Physics 101: Lecture 04

Kinematics + Dynamics

Today’s lecture will cover Textbook Chapter 4

If you are new to the course, please read the course description on the course web page (and email policy from Lecture 1 note)!
Review

Kinematics: Description of Motion

- **Position**
- **Displacement**
- **Velocity** \(v = \frac{Dx}{Dt} \)
 - average
 - instantaneous
- **Acceleration** \(a = \frac{Dv}{Dt} \)
 - average
 - instantaneous
- **Relative velocity**: \(v_{ac} = v_{ab} + v_{bc} \)
• Which x vs t plot shows positive acceleration?

89% got this correct!!!!

“This shows that more distance is being covered per second as the graph proceeds. This means that the speed of the car is increasing which means a positive acceleration.”

This is x(t) graph, not v(t)
Equations for Constant Acceleration
(text, page 113-114)

- \(x = x_0 + v_0 t + \frac{1}{2} at^2 \)
- \(v = v_0 + at \)
- \(v^2 = v_0^2 + 2a(x-x_0) \)
- \(\Delta x = v_0 t + \frac{1}{2} at^2 \)
- \(\Delta v = at \)
- \(v^2 = v_0^2 + 2a \Delta x \)

\[\bar{v} = (x - x_0) / t \]

\[x = x_0 + \bar{v} t \]

\[\bar{v} = (v_0 + \frac{1}{2} at) \]

\[x = x_0 + v_0 t + \frac{1}{2} at^2 \]

\[x = x_0 + (v_0 + \frac{1}{2} at)t \]
Kinematics Example

- A car is traveling 30 m/s and applies its breaks to stop after a distance of 150 m.
- How fast is the car going after it has traveled \(\frac{1}{2} \) the distance (75 meters)?

A) \(v < 15 \text{ m/s} \)
B) \(v = 15 \text{ m/s} \)
C) \(v > 15 \text{ m/s} \)

\[
\begin{align*}
\nu^2 &= \nu_o^2 + 2a \Delta x \\
a &= \frac{\nu_f^2 - \nu_o^2}{2(150)} = \frac{-30^2}{2(150)} \\
\nu_{75}^2 &= 30^2 + 2a(75) \\
\nu_{75}^2 &= 30^2 + 2 \left(\frac{-30^2}{2(150)} \right)(75) \\
\nu_{75}^2 &= 30^2 + \frac{1}{2}(-30^2) \\
\nu_{75} &= \sqrt{\frac{1}{2}30} = 21 \text{ m/s}
\end{align*}
\]
Acceleration ACT

A car accelerates uniformly from rest. If it travels a distance \(D \) in time \(t \) then how far will it travel in a time \(2t \) ?

A. \(D/4 \)
B. \(D/2 \)
C. \(D \)
D. \(2D \)
E. \(4D \) \(\text{Correct } x=1/2 \, at^2 \)

Follow up question: If the car has speed \(v \) at time \(t \) then what is the speed at time \(2t \) ?

A. \(v/4 \)
B. \(v/2 \)
C. \(v \)
D. \(2v \) \(\text{Correct } v=at \)
E. \(4v \)
Newton’s Second Law $F_{Net} = ma$

Position and velocity depend on history.

Net Force determines acceleration.
A force F acting on a mass m_1 results in an acceleration a_1. The same force acting on a different mass m_2 results in an acceleration $a_2 = 2a_1$. What is the mass m_2?

(A) $2m_1$ (B) m_1 (C) $1/2 m_1$

- $F_{\text{Net}} = ma$
- $F_{\text{Net}} = m_1a_1 = m_2a_2 = m_2(2a_1)$
- Therefore, $m_2 = m_1/2$

- Or in words...twice the acceleration means half the mass
A tractor T (m=300Kg) is pulling a trailer M (m=400Kg). It starts from rest and pulls with constant force such that there is a positive acceleration of 1.5 m/s². Calculate the horizontal thrust force on the tractor due to the ground.

X direction: Tractor

\[F_{Net} = ma \]
\[F_{Th} - T = m_{tractor}a \]
\[F_{Th} = T + m_{tractor}a \]

X direction: Trailer

\[F_{Net} = ma \]
\[T = m_{trailer}a \]

Combine:

\[F_{Th} = m_{trailer}a + m_{tractor}a \]
Net Force ACT

Compare F_{tractor}, the net force on the tractor, with F_{trailer}, the net force on the trailer from the previous problem.

A) $F_{\text{tractor}} > F_{\text{trailer}}$
B) $F_{\text{tractor}} = F_{\text{trailer}}$
C) $F_{\text{tractor}} < F_{\text{trailer}}$

\[SF = m \cdot a \]
\[F_{\text{tractor}} = m_{\text{tractor}} \cdot a \]
\[= (300 \text{ kg}) (1.5 \text{ m/s}^2) \]
\[= 450 \text{ N} \]

\[F_{\text{trailer}} = m_{\text{trailer}} \cdot a \]
\[= (400 \text{ kg}) (1.5 \text{ m/s}^2) \]
\[= 600 \text{ N} \]
Pulley Example

Two boxes are connected by a string over a frictionless pulley. Box 1 has mass 1.5 kg, box 2 has a mass of 2.5 kg. Box 2 starts from rest 0.8 meters above the table, how long does it take to hit the table.

• Compare the acceleration of boxes 1 and 2

A) $|a_1| > |a_2|$ B) $|a_1| = |a_2|$ C) $|a_1| < |a_2|$

1) $T - m_1 g = m_1 a_1$
2) $T - m_2 g = -m_2 a_1$

2) $T = m_2 g - m_2 a_1$
1) $m_2 g - m_2 a_1 - m_1 g = m_1 a_1$

$a_1 = \frac{(m_2 - m_1)g}{(m_1 + m_2)}$
Pulley Example

Two boxes are connected by a string over a frictionless pulley. Box 1 has mass 1.5 kg, box 2 has a mass of 2.5 kg. Box 2 starts from rest 0.8 meters above the table, how long does it take to hit the table.

\[a = \frac{(m_2 - m_1)g}{m_1 + m_2} \]

\[a = 2.45 \text{ m/s}^2 \]

\[\Delta x = v_0 t + \frac{1}{2} a t^2 \]

\[\Delta x = \frac{1}{2} a t^2 \]

\[t = \sqrt{\frac{2 \Delta x}{a}} \]

\[t = 0.81 \text{ seconds} \]

• Compare the acceleration of boxes 1 and 2

A) \(|a_1| > |a_2| \)
B) \(|a_1| = |a_2| \)
C) \(|a_1| < |a_2| \)
Summary of Concepts

• Constant Acceleration
 - \(x = x_0 + v_0 t + \frac{1}{2} at^2 \)
 - \(v = v_0 + at \)
 - \(v^2 = v_0^2 + 2a(x-x_0) \)

• \(F = ma \)
 - Draw Free Body Diagram
 - Write down equations
 - Solve

• Next time: textbook section 4.3, 4.5