

Physics 101: Lecture 13 Rotational Kinetic Energy and Rotational **Inertia**

Overview of Semester

- Newton's Laws
 - $\rightarrow \Sigma F = m a$
- Work-Energy
 - $\rightarrow \Sigma$ F = m a multiply both sides by d
 - $\rightarrow \Sigma$ W = Δ KE Energy is "conserved"
 - → Useful when know Work done by forces
- Impulse-Momentum
 - $\rightarrow \Sigma$ F = m a multiply both sides by Δt
 - $\rightarrow \Sigma I = \Delta p$ Momentum is "conserved"
 - → Useful when know about EXTERNAL forces
 - → Works in each direction independently

Linear and Angular Motion

	Linear	Angular
Displacement	X	θ
Velocity	V	ω
Acceleration	a	α
Inertia	m	I
KE	½ m v ²	Today!
N2L	F=ma	
Momentum	p = mv	

Comment on axes and sign (i.e. what is positive and negative)

Whenever we talk about rotation, it is implied that there is a rotation "axis".

This is usually called the "z" axis (we usually omit the z subscript for simplicity).

Counter-clockwise (increasing θ) is usually called positive.

Clockwise (decreasing θ) is usually called negative. [demo]

Energy ACT/demo

- When the bucket reaches the bottom, it's potential energy has decreased by an amount mgh. Where has this energy gone?
- A) Kinetic Energy of bucket
- B) Kinetic Energy of flywheel
- C) Both 1 and 2.

At bottom, bucket has zero velocity, energy must be in flywheel!

Physics 101: Lecture 13, Pg 5

Rotational Kinetic Energy

• Consider a mass M on the end of a string being spun around in a circle with radius r and angular frequency (a) [demo]

- \rightarrow Mass has speed $v = \omega r$
- → Mass has kinetic energy

$$> K = \frac{1}{2} M v^2$$

$$\Rightarrow$$
 = $\frac{1}{2}$ M ω^2 r²

 Rotational Kinetic Energy is energy due to circular motion of object.

Rotational Inertia I

Tells how much "work" is required to get object spinning. Just like mass tells you how much "work" is required to get object moving.

$$\rightarrow$$
 K_{tran} = $\frac{1}{2}$ m v² Linear Motion

$$\rightarrow$$
 K_{rot} = $\frac{1}{2}$ I ω^2 Rotational Motion

•
$$I = \sum m_i r_i^2$$
 (units kg m²)

Note! Rotational Inertia (or "Moment of Inertia") depends on what you are spinning about (basically the r_i in the equation).

Rotational Inertia Table

• For objects with finite number of masses, use $I = \Sigma m r^2$. For "continuous" objects, use table below (p. 263 of book).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.									
Table 8.1									
Rotational Inertia for Uniform Objects with Various Geometrical Shapes									
Shape		Axis of Rotation	Rotational Inertia	Shape		Axis of Rotation	Rotational Inertia		
Thin hollow cylindrical shell (or hoop)	R	Central axis of cylinder	MR ²	Solid sphere	-R-	Through center	² / ₅ MR ²		
Solid cylinder (or disk)		Central axis of cylinder	$\frac{1}{2}MR^2$	Thin hollow spherical shell	R	Through center	$\frac{2}{3}MR^2$		
Hollow cylindrical shell or disk	Top view	Central axis of cylinder	$\frac{1}{2}M(a^2+b^2)$	Thin rod		Perpendicular to rod through end	$\frac{1}{3}ML^2$		
				Rectangular plate	b	Perpendicular to plate through center	$\frac{1}{12}M(a^2+b^2)$		

Merry Go Round

Four kids (mass m) are riding on a (light) merry-go-round rotating with angular velocity $\omega=3$ rad/s. In case A the kids are near the center (r=1.5 m), in case B they are near the edge (r=3 m). Compare the kinetic energy of the kids on the two rides.

Further mass is from axis of rotation, greater KE it has.

[strength contest]

Physics 101: Lecture 13, Pg 9

Inertia Rods

Two batons have equal mass and length. Which will be "easier" to spin

- A) Mass on ends
- B) Same
- C) Mass in center

 $I = \Sigma m r^2$ Further mass is from axis of rotation, greater moment of inertia (harder to spin)

Preflight: Rolling Race (Hoop vs Cylinder)

A solid and hollow cylinder of equal mass roll down a ramp with height h. Which has greatest KE at bottom?

"Both start with same PE so they both end with same KE."

Preflight: Rolling Race (Hoop vs Cylinder)

A solid and hollow cylinder of equal mass roll down a ramp with height h. Which has greatest speed at the bottom of the ramp?

"Well, I don't see how rolling things down a ramp would make me a dare-devil, thrill seeker..." "Evel Knievel must be 'rolling' in his grave at such a travesty"

Main Ideas

- Rotating objects have kinetic energy
 - \rightarrow KE = $\frac{1}{2}$ I ω^2
- Moment of Inertia $I = \sum mr^{2}$
 - Depends on Mass
 - Depends on axis of rotation
- Energy is conserved but need to include rotational energy too: $K_{rot} = \frac{1}{2} I \omega^2$

Massless Pulley Example

Consider the two masses connected by a pulley as shown. Use conservation of energy to calculate the speed of the blocks after m₂ has dropped a distance h. Assume the pulley is massless.

$$\sum W_{NC} = \Delta K + \Delta U$$

$$U_{\it initial} + K_{\it initial} = U_{\it final} + K_{\it final}$$

$$0 + 0 = -m_2gh + \frac{1}{2}m_1v^2 + \frac{1}{2}m_2v^2$$

$$2m_2gh = m_1v^2 + m_2v^2$$

$$v = \sqrt{\frac{2m_2gh}{m_1 + m_2}}$$

Note: Tension does positive work on 1 and negative work on 2. Net work (on 1 and 2) by tension is ZERO.

Consider the two masses connected by a

Consider the two masses connected by a pulley as shown. If the pulley is massive, after m2 drops a distance h, the blocks will be moving

- B) the same speed as
- C) slower than

Slower because some energy goes into spinning pulley!

if it was a massless pulley

$$U_{\it initial} + K_{\it initial} = U_{\it final} + K_{\it final}$$

$$m_2gh = +\frac{1}{2}m_1v^2 + \frac{1}{2}m_2v^2 + \frac{1}{4}Mv^2$$

$$0 = -m_2gh + \frac{1}{2}m_1v^2 + \frac{1}{2}m_2v^2 + \frac{1}{2}I\omega^2$$

$$m_2gh = +\frac{1}{2}m_1v^2 + \frac{1}{2}m_2v^2 + \frac{1}{2}\left(\frac{1}{2}MR^2\right)\left(\frac{v}{R}\right)^2$$

$$v = \sqrt{\frac{2m_2gn}{m_1 + m_2 + M/2}}$$

Summary

• Rotational Kinetic Energy $K_{rot} = \frac{1}{2} I \omega^2$

• Rotational Inertia $I = \sum m_i r_i^2$

• Energy Still Conserved!