EXAM III

Physics 101: Lecture 19 Elasticity and Oscillations

Overview

- Springs (review)
 - ☐ Restoring force proportional to displacement
 - \Box F = -k x (often a good approximation)
 - $\prod U = \frac{1}{2} k x^2$
- C Today
 - ☐ Young's Modulus (where does k come from?)
 - **☐** Simple Harmonic Motion
 - Springs Revisited

Springs

Phooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.

$$\Box F_{\mathbf{X}} = -k x$$

Where x is the displacement from the relaxed position and k is the constant of proportionality.

Springs ACT

- Flooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.
 - \Box $F_X = -k x$ Where x is the displacement from the relaxed position and k is the constant of proportionality.

What is force of spring when it is stretched as shown below.

A)
$$F > 0$$

B) $F = 0$

relaxed position

$$F_x = -kx < 0$$

$$x > 0$$

Springs

Phooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.

$$\Box F_X = -k x$$

Where x is the displacement from the relaxed position and k is the constant of proportionality.

Potential Energy in Spring

⁶ Hooke's Law force is Conservative

- Work done only depends on initial and final position
- ☐ Define Potential Energy $U_{\text{spring}} = \frac{1}{2} \text{ k } \text{ x}^2$

Young's Modulus

- Spring F = -k x [demo]
 - ☐ What happens to "k" if cut spring in half?
 - □ A) decreases B) same C) increases
- © k is inversely proportional to length!
- Define
 - \square Strain = $\Delta L / L$
 - \square Stress = F/A
- Now
 - \square Stress = Y Strain
 - \Box F/A = Y Δ L/L
 - $\Box k = Y A/L \quad from |F| = k x$
- [©] Y (Young's Modules) independent of L

Simple Harmonic Motion

- Vibrations
 - □ Vocal cords when singing/speaking
 - □ String/rubber band
- ^C Simple Harmonic Motion
 - ☐ Restoring force proportional to displacement
 - \square Springs F = -kx

Spring ACT II

A mass on a spring oscillates back & forth with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the magnitude of the acceleration of the block biggest?

- 1. When x = +A or -A (i.e. maximum displacement) \leftarrow CORRECT
- 2. When x = 0 (i.e. zero displacement)
- 3. The acceleration of the mass is constant

F=ma

Springs and Simple Harmonic Motion X=0

$$X=A$$
; $v=0$; $a=-a_{max}$

$$X=0; v=-v_{max}; a=0$$

$$X=-A$$
; $v=0$; $a=a_{max}$

$$X=0; v=v_{max}; a=0$$

$$X=A$$
; $v=0$; $\alpha=-\alpha_{max}$

***Energy ***

- A mass is attached to a spring and set to motion. The maximum displacement is x=A
 - $\square \ \Sigma W_{nc} = \Delta K + \Delta U$
 - $\Box \qquad 0 = \Delta K + \Delta U \text{ or Energy U+K is constant!}$

Energy =
$$\frac{1}{2}$$
 k x² + $\frac{1}{2}$ m v²

 \Box At maximum displacement x=A, v = 0

Energy =
$$\frac{1}{2}$$
 k $A^2 + 0$

 \square At zero displacement x = 0

Energy =
$$0 + \frac{1}{2} \text{ mv}_{\text{m}}^2$$

Since Total Energy is same

$$\frac{1}{2} \text{ k A}^2 = \frac{1}{2} \text{ m v}_{\text{m}}^2$$

$$v_m = sqrt(k/m) A$$

Physics 101: Lecture 19, Pg 11

Preflight 1+2

A mass on a spring oscillates back & forth with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the speed of the block biggest?

- 1. When x = +A or -A (i.e. maximum displacement)
- 2. When x = 0 (i.e. zero displacement) \leftarrow CORRECT
- 3. The speed of the mass is constant

"At x=0 all spring potential energy is converted into kinetic energy and so the velocity will be greatest at this point."

Preflight 3+4

A mass on a spring oscillates back & forth with simple harmonic motion of amplitude *A*. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the total energy (K+U) of the mass and spring a maximum? (Ignore gravity).

- 1. When x = +A or -A (i.e. maximum displacement)
- 2. When x = 0 (i.e. zero displacement)
- 3. The energy of the system is constant CORRECT

What does *moving in a circle* have to do with moving back & forth *in a straight line* ??

SHM and Circles

Simple Harmonic Motion:

$$x(t) = [A]\cos(\omega t)$$

$$x(t) = [A]\sin(\omega t)$$

$$v(t) = -[A\omega]\sin(\omega t)$$

$$OR v(t) = [A\omega]\cos(\omega t)$$

$$a(t) = -[A\omega^2]\cos(\omega t)$$

$$a(t) = -[A\omega^2]\sin(\omega t)$$

$$x_{max} = A$$
 Period = T (seconds per cycle)

$$v_{max} = A\omega$$
 Frequency = f = 1/T (cycles per second)

$$a_{max} = A\omega^2$$
 Angular frequency = $\omega = 2\pi f = 2\pi/T$

For spring:
$$\omega^2 = k/m$$

A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates.

Which equation describes the position as a function of time x(t) =

A) $5 \sin(\omega t)$ B) $5 \cos(\omega t)$ C) $24 \sin(\omega t)$ D) $24 \cos(\omega t)$ E) $-24 \cos(\omega t)$

We are told at t=0, x = +5 cm. $x(t) = 5 \cos(\omega t)$ only one that works.

A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates.

What is the total energy of the block spring system?

$$E = U + K$$

At
$$t=0$$
, $x = 5$ cm and $v=0$:

$$E = \frac{1}{2} k x^2 + 0$$

$$= \frac{1}{2} (24 \text{ N/m}) (5 \text{ cm})^2$$

$$= 0.03 J$$

A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates.

What is the maximum speed of the block?

A)
$$.45 \text{ m/s}$$

$$C) .14 \text{ m/s}$$

$$E = U + K$$

When x = 0, maximum speed:

$$E = \frac{1}{2} \text{ m } v^2 + 0$$

$$.03 = \frac{1}{2} 3 \text{ kg } \text{v}^2$$

$$v = .14 \text{ m/s}$$

A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates.

How long does it take for the block to return to x=+5cm?

$$\omega = \operatorname{sqrt}(k/m)$$

$$= \operatorname{sqrt}(24/3)$$

Returns to original position after 2 π radians

$$T = 2 \pi / \omega = 6.28 / 2.83 = 2.2$$
 seconds

Summary

Springs

- $\Box F = -kx$
- $\Box U = \frac{1}{2} k x^2$
- $\square \omega = \operatorname{sqrt}(k/m)$

[©] Simple Harmonic Motion

- \square Occurs when have linear restoring force F = -kx
- $\Box x(t) = [A] \cos(\omega t)$ or $[A] \sin(\omega t)$
- $\Box v(t) = -[A\omega] \sin(\omega t)$ or $[A\omega] \cos(\omega t)$
- $\Box a(t) = -[A\omega^2] \cos(\omega t) \text{ or } -[A\omega^2] \sin(\omega t)$