Atomic Scale Simulation

Introduction to Monte Carlo

What s Monte Carlo?

Monte Carlo is a way of solving problems using “random numbers” in some essential way. All
Monte Carlo calculations can be viewed as a multidimensional integration, although that may not
always be the most useful point of view. Consider the following multidimensional integral:
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With MC, we sample randomly in the “cube” and take the average value.
1 M
I'= lim - ; f(@i)- (2)
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We will see in a minute that the (statistical) error € of our estimate of I converges like € o M
Hence, the computer time 7', needed to get an accuracy € goes like

TMC X 6_2. (3)

One order of magnitude in accuracy requires a 100 times longer run! This is true in all stochastic
or Monte Carlo methods.

Why do we then use Monte Carlo? Consider the alternatives. Suppose we use the trapezoidal
rule. There we find the error is € o dz?f”(z). The improved Simpson’s rule gives an error
e < dzt £ () where f® is the fourth derivative and dz is the grid spacing. In general we can
write that the error is proportional to:

€ o« dz%cq, (4)

for an integration rule good to order o where ¢, is proportional to the maximum o* derivative
of the function in the integration region. But here is the problem: the computer time will scale
with the number of points: dz—". Hence we find that the time to do a “traditional” integration
goes as:

Ting oc € P/ (5)

Hence in the limit of small €, Monte Carlo will be more efficient if D > 2a.

Why is this? It simply takes too long to fill an D-dimensional space uniformly with points.
To get a reasonable value for the integrand, the grid spacing dz must be smaller than the natural
variation in f(z). Typically hundreds of grid points in each dimension are required. If one raises
one hundred to some high power, one cannot complete the integration.

Why can’t we use very high order integration schemes, that is, take « large? The order of
the scheme « is controlled by the smoothness of the function. Typical functions that we use in
science become nasty if you differentiate, them too often. This means that higher order schemes



are less accurate than low order schemes unless dx is exceedingly small. Hence one gets best
results for 2 < o < 4. That means that MC is preferred once you get above 6 dimensions or so.
This is borne out by experience.

The other reasons for doing MC are its conceptual simplicity and the fact that it comes with
built in error bars. But the scaling behavior is the crucial difference.

Later we will discuss an alternative integration method which is between MC and grid based
methods called “quasi-random numbers.”

Monte Carlo Terminology

First let us review some terms from probability theory.

A probability distribution function p(x)dz is the probability of z being in a small interval
(z,z+dz). This means than p(z) > 0 and [ dzp(z) = 1. T will not particularly worry about what
z is, a real number or an integer (e.g. the state of a thrown die.) The cumulative distribution is
better defined mathematically. F(z) is the probability that y < z. Hence F(z) = [*_ dyp(y).

The ezpectation value of some function f(z) with respect topis I =< f >= f = [dzf(z)p(z).
With an estimator we sample a set of N values {z;} from p and use those to estimate the value
of I. The best estimator for the simple integral above is:

N .
fy = =) ()

Now fy is distributed according to some probability distribution p¢, . Of course, by construction
< fn >= 1. But we can ask, what are the fluctuations of fx about its mean value? This is the
variance of fy.

The central limit theorem is the foundation on which MC is built. The estimator, Eq.(6 ) will
converge to the value of the integral, if the variance of f(z) exists. Furthermore, we will know
exactly the probability distribution of fn in the limit of large N; it is the normal distribution:

p(fn) = (2noy) "2 exp[=(fv — I)?/(203%)] (7)

Since the successive values of z; are uncorrelated we have the variance of the mean is

o = 5ot = @)~ 1) = . [ dap@)ie) - 12 ®)

Traditionally in MC, one quotes 1 ¢ deviations as the error. Since we know it is a normal
distribution, this means that 33% of the time one expects the value to exceed 1 o, 5%, a 2 o
deviation etc. A 2 ¢ error should not concern you too much, it happens fairly often.

Of crucial importance in any MC work is to prove (analytically) that the variance o exists.
Only then you can talk about reliably about estimating errors. Usually the variance (of fx) is
estimated itself from the data with the formula:
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with the Fiy estimated from eq. (6). The N — 1 appears because both the mean and variance are
estimated from the same data. This formula is only correct if the data points are uncorrelated;
otherwise one has to do blocking to eliminate the correlation. Then the estimate of the error of
the mean is oy = 1/0?/N.



Multidimensional distributions

Up to now we have been discussing a single variable (x or f). Often the output of a MC simulation
is several variables (e.g. the energy and the pressure). We will write the M output variables as
a vector x = (21,...,Zp). Then there is a p.d.f. in that M-dimensional space, p(x)dx. One can
generalize the central limit theorem for that case. Define the covariance matriz:

Vij = ((zi— < =z >)(£I?j— < Zj >)) (10)

The covariance matrix is a positive symmetric matrix. This means that it can be diagonalized
and has positive eigenvalues.

Assume p(x)dx is such that all elements of v; ; are finite, the various variances exist. Then
the central limit theorem says that the estimate of the mean:

N
1 X
Xy = ij_\; k (11)

for sufficiently large N will obey the multidimensional normal (Gaussian) distribution:

Nyt

pn(xn) = [2ndet(v)/N] /2 exp[—(xy— < xn >) (xy— < xy >)] (12)
where the matrix inverse and determinant are meant. Unless v is diagonal, the various values of v
are correlated positively if v; ; > 0, negatively otherwise. The covariance matrix can be estimated
from applying its definition (Eq. (10) to a sequence of x;’s. One note of caution: it takes at least
(M + 3)/2 vectors of data to fully specify the covariance matrix. Many more usually are needed.
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