCIe Transfer
Hardware

Write Back

Write to Log (5.6 µs) Commit Write (5.1 µs) Write Back (5.6 µs)

LogWrite (5.7 µs) Commit (3.8 µs)

AtomicWrite (5.7 µs)

Write (5.6 µs)

Figure 3: Latency breakdown for 512 B atomic writes. Performing atomic writes without hardware support (top)
requires three IO operations and all the attendant overheads. Using LogWrite and Commit reduces the overhead
and AtomicWrite reduces it further by eliminating another IO operation. The latency cost of using AtomicWrite
compared to normal writes is very small.

Second, the system must apply the transactions in the cor-
rect order (as given by their commit sequence numbers).

On boot, the driver scans the transaction tables of each
logger to assemble a complete picture of transaction state
across all the controllers. Each transaction either completed
the first phase of commit and rolls forward or it failed and
gets canceled. The driver identifies the TIDs and sequence
numbers for the transactions that all loggers have marked
as COMMITTED and sorts them by sequence number. The
kernel then issues a kernel-only WriteBack command for
each of these TIDs that triggers log replay at each logger.
Finally, it issues Abort commands for all the other TIDs.
Once this is complete, the array is in a consistent state, and
the driver makes the array available for normal use.

4.4 Testing and verification
To verify the atomicity and durability of our EAW imple-
mentation, we added hardware support to emulate system
failure and performed failure and recovery testing. This
presents a challenge since the DRAM our prototype uses
is volatile. To overcome this problem, we added support
to force a reset of the system, which immediately suspends
system activity. During system reset, we keep the memory
controllers active to send refresh commands to the DRAM
in order to emulate non-volatility. We assume the system
includes capacitors to complete memory operations that the
memory chips are in the midst of performing, just as many
commercial SSDs do. To test recovery, we send a reset from
the host while running a test, reboot the host system, and run
our recovery protocol. Then, we run an application-specific
consistency check to verify that no partial writes are visible.

We used two workloads during testing. The first work-
load consists of 16 threads each repeatedly performing an
AtomicWrite to its own 8 kB region. Each write consists

of a repeated sequence number that increments with each
write. To check consistency, the application reads each of
the 16 regions and verifies that they contain only a single
sequence number and that that sequence number equals the
last committed value. In the second workload, 16 threads
continuously insert and delete nodes from our B+tree. After
reset, reboot, and recovery, the application runs a consis-
tency check of the B+tree.

We ran the workloads over a period of a few days, inter-
rupting them periodically. The consistency checks for both
workloads passed after every reset and recovery.

5 Results
This section measures the performance of EAWs and eval-
uates their impact on MARS as well as other applications
that require strong consistency guarantees. We first evalu-
ate our system through microbenchmarks that measure the
basic performance characteristics. Then, we present results
for MARS relative to a traditional ARIES implementation,
highlighting the benefits of EAWs for databases. Finally, we
show results for three persistent data structures and Mem-
cacheDB [10], a persistent key-value store for web applica-
tions.

5.1 Latency and bandwidth
EAWs eliminate the overhead of multiple writes that sys-
tems traditionally use to provide atomic, consistent updates
to storage. Figure 3 measures that overhead for each stage
of a 512 B atomic write. The figure shows the overheads
for a traditional implementation that uses multiple syn-
chronous non-atomic writes (“SoftAtomic”), an implemen-
tation that uses LogWrite followed by a Commit (“Log-
Write+Commit”), and one that uses AtomicWrite. As

a reference, we include the latency breakdown for a single
non-atomic write as well. For SoftAtomic we buffer writes
in memory, flush the writes to a log, write a commit record,
and then write the data in place. We used a modified version
of XDD [40] to collect the data.

The figure shows the transitions between hardware and
software and two different latencies for each operation. The
first is the commit latency between command initiation and
when the application learns that the transaction logically
commits (marked with “C”). For applications this is the
critical latency, since it corresponds to the write logically
completing. The second latency, the write back latency is
from command initiation to the completion of the write back
(marked with “WB”). At this point, the system has finished
updating data in place and the TID becomes available for
use again.

The largest source of latency reduction (accounting for
41.4%) comes from reducing the number of DMA trans-
fers from three for SoftAtomic to one for the others (Log-
Write+Commit takes two IO operations, but the Commit
does not need a DMA). Using AtomicWrite to eliminate
the separate Commit operation reduces latency by an addi-
tional 41.8%.

Figure 4 plots the effective bandwidth (i.e., excluding
writes to the log) for atomic writes ranging in size from
512 B to 512 kB. Our scheme increases throughput by be-
tween 2 and 3.8× relative to SoftAtomic. The data also
show the benefits of AtomicWrite for small requests:
transactions smaller than 4 kB achieve 92% of the band-
width of normal writes in the baseline system.

Figure 5 shows the source of the bandwidth performance
improvement for EAWs. It plots the total bytes read or writ-
ten across all the memory controllers internally. For normal
writes, internal and external bandwidth are the same. Soft-
Atomic achieves the same internal bandwidth because it sat-
urates the PCIe bus, but roughly half of that bandwidth goes
to writing the log. LogWrite+Commit and AtomicWrite
consume much more internal bandwidth (up to 5 GB/s), al-
lowing them to saturate the PCIe link with useful data and to
confine logging operations to the storage device where they
can leverage the internal memory controller bandwidth.

5.2 MARS Evaluation
This section evaluates the benefits of MARS compared to
ARIES. For this experiment, our benchmark transactionally
swaps objects (pages) in a large database-style table.

The baseline implementation of ARIES follows the de-
scription in [26] very closely and runs on the Moneta-Direct
SSD. It performs the undo and redo logging required for
steal and no-force and includes a checkpoint thread that
manages a pool of dirty pages, flushing pages to the stor-
age array as the pool fills.

Figure 6 shows the speedup of MARS compared to
ARIES for between 1 and 16 threads running a simple mi-
crobenchmark. Each thread selects two aligned blocks of

Threads
1 2 4 8 16

S
pe

ed
up

 v
s.

 A
R

IE
S

0.0

1.0

2.0

3.0

4.0
4kB
16kB
64kB

Swaps/sec for MARS by Thread Count
Size 1 2 4 8 16
4 kB 21,907 40,880 72,677 117,851 144,201
16 kB 10,352 19,082 30,596 40,876 43,569
64 kB 3,808 5,979 8,282 11,043 11,583

Figure 6: Comparison of MARS and ARIES. Design-
ing MARS to take advantage of fast NVMs allows it to
scale better and achieve better overall performance than
ARIES.

data between 4 and 16 kB (x-axis) at random and swaps
their contents using a MARS or ARIES-style transaction.
For small transactions, where logging overheads are largest,
our system outperforms ARIES by as much as 3.7×. For
larger objects, the gains are smaller—3.1× for 16 kB objects
and 3× for 64 kB. In these cases, ARIES makes better use
of the available PCIe bandwidth, compensating for some of
the overhead due to additional log writes and write backs.
MARS scales better than ARIES: speedup monotonically
increases with additional threads for all object sizes while
the performance of ARIES declines for 8 or more threads.

5.3 Persistent data structure performance
We also evaluate the impact of EAWs on several light-
weight persistent data structures designed to take advantage
of our user space driver and transactional hardware support:
a hash table, a B+tree, and a large scale-free graph that sup-
ports “six degrees of separation” queries.

The hash table implements a transactional key-value
store. It resolves collisions using separate chaining, and
it uses per-bucket locks to handle updates from concurrent
threads. Typically, a transaction requires only a single write
to a key-value pair. But, in some cases an update requires
modifying multiple key-value pairs in a bucket’s chain. The
footprint of the hash table is 32 GB, and we use 25 B keys
and 1024 B values. Each thread in the workload repeatedly
picks a key at random within a specified range and either
inserts or removes the key-value pair depending on whether
or not the key is already present.

The B+tree also implements a 32 GB transactional key-
value store. It caches the index, made up of 8 kB nodes, in
memory for quick retrieval. To support a high degree of con-
currency, it uses Bayer and Scholnick’s algorithm [1] based

Access Size

0.5 kB 2 kB 8 kB 32 kB 128 kB 512 kB

B
an

dw
id

th
 (G

B
/s

)

0.0

0.5

1.0

1.5

2.0

Write
AtomicWrite
LogWrite+Commit
SoftAtomic

Figure 4: Transaction throughput. By moving the log
processing into the storage device, our system is able to
achieve transaction throughput nearly equal to normal,
non-atomic write throughput.

Access Size

0.5 kB 2 kB 8 kB 32 kB 128 kB 512 kB

B
an

dw
id

th
 (G

B
/s

)

0.0

1.0

2.0

3.0

4.0

5.0

Write
AtomicWrite
SoftAtomic

Figure 5: Internal bandwidth. Hardware support for
atomic writes allows our system to exploit the internal
bandwidth of the storage array for logging and devote
the PCIe link bandwidth to transferring useful data.

on node safety and lock coupling. The B+tree is a good
case study for EAWs because transactions can be complex:
An insertion or deletion may cause splitting or merging of
nodes throughout the height of the tree. Each thread in this
workload repeatedly inserts or deletes a key-value pair at
random.

Six Degrees operates on a large, scale-free graph repre-
senting a social network. It alternately searches for six-edge
paths between two queried nodes and modifies the graph by
inserting or removing an edge. We use a 32 GB footprint
for the undirected graph and store it in adjacency list format.
Rather than storing a linked list of edges for each node, we
use a linked list of edge pages, where each page contains up
to 256 edges. This allows us to read many edges in a single
request to the storage array. Each transactional update to the
graph acquires locks on a pair of nodes and modifies each
node’s linked list of edges.

Figure 7 shows the performance for three implementa-
tions of each workload running with between 1 and 16
threads. The first implementation, “Unsafe,” does not pro-
vide any durability or atomicity guarantees and represents
an upper limit on performance. For all three workloads,
adding ACID guarantees in software reduces performance
by between 28 and 46% compared to Unsafe. For the B+tree
and hash table, EAWs sacrifice just 13% of the performance
of the unsafe versions on average. Six Degrees, on the
other hand, sees a 21% performance drop with EAWs be-
cause its transactions are longer and modify multiple nodes.
Using EAWs also improves scaling slightly. For instance,
the EAW version of HashTable closely tracks the perfor-
mance improvements of the Unsafe version, with only an
11% slowdown at 16 threads while the SoftAtomic version
is 46% slower.

5.4 MemcacheDB performance
To understand the impact of EAWs at the application level,
we integrated our hash table into MemcacheDB [10], a per-

sistent version of Memcached [25], the popular key-value
store. The original Memcached uses a large hash table
to store a read-only cache of objects in memory. Mem-
cacheDB supports safe updates by using Berkeley DB to
make the key-value store persistent. In this experiment, we
run Berkeley DB on Moneta under XFS to make a fair com-
parison with the EAW-based version. MemcacheDB uses a
client-server architecture, and we run both the clients and
server on a single machine.

Figure 8 compares the performance of MemcacheDB us-
ing our EAW-based hash table as the key-value store to ver-
sions that use volatile DRAM, a Berkeley DB database (la-
beled “BDB”), an in-storage key-value store without atom-
icity guarantees (“Unsafe”), and a SoftAtomic version. For
eight threads, our system is 41% slower than DRAM and
15% slower than the Unsafe version. Besides the perfor-
mance gap, DRAM scales better than EAWs with thread
count. These differences are due to the disparity between
memory and PCIe bandwidth and to the lack of synchronous
writes for durability in the DRAM version.

Our system is 1.7× faster than the SoftAtomic implemen-
tation and 3.8× faster than BDB. Note that BDB provides
many advanced features that add overhead but that Mem-
cacheDB does not need and our implementation does not
provide. Beyond eight threads, performance degrades be-
cause MemcacheDB uses a single lock for updates.

6 Related Work
Atomicity and durability are critical to storage system
design, and designers have explored many different ap-
proaches to providing these guarantees. These include ap-
proaches targeting disks, flash-based SSDs, and non-volatile
main memories (i.e., NVMs attached directly to the proces-
sor) using software, specialized hardware, or a combination
of the two. We describe existing systems in this area and
highlight the differences between them and the system we
describe in this work.

B+tree

Threads
1 2 4 8 16

O
pe

ra
tio

ns
 (x

10
00

)/s
ec

40

80

120

160

200

Unsafe
ERL−AW
SoftAtomic

Hash Table

Threads
1 2 4 8 16

O
pe

ra
tio

ns
 (x

10
00

)/s
ec

100

200

300

400

500

Unsafe
ERL−AW
SoftAtomic

Six Degrees

Threads
1 2 4 8 16

O
pe

ra
tio

ns
 (x

10
00

)/s
ec

100

200

300

400

Unsafe
ERL−AW
SoftAtomic

(a) (b) (c)
Figure 7: Workload performance. Each set of lines compares the throughput of our (a) B+tree, (b) hash table, and (c)
Six Degrees workloads for Unsafe, EAW, and SoftAtomic versions as we scale the number of threads.

Client Threads

1 2 4 8

O
pe

ra
tio

ns
/s

ec

 0

 20000

 40000

 60000

 80000

100000

120000

BDB
SoftAtomic
ERL−AW
Unsafe
DRAM

Figure 8: MemcacheDB performance. Adding hardware
support for atomicity increases performance by 1.7× for
eight clients, and comes within 15% of matching the per-
formance of an unsafe version that provides no durabil-
ity.

6.1 Disk-based systems
Most disk-oriented systems provide atomicity and durability
via software with minimal hardware support. ARIES [26]
uses WAL to provide these guarantees and other features
while optimizing for the sequential performance of disk. It
is ubiquitous in storage and database systems today.

Recent work on segment-based recovery [37] revisits the
design of WAL for ARIES with the goal of providing ef-
ficient support for application-level objects. By removing
LSNs on pages, segment-based recovery enables zero-copy
IO for large objects and request reordering for small objects.
Our system can take advantage of the same optimizations
because the hardware manages logs without LSNs and with-
out modifying the format or layout of objects.

Stasis [36] uses write-ahead logging to support build-
ing persistent data structures. Stasis provides full ACID
semantics and concurrency for building high-performance
data structures such as hash tables and B-trees. It would
be possible to port Stasis to use EAWs, but achieving good
performance would require significant change to its internal
organization.

EAWs provide atomicity and durability at the device level
where hardware can enforce them efficiently. The Logical
Disk [14] provides a similar interface with atomic recov-

ery units (ARUs) [17], which are an abstraction for failure
atomicity for multiple disk writes. Like our system, this ab-
straction does not guarantee that transactions can execute
concurrently and produce correct results. The application
must implement concurrency control (e.g., two-phase lock-
ing). Unlike our system, ARUs do not provide durability,
but they do provide isolation.

File systems including WAFL [18] and ZFS [28] use
shadow paging to perform atomic updates. Recent work
on a byte-addressable persistent file system (BPFS) [13] ex-
tends shadow paging to support fine-grained atomic writes
to non-volatile main memory. Shadow paging can be ad-
vantageous because it requires writing the data only once
and then updating a pointer at commit. However, it is not
without cost: data must be organized in a tree and updates
often require duplicating portions of the tree. In contrast,
EAWs require writing the new data twice but the second
write is performed by the hardware so the cost is largely
hidden. The hardware does in-place updates which makes
data management in software much simpler.

Researchers have provided hardware-supported atomic-
ity for disks. Mime [9] is a high-performance storage ar-
chitecture that uses shadow copies for this purpose. Mime
offers sync and barrier operations to support ACID seman-
tics in higher-level software. Like our system, Mime is im-
plemented in the storage controller, but otherwise it is very
different. To optimize for disks, Mime is designed to avoid
synchronous writes by doing copy-on-write updates to a log.
It maintains a block map and additional metadata to keep
track of the resulting versions of updated data.

6.2 Flash-based SSDs
Flash-based SSDs offer improved performance relative to
disk, making latency overheads of software-based systems
more noticeable. They also include complex controllers and
firmware that use remapping tables to provide wear-leveling
and to manage flash’s idiosyncrasies. The controller pro-
vides a natural opportunity to provide atomicity and dura-
bility guarantees, and several groups have done so.

Transactional Flash (TxFlash) [30] extends a flash-based
SSD to implement atomic writes in the SSD controller.
TxFlash leverages flash’s fast random write performance
and the copy-on-write architecture of the FTL to perform

atomic updates to multiple, whole pages. The commit pro-
tocol relies on a specific feature of flash: It uses per-page
metadata to create a linked list of records that form a cycle
when commit completes. In contrast, fast NVMs are byte-
addressable and SSDs based on these technologies can effi-
ciently support in-place updates. Consequently, our system
logs and commits requests differently and the hardware can
handle arbitrarily sized and aligned requests.

Recent work from FusionIO [29] proposes an atomic-
write interface in a commercial flash-based SSD. Their sys-
tem uses a log-based mapping layer in the drive’s FTL, and
it requires that all the writes in one transaction be contigu-
ous in the log. This prevents them from supporting multiple,
simultaneous transactions.

6.3 Non-volatile main memory
The fast NVMs that our system targets are also candidates
for replacements for DRAM, potentially increasing storage
performance dramatically. Using non-volatile main memory
as storage also requires atomicity guarantees, and several
groups explored options in this space.

Recoverable Virtual Memory (RVM) [34] provides per-
sistence and atomicity for regions of virtual memory. It
buffers transaction pages in memory and flushes them to
disk on commit. RVM only requires redo logging because
uncommitted changes are never written early to disk, but
RVM also implements an in-memory undo log that is used to
quickly revert the contents of buffered pages without reread-
ing them from disk when a transaction aborts. Rio Vista [24]
builds on RVM but uses battery-backed DRAM to make
stores to memory persistent, eliminating the redo log en-
tirely. Both RVM and Rio Vista are limited to transactions
that can fit in main memory, while MARS supports trans-
actions that scale with the capacity of the storage device.
MARS could be coupled with demand paging to serve as
the underlying mechanism for the transactions over regions
of virtual memory that these systems provide.

More recently, Mnemosyne [39] and NV-heaps [12] pro-
vide transactional support for building persistent data struc-
tures in byte-addressable NVMs attached to the memory
bus. Both systems map storage directly into the applica-
tion’s address space, making it accessible by normal load
and store instructions. These systems focus on program-
ming support for NVMs while our work provides a lower-
level interface for a storage architecture that supports trans-
actions more efficiently.

7 Discussion
EAWs and MARS are a starting point for thinking about
how to leverage the performance of fast NVMs while pro-
viding the features that applications require. They also raise
several questions that lay the foundation for future work in
this area.

MARS currently only supports a database that can fit in
the storage of a single machine. But MARS, and EAWs

more generally, could be useful for distributed databases and
persistent data structures that span many machines because
these systems must make guarantees about the persistence
of local data. EAWs could accelerate transaction commit on
individual nodes and two-phase commit on multiple nodes.
It would also be possible to extend EAWs to a network-
enabled version of Moneta [8].

MARS does not obviate the need for replication for appli-
cations that require high reliability and availability. Repli-
cating data across multiple arrays of fast NVMs is chal-
lenging because network latency can dominate storage la-
tency. However, because MARS improves the performance
of atomic operations on individual machines, it could ben-
efit the state machine replication approach for fault toler-
ance [21]. A system such as the Chubby lock service [4]
stores each shared object as an entry in a database on each
replica. It also maintains a log on each replica to track and
execute the Paxos algorithm [22]. MARS could be used to
implement both the local database and the log.

To maximize performance, we focus on implementing re-
dundancy within the SSD itself in the form of error correct-
ing SEC-DED codes that allow memories to tolerate some
errors. If an application requires higher levels of resilience,
RAID or other techniques may be necessary and they may
necessitate a different implementation of EAWs.

8 Conclusion
Existing transaction mechanisms such as ARIES were de-
signed to exploit the characteristics of disk, making them
a poor fit for storage arrays of fast, non-volatile memories.
We presented a redesign of ARIES, called MARS, that pro-
vides the same set of features to the application but uti-
lizes a novel multi-part atomic write operation, called ed-
itable atomic writes (EAW), that takes advantage of the par-
allelism and performance in fast NVM-based storage. We
demonstrated MARS and EAWs in our prototype storage
array. Compared to transactions implemented in software,
our system increases effective bandwidth by up to 3.8× and
decreases latency by 2.9×. Across a range of persistent data
structures, EAWs improve operation throughput by an aver-
age of 1.4×. When applied to MARS, EAWs yield a 3.7×
performance improvement relative to a baseline implemen-
tation of ARIES.

Acknowledgements
We would like to thank the anonymous reviewers, our shep-
herd, Michael Swift, and Geoff Voelker for their valuable
feedback. This work is supported by NSF Award 1219125
and by hardware donations from Xilinx.

References
[1] R. Bayer and M. Schkolnick. Concurrency of opera-

tions on B-trees. Acta Informatica, 9:1–21, 1977.
[2] http://beecube.com/products/.

[3] M. J. Breitwisch. Phase change memory. Intercon-
nect Technology Conference, 2008. IITC 2008. Inter-
national, pages 219–221, June 2008.

[4] M. Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the 7th
symposium on Operating systems design and imple-
mentation, OSDI ’06, pages 335–350, Berkeley, CA,
USA, 2006. USENIX Association.

[5] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall,
M. L. McAuliffe, J. F. Naughton, D. T. Schuh, M. H.
Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and
M. J. Zwilling. Shoring up persistent applications. In
Proceedings of the 1994 ACM SIGMOD international
conference on Management of data, SIGMOD ’94,
pages 383–394, New York, NY, USA, 1994. ACM.

[6] A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K.
Gupta, and S. Swanson. Moneta: A high-performance
storage array architecture for next-generation, non-
volatile memories. In Proceedings of the 43nd Annual
IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 43, pages 385–395, New York, NY,
USA, 2010. ACM.

[7] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De,
J. Coburn, and S. Swanson. Providing safe, user space
access to fast, solid state disks. In Proceedings of the
seventeenth international conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’12, pages 387–400, New York,
NY, USA, 2012. ACM.

[8] A. M. Caulfield and S. Swanson. Quicksan: a storage
area network for fast, distributed, solid state disks. In
Proceedings of the 40th Annual International Sympo-
sium on Computer Architecture, ISCA ’13, pages 464–
474, New York, NY, USA, 2013. ACM.

[9] C. Chao, R. English, D. Jacobson, A. Stepanov, and
J. Wilkes. Mime: a high performance parallel stor-
age device with strong recovery guarantees. Technical
Report HPL-CSP-92-9R1, HP Laboratories, Novem-
ber 1992.

[10] S. Chu. Memcachedb. http://memcachedb.org/.
[11] D. Cobb and A. Huffman. Nvm express and the pci ex-

press ssd revolution. http://www.nvmexpress.org/wp-
content/uploads/2013/04/IDF-2012-NVM-Express-
and-the-PCI-Express-SSD-Revolution.pdf.

[12] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. NV-heaps:
making persistent objects fast and safe with next-
generation, non-volatile memories. In Proceedings
of the sixteenth international conference on Architec-
tural support for programming languages and operat-
ing systems, ASPLOS ’11, pages 105–118, New York,
NY, USA, 2011. ACM.

[13] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better i/o through byte-
addressable, persistent memory. In Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems
principles, SOSP ’09, pages 133–146, New York, NY,
USA, 2009. ACM.

[14] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The
logical disk: a new approach to improving file systems.
In Proceedings of the fourteenth ACM symposium on
Operating systems principles, SOSP ’93, pages 15–28,
New York, NY, USA, 1993. ACM.

[15] B. Dieny, R. Sousa, G. Prenat, and U. Ebels. Spin-
dependent phenomena and their implementation in
spintronic devices. VLSI Technology, Systems and Ap-
plications, 2008. VLSI-TSA 2008. International Sym-
posium on, pages 70–71, April 2008.

[16] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie,
T. Price, F. Putzolu, and I. Traiger. The recovery man-
ager of the system r database manager. ACM Comput.
Surv., 13(2):223–242, June 1981.

[17] R. Grimm, W. Hsieh, M. Kaashoek, and W. de Jonge.
Atomic recovery units: failure atomicity for logical
disks. Distributed Computing Systems, International
Conference on, 0:26–37, 1996.

[18] D. Hitz, J. Lau, and M. A. Malcolm. File system de-
sign for an NFS file server appliance. In USENIX Win-
ter, pages 235–246, 1994.

[19] International technology roadmap for semiconductors:
Emerging research devices, 2009.

[20] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,
and B. Falsafi. Shore-mt: a scalable storage manager
for the multicore era. In Proceedings of the 12th Inter-
national Conference on Extending Database Technol-
ogy: Advances in Database Technology, EDBT ’09,
pages 24–35, New York, NY, USA, 2009. ACM.

[21] L. Lamport. Time, clocks, and the ordering of events in
a distributed system. Commun. ACM, 21(7):558–565,
July 1978.

[22] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[23] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Archi-
tecting phase change memory as a scalable dram al-
ternative. In ISCA ’09: Proceedings of the 36th an-
nual international symposium on Computer architec-
ture, pages 2–13, New York, NY, USA, 2009. ACM.

[24] D. E. Lowell and P. M. Chen. Free transactions with rio
vista. In SOSP ’97: Proceedings of the sixteenth ACM
symposium on Operating systems principles, pages
92–101, New York, NY, USA, 1997. ACM.

[25] Memcached. http://memcached.org/.
[26] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and

P. Schwarz. Aries: a transaction recovery method sup-
porting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database
Syst., 17(1):94–162, 1992.

[27] NVMHCI Work Group. NVM Express.
http://nvmexpress.org.

[28] Oracle. Solaris ZFS. https://java.net/projects/solaris-

zfs.
[29] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K.

Panda. Beyond block i/o: Rethinking traditional stor-
age primitives. In Proceedings of the 2011 IEEE 17th
International Symposium on High Performance Com-
puter Architecture, HPCA ’11, pages 301–311, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[30] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou. Trans-
actional flash. In Proceedings of the 8th USENIX con-
ference on Operating systems design and implementa-
tion, OSDI’08, pages 147–160, Berkeley, CA, USA,
2008. USENIX Association.

[31] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srini-
vasan, L. Lastras, and B. Abali. Enhancing lifetime
and security of pcm-based main memory with start-
gap wear leveling. In MICRO 42: Proceedings of the
42nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 14–23, New York, NY, USA,
2009. ACM.

[32] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M.
Franceschini. Practical and secure PCM systems by
online detection of malicious write streams. High-
Performance Computer Architecture, International
Symposium on, 0:478–489, 2011.

[33] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scal-
able high performance main memory system using
phase-change memory technology. In Proceedings of
the 36th annual international symposium on Computer
architecture, ISCA ’09, pages 24–33, New York, NY,
USA, 2009. ACM.

[34] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C.
Steere, and J. J. Kistler. Lightweight recoverable vir-
tual memory. In SOSP ’93: Proceedings of the four-
teenth ACM symposium on Operating systems prin-
ciples, pages 146–160, New York, NY, USA, 1993.
ACM.

[35] S. Schechter, G. H. Loh, K. Straus, and D. Burger. Use
ecp, not ecc, for hard failures in resistive memories. In
Proceedings of the 37th annual international sympo-
sium on Computer architecture, ISCA ’10, pages 141–
152, New York, NY, USA, 2010. ACM.

[36] R. Sears and E. Brewer. Stasis: flexible transactional
storage. In Proceedings of the 7th symposium on Op-
erating systems design and implementation, OSDI ’06,
pages 29–44, Berkeley, CA, USA, 2006. USENIX As-
sociation.

[37] R. Sears and E. Brewer. Segment-based recovery:
write-ahead logging revisited. Proc. VLDB Endow.,
2:490–501, August 2009.

[38] Silicon Graphics International. XFS: A
high-performance journaling filesystem.
http://oss.sgi.com/projects/xfs.

[39] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
lightweight persistent memory. In Proceedings of
the sixteenth international conference on Architectural

support for programming languages and operating
systems, ASPLOS XVI, pages 91–104, New York, NY,
USA, 2011. ACM.

[40] XDD version 6.5. http://www.ioperformance.com/.
[41] J. Yang, D. B. Minturn, and F. Hady. When poll

is better than interrupt. In Proceedings of the 10th
USENIX conference on File and Storage Technolo-
gies, FAST’12, pages 3–3, Berkeley, CA, USA, 2012.
USENIX Association.

