Error and Error Propagation

Two ways to express the error associated with a given measurement:

Probable error:

® The symmetric range about the mean, within which there is 50% chance that a
measurement will fall.

“ The width of the range depends on the distribution of the variable. For example,
for Gaussian distributed error, the probable erroris +£0.675 o.

Fractional standard deviation:

& The ratio of the standard deviation and the mean of the distribution of the
random variable.

% For Poisson distributed random variable, the fractional standard deviation is
simply

0:1
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] _ Chapter 3: Counting Statistics
Error Propagation

In some situations, the variable of interest (Q) is not measured directly, but derived
as a function of more than one independent random variable whose values are
directly measured. The error on the measured values is propagated into the
uncertainty on the resultant quantity Q.

Suppose a quantity Q(x,y) that depends on two independent random variables x
andy.

The sample mean and variance of variables x and y are derived as ¢, and c,, by
repeating measurements.

The standard deviation of the indirect quantity Q is approximately given by
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Error and Error Propagation

A Taylor series of a real function of a single variable, f(x), around a point x, is given by

g+ AX) = x4 £ (DAY . (5 )(A0) - L () (A0)

where

S (X0) :|:ii

dx dx f(X)}

X=Xp

A Taylor series of a real function of two variables, f(x,y), is given by

S (xp+Ax, y,+Ay) =
f(xoay0)+[fx(xoaJ’o)Ax+fy(xoaJ’0)Ay]
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Error Propagation

We determine the standard deviation of a quantity Q(x, y) that depends on two
independent, random variables x and y. A sample of N measurements of the
variables yields pairs of values, x; and y;, with i = 1, 2, ..., N. For the
sample one can compute the means, x and y; the standard deviations, g, and
o,; and the values Q; = Q(x;, y;). We assume that the scatter of the x; and y;
about their means is small. We can then write a power-series expansion for
the Q, about the point (X, ¥), keeping only the first powers. Thus,

_ ., 9@ — , 90 _

Qi =00, y) = Q0 y) + 9L x; —xX) + — (¥ — ), (E.36)
0x ay

where the partial derivatives are evaluated atx =X andy = y.

So the mean of Q is

1< 1<
Q =Nz Q; =NZ Q(x;, i)
i=1 i=1

and the variance of Q is

N
1 _
a%(Q) = NZl(Qi — Q)Z



Error Propagation

where the partial derivatives are evaluated at x = X and y = y. The mean value
of Q; is simply

N N
_ 1 1
Q= N; Qi = N; Q(xy, i)
~ i N X V a_Q . — a_Q . — )| = — —
=~ Xiz1 [Q(x,y) T oxl ey KO3, - i y)] =Q(x,y), E.36

since the sums of the x; — x and y; — y over all i in Eq. (E.36) are zero, by
definition of the mean values. Thus, the mean value of Q is the value of the

function Q(x, y) calculated at x = xand y = y.

(=1]
]
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Error and Error Propagation

The variance of the Q; is given by

L N
2=—Z E.38
00 = N 5 QT ""‘"1 (E.38)
[— =Q('—)+?—Q-( ——f)+2g(-—_) (E.36)
Q; = Qx;, y) = X,y E Xi 3y Vi | Y)s .
—
Applying Eq. (E.36) with Q = Q(X,y), we find that
(E.39)
'l/aw;'&nce Of (7/
oY O *(Y)
LS
=(9) (2
ox Iy /| i= ‘\ Covariance ,
Cov (%,4) g5
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Error and Error Propagation

The last term, called the covariance of x and y, vanishes for large N if the
values of x and y are uncorrelated. (The factors y; — y and x; — X are then just
as likely to be positive as negative, and the covariance also decreases as 1/N).
We are left with the first two terms, involving the variances of the x; and y;:

30\% . - /30\?
02Q = (—(,g) ol + (3%) ag. (E.41)

This is one form of the error propagation formula, which is easily generalized
to a function Q of any number of independent random variables.

Assumptions ?2?

(o]
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Error Propagation Formula

The error propagation formula is exact only when
e the two variables, x and y, are independent to each other,

e and when Q(x,y) could be approximated as a linear function of both x
andy.




Error Propagation Formula

The error propagation formula is exact only when
e the two variables, x and y, are independent to each other,

e and when Q(x,y) could be approximated as a linear function of both x
andy.

Note that the formula would break down when the second and third
and higher order partial derivatives are not negligible.
f(xO+Ax,y0+Ay)=

S (xg,¥0)+ [fx(xoayo)Ax+fy(xoayo)Ay]
LG AR 2.1, Gy Ak + £, G ) (9

+% :fxxx(xoayo)(Ax)3 + 3fxxy(x09yo)(Ax)2 (Ay)+ 3f;cyy(x0’y0)(Ax)(Ay)2 + /0 (XOaJ’o)(AJ’)3]+

o
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Error Propagation

Case 1: Sums or differences of counts — u is the sum or difference of two random
numbers representing counts measured in two independent experiments.

U=x+y or u=x-—y

Example: estimating the net counts from a sample.

net counts = total counts — background counts
or
U=x-—y

(1)
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Error Propagation

Case 2: Multiplication or division by a constant

u= Ax
g, = Ao,
L X
Example: estimating the count rate, counting rate = r = —
t

Assuming that the error in the measuring time is negligible, we get

Oy

=
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Error Propagation

Case 3: Multiplication or division of counts

ou ou
u=xy, — = — =X
AR VRS P
Using th ti 00 ’
sing the equation ) )
GQ ; Z a le
] Xl-
One gets
2 _0u o du 5 9 2
Oy = 5. Ox +ayay =Y 0y T X0y
Therefore,
2 2 2
u X y
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Error Propagation in Net Count Rate Measurement

As an application of the error-propagation formula, Eq. (11.46), we find the stan-
dard deviation of the net count rate of a sample, obtained experimentally as the
difference between gross and background count rates, ry and r,. As with gross
counting, one also measures the number n;, of background counts in a time #,.
The net count rate ascribed to the sample is then the difference

Ne 1 a0\’ , " [0\
o=ty =Ty = _té _ ;]_12 o = (-5) o2 1 (f) o2 (11.49)
8

To find the standard deviation of r,, we apply Eq. (11.46) with Q =r,, x = ng, and
y = np. From Eq. (11.49) we have dr,/dng =1/t, and dr,/dn, = —1/t,. Thus, the
standard deviation of the net count rate is given by

7 2 Assuming no error on t
Gg Oy, ) 2
Onr = t_2 + 5 = O'gr + O'br. (1150)
g b

where of,. = 0%(1,), 02 =0d%(ny), of =0%(np),

2 2

n o n o
and ngr =cg%|2)|=-2, ag,, = g2 (—b) =2
tg t2 ty t2

Turner, pp. 324.
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Error Propagation in Net Count Rate Measurement

To find the standard deviation of r,, we apply Eq. (11.46) with Q =r,, x = ng, and
y = ny,. From Eq. (11.49) we have or,/dng = l/t; and 9r,/dm, = —1/t;,. Thus, the
standard deviation of the net count rate is given by

2 2
Onr = \/c;g + % =,/0% + 0. (11.50)
Here o, and oy, are the standard deviations of the numbers of gross and background
counts, and o, and oy, are the standard deviations of the gross and background
count rates. Equation (11.50) expresses the well-known result for the standard de-
viation of the sum or difference of two Poisson or normally distributed random
variables. Using ng and n, as the bedf esffmates of the méans of the gross and

W W W O\ P O

v-"__ LT N g

background distributions and assuming that the numbers of counts obey Poisson

statistics, we have o = ng and o> = ny,. Therefore, the last equation can be

£42 (11.51)

~
-
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Error Propagation in Net Count Rate Measurement

As an application of the error-propagation formula, Eq. (11.46), we find the stan-
dard deviation of the net count rate of a sample, obtained experimentally as the
difference between gross and background count rates, ry and r,. As with gross
counting, one also measures the number n;, of background counts in a time #,.
The net count rate ascribed to the sample is then the difference

Ng 1 90\’ , " [0\
o =Ty = & ;]_lz o = (-5) . +..(5§2> 2. (11.49)
g

To find the standard deviation of r,, we apply Eq. (11.46) with Q =r,, x = ng, and
y = np. From Eq. (11.49) we have dr,/dng =1/t; and dr,/dn, = —1/t,. Thus, the
standard deviation of the net count rate is given by

7 2 Assuming no error on t
Gg Oy, 2 2

Onr = t_2 + 5 = O'gr + O'br. (1150)

g b
oY

n n T, s

o= [ FE [Fr2
tg b tg Iy

Turner, pp. 324.
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Error Propagation in Net Count Rate Measurement

Example

A long-lived radioactive sample is placed in a counter for 10 min, and 1426 counts are
registered. The sample is then removed, and 2561 background counts are observed
in 90 min. (a) What is the net count rate of the sample and its standard deviation?
(b) If the counter efficiency with the sample present is 28%, what is the activity of
the sample and its standard deviation in Bq? (c) Without repeating the background
measurement, how long would the sample have to be counted in order to obtain the
net count rate to within +5% of its true value with 95% confidence? (d) Would the
time in (c) also be sufficient to ensure that the activity is known to within +5% with
95% confidence?

Turner, pp. 324.

~

w
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Error Propagation in Net Count Rate Measurement

(a) What is the net count rate of the sample and its standard deviation?

Solution
(a) We have ng = 1426, t; = 10 min, n, = 2561, and #, = 90 min. The gross and
background count rates are r; = 1426/10 = 142.6 cpm and r, = 2561/90 = 28.5 cpm.

Y

Therefore, the net count rate is r, = 142.6 — 28.5 = 114 cpm. The standard deviation
can be found from either of the expressions in (11.51). Using the first (which does
not depend on the calculated values, 7, and r,), we find

4 2561
Onr = ! 2_6 + —_ =3.82min" = 3.82 cpm. (11.52)
/ (10 min)?2 (90 min)?
n nh r 43
tg tb to th
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Error Propagation in Net Count Rate Measurement

(b) If the counter efficiency with the sample present is 28%, what is the activity of
the sample and its standard deviation in Bq? (c) Without repeal ; the background

Solution:

(b) Since the counter efficiency is € = 0.28, the inferred activity of the sample is
A = ry/e = (114 min™")/0.28 = 407 dpm = 6.78 Bq. The standard deviation of the
activity is oqe /€ = (3.82 min™')/0.28 = 13.6 dpm = 0.227 Bq.

u= Ax
J
O'uZAO'x

NPRE 441, Principles of Radiation Protection, Spring 2021



Error Propagation in Net Count Rate Measurement

(c) Without repeating the background
measurement, how long would the sample have to be counted in order to obtain the
net count rate to within +5% of its true value with 95% confidence? (d) Would the
time in (c) also be sufficient to ensure that the activity is known to within +5% with
95% confidence?

Solution:

(c) A 5% uncertainty in the net count rate is 0.05r, = 0.05 x 114 = 5.70 cpm. For
the true net count rate to be within this range of the mean at the 95% confidence
level means that 5.70 cpm = 1.960y, (Table 11.2), or that oy, = 2.91 cpm. Using the
second expression in (11.51) with the background rate as before (since we do not yet
know the new value of ng), we write

u= Ax
142.6 min™"  28.5 min™
Onr = 2.91 min~! = o (11.53)
tg 90 min
Ny
Solving, we find that t; = 17.5 min. g, = Ao-x

(d) Yes. The relative uncertainties remain the same and scale according 1o tne ern-
ciency. If the efficiency were larger and the counting times remained the same, then
a larger number of counts and less statistical uncertainty would result.

7.3
70
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Error Propagation in Net Count Rate Measurement
N :

The chance of the measured net count rate to fall
within +-5% of its true value is therefore 95%.

FPrn)

_ 5.7
p 1.76'0'-;”./ S0 O\;Y‘—‘FE:“)‘?ICF’"

5-70 XIl4Cfm=5'7 C/’M
2.5/,

measured net count rate: 114 (cpm) NY: net rate

* ® BB g PO

If we assume that the measured net count rate of 114 cpm is close enough to the true net count rate,

then to ensure there is 95% chance that the measured net count rate would fall within +-5% of its true
value, we need

114(cpm) X 5% = 1.96 X gy,

Remember that

then

1, + 114(com T
=1.96 |2 G )+—b , so t, = 17.5 (cpm)
ty ty

5.71(cpm) = 1.96 -




Error Propagation

Case 5: Combination of independent measurements with unequal errors

If N independent measurements of the same quantity have been carried out and
not all the measurements have the same precision, what is the best way to

estimate the best estimate of the mean value of the quantity to be measured?

The best estimate of the quantity, <x>, can be achieved by the weighted average

N X, Xz

2 a;x; E_E] | B‘S

=1 i_—
=5 Tl
X2 X3

How to assign the weighting factors a/s ?

~
o
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Error Propagation

Let each individual measurement x; be given a weighting factor a; and the best value

(x) computed from the linear combination

ﬁ

(x) =

(3.45)

We now seek a criterion by which the weighting factors a, should be chosen in order to min-

imize the expected error in (x).

For brevity, we write

so that

Now apply the error propagation formlﬂa [Eq. (3.37)] to this case:

[ 9x) \2
=3 (50

i=1

Knoll, p. 91.
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Error Propagation

Now apply the error propagation formula [Eq. (3.37)] to this case:

N [ ox)\2 N
0'<)%>= Z (_a—> 0% 2 a;x
al

= X; i=
IDRREA N W ="
\2
) 2 (_) 0-2 2 al
X i=1
i=1 \&
1 N
- a2o2
o zzl P
B
O‘é> = —'a“i' (3.46)
where N
a= Ya PB=D al?
i=1 i=1 l

In order to minimize oy, we must minimize (r<§> from Eq. (3.46) with respect to a typical

weighting factor a;:

oB o
a? — — 20 —
80'<x> da; da.
0= = . ! (3.47)
oa o

o
Q
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Note that
N

i=1

Error Propagation

B o
a2 — — 2af —
do da. da
0 = (x) — ] ]
aa]- o4
Jda 0 ¥
> —=1 — =2a.0?
aa] aa]- ] X

Putting these results into Eq. (3.47), we obtain

and solving for

a., we find

]’

1
— (202a;02 — 2aB) =0
a4(a]0xj apf)

B 1
a. = —-* 5
] 2

o ij

If we choose to normalize the weighting coefficients,

™
1l

(3.47)

(3.48)
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Error Propagation

or

()= —""

N

2 a;x;
i:

i

Eai

1
N
=1

Therefore, the proper choice for the normalized weighting coefficient for x;, is

],

(3.49)

(3.50)

We therefore see that each data point should be weighted inversely as the square of its own

eérror.
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Error Propagation

N
_El a;X
l=
) =—
E a;
i=1
Therefore, the proper choice for the normalized weighting coefficient for Xjs is
1 (& 1\t
a=—7> —5 | (3.50)
2 2
] ij (i—l 7% )
We therefore see that each data point should be weighted inversely as the square of its own
error.
1
— 7~ creditability of the measurement x;.
Ox;
_ 1 N 1
aA; = — ji=1 2 | ~ relative creditability of the measurement x;.
O-.X'i O-.X'i
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Error Propagation

Assuming that this optimal weighting is followed, what will be the resultant (mini-
mum) error in {x)? Because we have chosen a = 1 for normalization, Eq. (3.46) becomes

oG = B
In the case of optimal weighting, 8 is given by Eq. (3.49). Therefore,

2 —2~ (3.51)
(x) i=1 x .

From Eq. (3.51), the expected standard deviation o, can be calculated from the standard
deviations o, associated with each individual measurement.

o
.S
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Error Propagation

Case 5: Combination of independent measurements with unequal errors
(continued)

The proper choice for the normalized weighting factors for x; is

N
a.x.
<> izl [ 1 N 1 -1
X) = L= — —
N 4= 52 E 52
24 5 \T 7y

N -1
) 1
O' — e
(x) Jjgi
=1
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Optimization of Counting Experiments

Case 6: Measuring the net count rate from a long-lived radioisotope.

S = counting rate due to the source alone without background
B = counting rate due to background

The measurement of S is normally carried out by counting the source plus background (at
an average rate of § + B) for a time T, 5 and then counting background alone for a time
Tg. The net rate due to the source alone is then
G N, N, 2
Is,p Tp
where N, and N, are the total counts in each measurement.

If the total measurement T=T,,z+T; is fixed, how to minimize the statistical error on
the measured net count rate?

)
(o 1
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] — Chapter 3: Counting Statistics
Error Propagation in Net Count Rate Measurement

To find the standard deviation of r,, we apply Eq. (11.46) with Q =r,, x = ng, and
y = ny,. From Eq. (11.49) we have or,/dng = l/t; and 9r,/dm, = —1/t;,. Thus, the
standard deviation of the net count rate is given by

o2 0,2
_ g b __ 2
Onr = Jg + E = ngr +Ubr. (1150)

Here o, and oy, are the standard deviations of the numbers of gross and background
counts, and o, and oy, are the standard deviations of the gross and background
count rates. Equation (11.50) expresses the well-known result for the standard de-
viation of the sum or difference of two Poisson or normally distributed random
variables. Using ng, and m;, as the best estimates of the means of the gross and
background distributions and assuming that the numbers of counts obey Poisson
statistics, we have o = ny and o = n,. Therefore, the last equation can be written

n t,
o= [E4 2= (B, (11.51)
2t byt

~
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Optimization of Counting Experiments
Applying the results of error propagation analysis to Eq. (3.52), we obtain

()"N1
0' o
> TS+B

)2 ke
TB

( N, N, )1/2

Os— )

TS+B TB
S+B B\2
TS+B TB

I

N;: measured counts during the
source+background measurement.

N,: measured counts during the background-only
measurement.

S: measured count-rate during the
source+background measurement.

B: measured count-rate during the background -
only measurement.

If we now assume that a fixed total time T = T, g + Ty is available to carry out both
measurements, the above uncertainty can be minimized by optimally choosing the fraction
of T allocated to T, 5 (or Tp). We square Eq. (3.53) and differentiate

S+ B

S+B

7 Alsip~ T2 dTp

= O

and set dog=0 to find the optimum condition. Also, because T is a constant,
dTg, g + dTz = 0.The optimum division of time is then obtained by meeting the condition

—

TS +B
TB

\/ S
opt

+ B

B

(3.54)

o
o
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