

Physics 101: Lecture 20 Elasticity and Oscillations

Today's lecture will cover Textbook Chapter 10.5-10.10

Tuned mass damper (pendulum) in Taipei 101

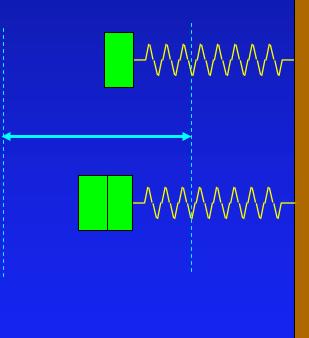
Review Energy in SHM

• A mass is attached to a spring and set to motion. The maximum displacement is x=A \rightarrow Energy = U + K = constant! $= \frac{1}{2} k x^{2} + \frac{1}{2} m v^{2}$ \rightarrow At maximum displacement x=A, v = 0 PE_{S} Energy = $\frac{1}{2}$ k A² + 0 \rightarrow At zero displacement x = 0 $Energy = 0 + \frac{1}{2} mv_m^2$ $\frac{1}{2}$ k A² = $\frac{1}{2}$ m V_m² $v_m = sqrt(k/m) A$ \rightarrow Analogy with gravity/ball m

Kinetic Energy ACT

In Case 1 a mass on a spring oscillates back and forth. In Case 2, the mass is doubled but the spring and the amplitude of the oscillation is the same as in Case 1. In which case is the maximum kinetic energy of the mass the biggest?

A. Case 1 B. Case 2 C. Same



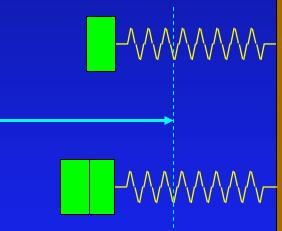
Potential Energy ACT

In Case 1 a mass on a spring oscillates back and forth. In Case 2, the mass is doubled but the spring and the amplitude of the oscillation is the same as in Case 1. In which case is the maximum potential energy of the mass and spring the biggest?

A. Case 1

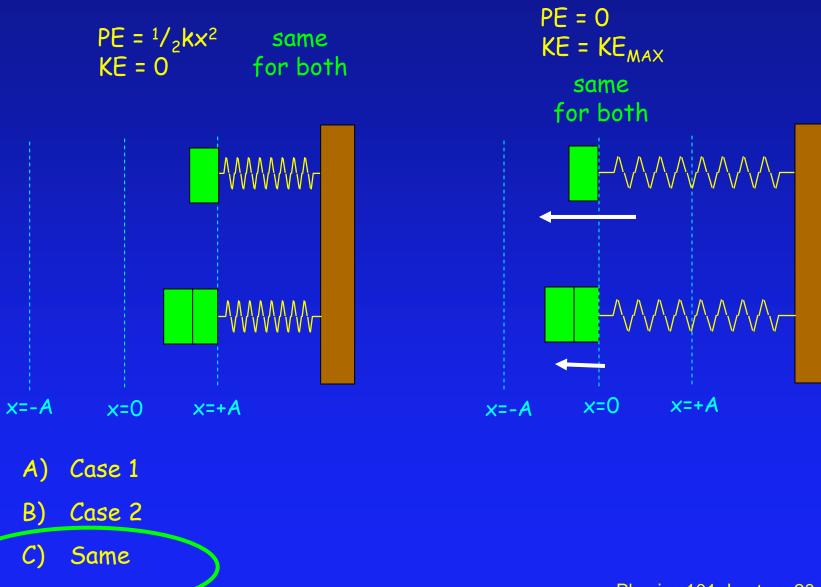
B. Case 2

C. Same



Look at time of maximum displacement x = AEnergy = $\frac{1}{2} k A^2 + 0$ Same for both!

Kinetic Energy ACT



Velocity ACT

In Case 1 a mass on a spring oscillates back and forth. In Case 2, the mass is doubled but the spring and the amplitude of the oscillation is the same as in Case 1. Which case has the largest maximum velocity?

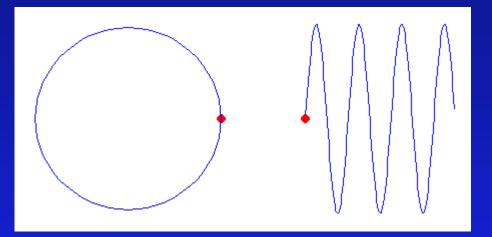
1. Case 1 2. Case 2 3. Same

-///////-

Same maximum Kinetic Energy

 $K = \frac{1}{2} m v^2$ smaller mass requires larger v

Review: Simple Harmonic Motion



Period = T (seconds per cycle) Frequency = f = 1/T (cycles per second) Angular frequency = $\omega = 2\pi f = 2\pi/T$

Simple Harmonic Motion: Quick Review

 $x(t) = [A]cos(\omega t)$ $x(t) = [A]sin(\omega t)$ $v(t) = -[A\omega]sin(\omega t)$ OR $v(t) = [A\omega]cos(\omega t)$ $a(t) = -[A\omega^2]cos(\omega t)$ $a(t) = -[A\omega^2]sin(\omega t)$

 $x_{max} = A$ $v_{max} = A\omega$ $a_{max} = A\omega^2$ Period = T (seconds per cycle) Frequency = f = 1/T (cycles per second) Angular frequency = $\omega = 2\pi f = 2\pi/T$

Period T of a Spring

• Simple Harmonic Oscillator $\Rightarrow \omega = 2 \pi f = 2 \pi / T$ $\Rightarrow x(t) = [A] \cos(\omega t)$ $\Rightarrow v(t) = -[A\omega] \sin(\omega t)$ $\Rightarrow a(t) = -[A\omega^2] \cos(\omega t)$

> Demos: A,m,k dependence

• Draw FBD write F=ma

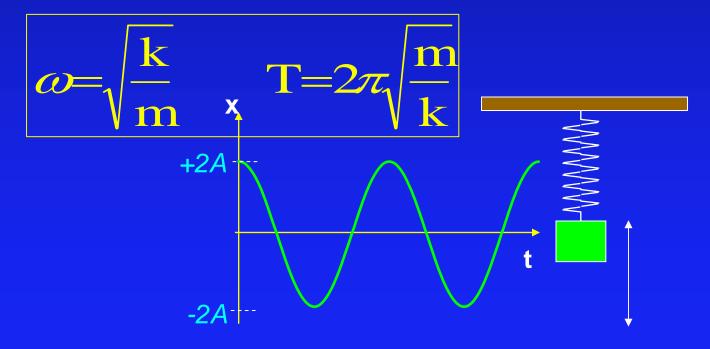
k x = m a -k A = m a_{max} -k A = m (-A ω^2) A ω^2 = (k/m) A ω = sqrt(k/m)

Period ACT

If the amplitude of the oscillation (same block and same spring) is doubled, how would the period of the oscillation change? (The period is the time it takes to make one complete oscillation)

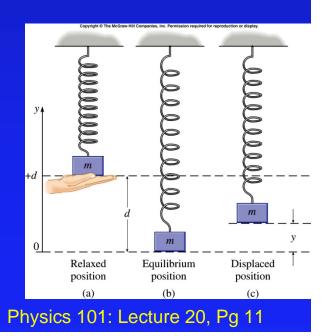
A. The period of the oscillation would double.B. The period of the oscillation would be halved

C. The period of the oscillation would stay the same *CORRECT*



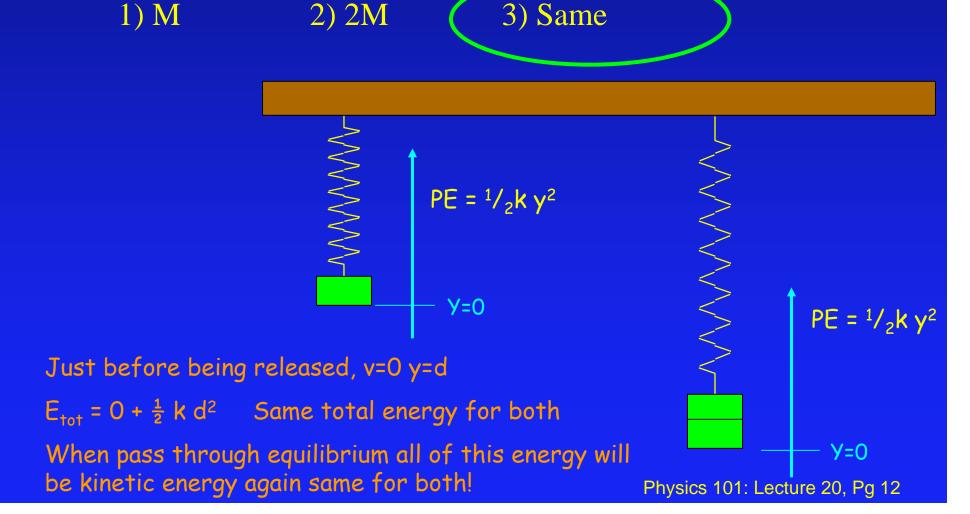
Vertical Mass and Spring

- If we include gravity, there are two forces acting on mass. With mass, new equilibrium position has spring stretched d
 - ⇒ ΣF_y = 0
 kd mg = 0
 d = mg/k Let this point be y=0
 ⇒ ΣF = ma
 k(d-y) mg = ma
 -k y = ma
 Same as horizontal! SHO
 New equilibrium position y=-d



Vertical Spring ACT

If the springs were vertical, and stretched the same distance d from their equilibrium position and then released, which would have the largest maximum kinetic energy?



Pendulum Motion

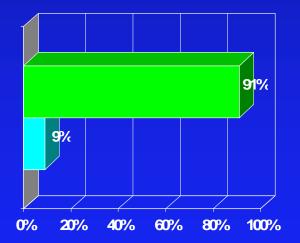
• For small angles \rightarrow T = mg \rightarrow T_x = -mg (x/L) Note: F proportional to x! $\Rightarrow \Sigma F_x = m a_x$ $-mg(x/L) = m a_x$ $a_x = -(g/L) x$ \rightarrow Recall for SHO $a = -\omega^2 x$ $\omega = \operatorname{sqrt}(g/L)$ $T = 2 \pi \operatorname{sqrt}(L/g)$ X Period does not depend on A, or m!

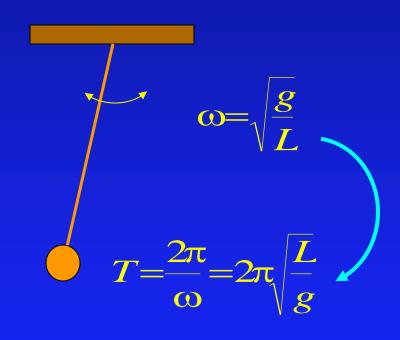
mg

Preflight 1

Suppose a grandfather clock (a simple pendulum) runs slow. In order to make it run on time you should:

- 1. Make the pendulum shorter \leftarrow CORRECT
- 2. Make the pendulum longer



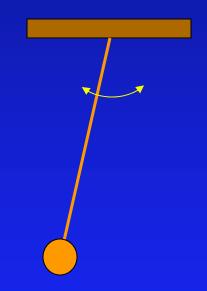


Elevator ACT

A pendulum is hanging vertically from the ceiling of an elevator. Initially the elevator is at rest and the period of the pendulum is **T**. Now the pendulum accelerates upward. The period of the pendulum will now be

A. greater than TB. equal to T

C. less than T



A pendulum is hanging vertically from the ceiling of an elevator. Initially the elevator is at rest and the period of the pendulum is **T**. Now the pendulum accelerates upward. The period of the pendulum will now be. If you are accelerating upward your weight is the same as if g had

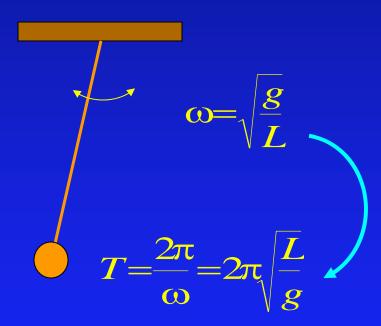
- 1. increased
- 2. same
- 3. decreased

"Effective g" is larger when accelerating upward (you feel heavier)

Elevator ACT

A pendulum is hanging vertically from the ceiling of an elevator. Initially the elevator is at rest and the period of the pendulum is **T**. Now the pendulum accelerates upward. The period of the pendulum will now be

- 1. greater than T
- 2. equal to T
- 3. less than T \leftarrow CORRECT

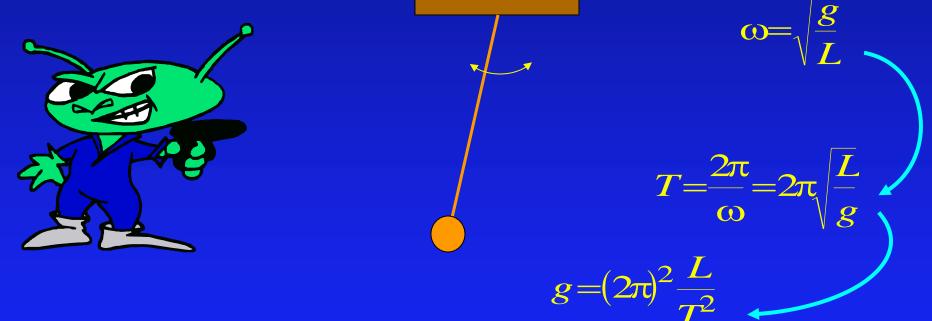


"Effective g" is larger when accelerating upward

(you feel heavier)

Preflight

Imagine you have been kidnapped by space invaders and are being held prisoner in a room with no windows. All you have is a cheap digital wristwatch and a pair of shoes (including shoelaces of known length). Explain how you might figure out whether this room is on the earth or on the moon



make a pendulum with the shoelace and shoes and use the wristwatch to determine the length of each period.

Summary

• Simple Harmonic Motion \rightarrow Occurs when have linear restoring force F= -kx \rightarrow x(t) = [A] cos(ω t) \rightarrow v(t) = -[A\omega] sin(\omega t) \rightarrow a(t) = -[A ω^2] cos(ω t) Springs \rightarrow F = -kx \rightarrow U = $\frac{1}{2}$ k x² $\rightarrow \omega = \operatorname{sqrt}(k/m)$ • Pendulum (Small oscillations) $\rightarrow \omega = \operatorname{sqrt}(L/g)$