Welcome to Physics 101! Lecture 01: Introduction to Forces

- Forces
- Kinematics
- Energy/Momentum
- Rotations
- Fluids
- Waves/Sound
- Thermodynamics

Meet the Lecturer

• Lecturer

@uiuc.edu

Subject: Physics 101

• Office Hours

 Physics 101 URL: http://online.physics.uiuc.edu/ courses/phys101/fall07

Course Format (Spiral Learning)

• Lecture Preflights	50
• Homework	100
• Lab	150
 Discussion 	100
→quizzes; drop lowest 1	
• Hour Exams (3 x 100)	300
• Final Exam	300
	1000

Grading Scale

- 950-1000 A+
- 920-949 A
- 900-919 A-
- 880-899 B+
- 860-879 B
- 835-859 B-

- 810-834 C+
- 780-809 C
- 750-779 C-
- 720-749 D+
- 690-719 D
- 610-689 D-
- <610 F

Reading & Lecture Preflight

- Need to complete PreLecture for Preflight
- Answer preflights 50/1000 points
 - → Due 6:00 am day of lecture.
 - \rightarrow 1 points for honest attempt at preflight.
 - →Everyone gets 2 points for today!

P101 Lectures

- Participation is key!
 - →Come to lecture prepared!

- Not everything you need for exams!
 →Concepts, Connections, Motivation
 →Comprehensive Text
 →Calculations Homework + Discussion
 →Hands-On Lab
- Taking Notes
 - →Lecture notes available for lecture.
 - \rightarrow Some key pieces for you to fill in.

P101 Homework

- All web based, immediate feedback
- 100% if done before 6:00 am deadline
- 90% credit until following Tuesday
- 0% after that
- To be safe, keep 5 significant figures!
- First one is due
- Second one *also* due _____ !

P101 Labs

• First lab is

• No "dropped" labs..... Don't miss one!

Physics 101: Lecture 01, Pg 8 18

Discussion Sections

- Director:
- Start: Tuesday Aug 28 !
- Quiz during last 20 minutes of section
- 10 minutes late: ☺
- Drop lowest quiz

• Problem: You are too smart!

- Physics is DIFFERENT
- Describe large number of "complicated" observations with a few simple ideas
- Exams don't have same problems, but do have same IDEAS

Newton's Laws of Motion

- 1. If the sum of all external forces on an object is zero, then its speed and direction will not change. Inertia
- 2. If a nonzero net force is applied to an object its motion will change F=ma
- 3. In an interaction between two objects, the forces that each exerts on the other are equal in magnitude and opposite in direction.

Forces in P101

- Non-Contact ---- Gravity ($F = G \text{ m } M / r^2$)
 - → $G = 6.7 \times 10^{-11} \text{ m}^3 / (\text{kg s}^2)$
 - →Earth: Mass = $6x10^{24}$ kg, radius = 6.4×10^{6} m.
- Contact (fundamentally E+M)
 - →Normal: Perpendicular to surface
 - → Friction: Parallel to surface
 - →Anything touching the object
 - » Rope: Tension
 - \gg Spring F = -kx

Example Weight of Object

- Calculate the gravitational force on a 3 kg book held 1 meter above the surface of the earth.
 - $F = G M m / r^2$

Gravitational ACT

- If the book is raised 10 meters above the surface of the earth, the gravitational force on the book will
- A) 100 times strongerB) 10 times strongerC) Same
- D) 10 times weaker

E) 100 times weaker

Physics 101: Lecture 27, Pg 15

Contact Forces: Friction

• Magnitude of frictional force (parallel to surfaces) is proportional to the normal force.

$$\rightarrow f_{kinetic} = \mu_k N$$

 \Rightarrow f_{static} <= μ_s N

 $\boldsymbol{\mu}_k$ coefficient of Kinetic friction

 μ_s coefficient of Static friction

- Be Careful!
 - → Static friction <=, can be any value up to $\mu_s N$
 - →Direction always opposes motion

Free Body Diagrams

- Choose Object (book)
- Label coordinate axis
- Identify All Forces
 - →Hand (to right)
 - →Gravity (down)
 - →Normal (table, up)
 - →Friction (table, left)

Summary

- Newton's Laws of Motion
 - →Inertia
 - →F=ma
 - → Pairs
- Forces:
 - →Non-Contact: Gravity
 - →Contact: Friction and Normal
- Free Body Diagrams
 - →Each direction is independent
- Friction opposes motion, parallel to surface
 - →Kinetic $f = \mu_k N$
 - \Rightarrow Static $f \leq \mu_s N$