Physics 101: Lecture 19 Elasticity and Oscillations

Physics 101: Lecture 19, Pg 1

Overview

- Springs (review)
 - →Restoring force proportional to displacement
 - \Rightarrow F = k x (Hooke's law)
 - $\rightarrow U = \frac{1}{2} k x^2$
- Today
 - → Simple Harmonic Motion
 - → Harmonic motion vs. circular motion

Springs

• Hooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.

$$\Rightarrow F_X = -kx$$

Where *x* is the displacement from the relaxed position and *k* is the constant of proportionality.

Springs

• Hooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.

$$\Rightarrow F_X = -kx$$

Where *x* is the displacement from the relaxed position and *k* is the constant of proportionality.

Potential Energy in Spring

• Force of spring is Conservative

→Work done only depends on initial and final position

→Define Potential Energy
$$U_{\text{spring}} = \frac{1}{2} \text{ k x}^2$$

Springs ACT

- Hooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.
 - → $F_X = -kx$ Where x is the displacement from the relaxed position and k is the constant of proportionality.

What is force of spring when it is stretched as shown below.

A)
$$F > 0$$
 B) $F = 0$ C) $F < 0$

Simple Harmonic Motion

• Vibrations

→Vocal cords when singing/speaking

- → String/rubber band
- Simple Harmonic Motion
 → Restoring force proportional to displacement
 → Springs F = -kx
 → Motion is a sine or cosine wave!

Spring ACT II

A mass on a spring oscillates up & down with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the magnitude of the acceleration of the block biggest?

- 1. When x = +A or -A (i.e. maximum displacement)
- 2. When x = 0 (i.e. zero displacement)
- 3. The acceleration of the mass is constant

Simple Harmonic Motion: Anatomy

$$X=A; v=0; a=-a_{max} a = F/m = -kx/m$$

$$X=0; v=-v_{max}; a=0$$

$$X=-A; v=0; a=a_{max}$$

$$X=0; v=v_{max}; a=0$$

$$X=A; v=0; a=-a_{max}$$

Energy

• A mass is attached to a spring and set to motion. The maximum displacement is x=A

 $\Rightarrow \Sigma W_{nc} = \Delta K + \Delta U$ $0 = \Delta K + \Delta U \implies$ total energy is constant \rightarrow Energy = $\frac{1}{2}$ k x² + $\frac{1}{2}$ m v² PE_{s} At maximum displacement x=A, v = 0Energy = $\frac{1}{2}$ k A² + 0 \rightarrow At zero displacement x = 0Energy = $0 + \frac{1}{2} m v_m^2$ X Since Total Energy is same $\frac{1}{2} k A^2 = \frac{1}{2} m v_m^2$ $v_m = \sqrt{(k/m)} A$ X

Preflight 1

A mass on a spring oscillates up & down with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the speed of the block biggest?

- 1. When x = +A or -A (i.e. maximum displacement)
- 2. When x = 0 (i.e. zero displacement)

3. The speed of the mass is constant

Preflight 3

A mass on a spring oscillates up & down with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the total energy (K+U) of the mass and spring a maximum? (Ignore gravity).

- 1. When x = +A or -A (i.e. maximum displacement)
- 2. When x = 0 (i.e. zero displacement)
- 3. The energy of the system is constant.

SHM and Circles

Physics 101: Lecture 19, Pg 13

What does *moving in a circle* have to do with moving back & forth *in a straight line* ??

Simple Harmonic Motion:

- $x(t) = [A]cos(\omega t)$ $x(t) = [A]sin(\omega t)$
- $v(t) = -[A\omega]sin(\omega t)$ OR $v(t) = [A\omega]cos(\omega t)$ $a(t) = -[A\omega^2]cos(\omega t)$ $a(t) = -[A\omega^2]sin(\omega t)$
- $x_{max} = A$ $v_{max} = A\omega$ $a_{max} = A\omega^2$

Period = T (seconds per cycle) Frequency = f = 1/T (cycles per second) Angular frequency = $\omega = 2\pi f = 2\pi/T$ Natural freq. for spring: $\omega = \sqrt{(k/m)}$

A 3 kg mass is attached to a spring (k=24 N/m). It is stretched +5 cm. At time t=0 it is released and oscillates.

Which equation describes the position as a function of
time x(t) =A) $5 \sin(\omega t)$ B) $5 \cos(\omega t)$ C) $24 \sin(\omega t)$ D) $24 \cos(\omega t)$ E) $-24 \cos(\omega t)$

A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates.

What is the total energy of the block spring system?A) 0.03 JB) 0.05 JC) 0.08 J

A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates.

What is the maximum speed of the block?A) 0.45 m/sB) 0.23 m/sC) 0.14 m/s

A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates.

How long does it take for the block to return to x=+5cm? A) 1.4 s B) 2.2 s C) 3.5 s

Summary

• Springs

$$\Rightarrow F = -kx$$

 $\Rightarrow U = \frac{1}{2} k x^{2}$
 $\Rightarrow \omega = \sqrt{(k/m)}$

Simple Harmonic Motion
→Occurs when have linear restoring force F= -kx
→ x(t) = [A] cos(ωt) or [A] sin(ωt)
→v(t) = -[Aω] sin(ωt) or [Aω] cos(ωt)
→a(t) = -[Aω²] cos(ωt) or -[Aω²] sin(ωt)

Physics 101: Lecture 19, Pg 20 50

Young's Modulus

- Spring F = -k x
 →What happens to "k" if cut spring in half?
 →A) decreases B) same C) increases
- k is inversely proportional to length!
- Define
 - \Rightarrow Strain = $\Delta L / L$
 - \Rightarrow Stress = F/A
- Now
 - \rightarrow Stress = Y Strain
 - \rightarrow F/A = Y Δ L/L
 - \Rightarrow k = Y A/L from F = k x
- Y (Young's Modulus) independent of L