EXAM II

Physics 101: Lecture 14 Torque and Equilibrium

Today's lecture will cover Textbook Chapter 8.2-8.4

Hour Exam 1 Results

How will I do in the course?

Score, max grade, median grade, min grade, \# exams from ONE earlier semester

```
40-44 D-, F, F N:03
45-49 C, D-, D- N:02
50-54 C-, D-, F N: 17
55-59 B-, D+, D- N: 12
60-64 B, C-, D- N: 32
65-69 B+, C, F N:46
70-74 A-, C+, D N:60
75-79 A, B, D- N:41
80-84 A, B, D- N:51
85-89 A+, B+, C- N: 55
90-94 A+, A, D- N: 57
95-99 A+, A, B+ N: 17
```

Email me to discuss this.
You can also come to my office today
133 Loomis between 3 pm and 5 pm.

Rotary motor in biology \#1

F1-ATPase

Coverslip coated with Ni-NTA

Rotary motor in biology \#2

Bacterial
 flagellum

Review

$\left\ulcorner\right.$ Rotational Kinetic Energy $\mathrm{K}_{\text {rot }}=1 / 2 \mathrm{I} \omega^{2}$

Rotational Inertia $\mathrm{I}=\Sigma \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}{ }^{2}$

「Energy Still Conserved!

Today

r Torque

You Know Torque!

〔 A meter stick is suspended at the center. If a 1 kg weight is placed at $\mathrm{x}=0$. Where do you need to place a 2 kg weight to balance it?
A) $x=25 \quad$ B) $x=50$ C) $x=75$
D) $x=100$
E) 1 kg can't balance a 2 kg weight.

Torque

「 Rotational effect of force. Tells how effective force is at twisting or rotating an object.
$\left\ulcorner\tau=+-r F_{\text {perpendicular }}=r F \sin \theta\right.$
\square Units N m
\square Sign: CCW rotation is positive

ACT

The picture below shows three different ways of using a wrench to loosen a stuck nut. Assume the applied force F is the same in each case.
In which of the cases is the torque on the nut the biggest?
A. Case 1
B. Case $2 \longleftarrow$ CORRECT
C. Case 3

ACT 2

The picture below shows three different ways of using a wrench to loosen a stuck nut. Assume the applied force F is the same in each case.

In which of the cases is the torque on the nut the smallest?
A. Case 1
B. Case 2
C. Case $3 \longleftarrow$ CORRECT

Torque Example and ACT

A person raises one leg to an angle of 30 degrees. An ankle weight (89 N) attached a distance of 0.84 m from her hip. What is the torque due to this weight?

1) Draw Diagram
2) $\tau=F r \sin \theta$

$$
=\operatorname{Fr} \sin (90-30)=65 \mathrm{Nm}
$$

If she raises her leg higher, the torque due to the weight will
A) Increase
B) Same
C) Decrease

Equilibrium Acts

〔 A rod is lying on a table and has two equal but opposite forces acting on it. What is the net force on the rod?
A) Up

> B) Down

C) Zero

$$
\begin{gathered}
Y \text { direction: } \Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{ma}_{\mathrm{y}} \\
+\mathrm{F}-\mathrm{F}=0
\end{gathered}
$$

「 Will the rod move? A) Yes B) No
Yes, it rotates!

Equilibrium

C Conditions for Equilibrium
$\square \Sigma \mathrm{F}=0 \quad$ Translational EQ (Center of Mass)
$\square \Sigma \tau=0 \quad$ Rotational EQ (True for any axis!)
» Choose axis of rotation wisely!
© A meter stick is suspended at the center. If a 1 kg weight is placed at $\mathrm{x}=0$. Where do you need to place a 2 kg weight to balance it?
A) $x=25$
B) $x=50$
C) $x=75$
D) $x=100$
E) 1 kg can't balance a 2 kg weight.

$$
\begin{aligned}
& \Sigma \tau=0 \\
& 9.8(0.5)-(19.6) d=0 \\
& d=25
\end{aligned}
$$

Static Equilibrium and Center of Mass

C Gravitational Force Weight = mg
\square Acts as force at center of mass

$$
r_{c m}=\frac{\sum r_{i} m_{i}}{\sum m_{i}}
$$

\square Torque about pivot due to gravity $\tau=$ mgd (non-zero!)
\square Object not in static equilibrium pivot

Static Equilibrium

A method to find center of mass of an irregular object

Preflight

The picture below shows two people lifting a heavy log. Which of the two people is supporting the greatest weight?

1. The person on the left is supporting the greatest weight \longleftarrow CORRECT
2. The person on the right is supporting the greatest weight
3. They are supporting the same weight

"assume r for $F 1$ (person on the left to the log) is $1 / 4 R$, then after calculation i get F1=2F2"
"The guy on the left has to support more weight because he is further in and has to support more of the board."

Preflight

The picture below shows two people lifting a heavy log. Which of the two people is supporting the greatest weight?

1. The person on the left is supporting the greatest weight \longrightarrow CORRECT
2. The person on the right is supporting the greatest weight
3. They are supporting the same weight

Look at torque about center:

$$
+\mathrm{F}_{\mathrm{R}} \mathrm{~L}-\mathrm{F}_{\mathrm{L}} \mathrm{~L} / 2=0
$$

$F_{\mathrm{R}}=1 / 2 \mathrm{~F}_{\mathrm{L}}$

Preflight

Most difficult concepts:

"deciding where to make your point of origin or axis"
"difference between...force and torque" [demo]
"How the Illini did so well on defense against Penn State." [33-13]
"how to find the signs when putting into the equation"
"studying biochem while completing these physics assignments"
"torque" "Torque sounds so ominous" "all the equations"

Homework 8 Hints

A 75 kg painter stands at the center of a $50 \mathrm{~kg}, 3$ meter plank. The supports are 1 meter in from each edge. Calculate the force on support A.

1) Draw FBD
2) $\Sigma F=0 \quad F_{A}+F_{B}-m g-M g=0$
3) Choose pivot
4) $\Sigma \tau=0$

$-F_{A} * 1+F_{B}^{*} 0^{*}+m g^{*} 0.5+M g^{*} 0.5=0$
$F_{A}=0.5 \mathrm{mg}+0.5 \mathrm{Mg}=612.5$ Newtons

Homework 8 Hints

If the painter moves to the right, the force exerted by support A B) Unchanged C) Decreases

Homework 8 Hints

How far to the right of support B can the

 painter stand before the plank tips?

A
B
Just before board tips, force from A becomes zero

1) Draw FBD
2) $\Sigma F=0 \quad F_{B}-m g-M g=0$
3) Choose pivot
4) $\Sigma \tau=0$
$F_{B}{ }^{*} 0+m g^{*} 0.5-M g^{\star} x=0$
$0.5 \mathrm{~m}=\times \mathrm{M}$

Equilibrium Example

A 50 kg diver stands at the end of a 4.6 m diving board. Neglecting the weight of the board, what is the force on the pivot 1.2 meters from the end?

1) Draw FBD
2) Choose Axis of rotation
3) $\Sigma \tau=0 \quad$ Rotational EQ

$$
\begin{aligned}
& \mathrm{F}_{1}(1.2)-\mathrm{mg}(4.6)=0 \\
& \mathrm{~F}_{1}=4.6(50 * 9.8) / 1.2 \\
& \mathrm{~F}_{1}=1880 \mathrm{~N}
\end{aligned}
$$

4) $\Sigma \mathrm{F}=0 \quad$ Translational EQ

$$
\begin{aligned}
& \mathrm{F}_{1}-\mathrm{F}_{2}-\mathrm{mg}=0 \\
& \mathrm{~F}_{2}=\mathrm{F}_{1}-\mathrm{mg}=1390 \mathrm{~N}
\end{aligned}
$$

Power (Rate of Work)

$\ulcorner\mathrm{P}=\mathrm{W} / \Delta \mathrm{t}$
\square Units: Joules/Second = Watt
rHow much power does it take for a (70 kg) student to run up the stairs in 141 Loomis (5 meters) in 7 sec?
$\mathrm{P}=\mathrm{W} / \mathrm{t}$
$=m g h / \dagger$
$=(70 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~m}) / 7 \mathrm{~s}$
$=490 \mathrm{~J} / \mathrm{s}$ or 490 Watts

Work done by torque

Coverslip coated with Ni-NTA
$p \mathrm{~N}=10^{-12}$ Newton
$n m=10^{-9}$ meter

(and $20 \mu \mathrm{M}$) ATP, the rotational rates were consistent with a constant frictional torque (the drag coefficient \times the rotational rate) of $\sim 40 \mathrm{pN} \cdot \mathrm{nm}$ (red line in Figure 2a), indicating that the subcomplex produced this much of torque irrespective of the frictional load. This torque times $2 \pi / 3, \sim 80 \mathrm{pN} \cdot \mathrm{nm}$, is the work done in one-third of a revolution. On the other hand, the free energy of hydrolysis of one ATP, $\Delta G_{\text {ATP }}$, is $\sim 80 \mathrm{pN} \cdot \mathrm{nm}$ under physiological conditions (Stryer, 1995). Thus, if one ATP is hydrolyzed per 120° revolution as implicated in the Boyer's rotational catalysis model (Boyer and Kohlbrenner, 1981; Boyer, 1997), the efficiency of the $\alpha_{3} \beta_{3} \gamma$ subcomplex is $\sim 100 \%$.

Work Done by Torque

r Recall W $=\mathrm{F} \mathrm{d} \cos \theta$

「For a wheel
\square Work: $\mathrm{W}=\mathrm{F}_{\text {tangential }} \mathrm{d}$

$$
\begin{aligned}
& =F_{\text {tangential }} 2 \pi r[\theta /(2 \pi)] \\
& =F_{\text {tangential }} r \theta \\
& =\tau \theta
\end{aligned}
$$

\square Power: $\mathrm{P}=\mathrm{W} / \mathrm{t}=\tau \quad \theta / \mathrm{t}$

$$
=\tau \omega
$$

Homework 8 Hints

「Bar \& Weights

Using $F_{\text {TOT }}=0: \quad T=m_{1} g+m_{2} g+M g$
allows you to solve for m_{1}

Summary

\ulcorner Torque $=$ Force that causes rotation
$\square \tau=\mathrm{Fr} \sin \theta$
\square Work done by torque $\mathrm{W}=\tau \theta$

- Equilibrium
$\square \Sigma \mathrm{F}=0$
$\square \Sigma \tau=0$
» Can choose any axis.

