
Physics 101 Discussion Week 14 Explanation (2011)

D14-1 Colliding Rods

Q0. Obviously, this is about (linear) thermal expansion. What is the basic relation between

the length increase ∆L of a rod of material with the linear thermal expansion coefficient α,

when temperature is increased by ∆T?

∆L = α∆TL.

1. gap

Q1. In this problem the gap is narrowed from both sides. What is the total increase ∆LT

of the length of both the materials (this is of course identical to the amount that the gap is

narrowed), if temperature increase is ∆T (K)?

The total expansion ∆LT is

∆LT = ∆Lbrass + ∆LAl = (2αbrass + αAl)∆T.

Q2. What is the required ∆T to close the gap of size 1.3 × 10−3 m?

When ∆LT is equal to the gap size, the gap is closed. Therefore, we need ∆LT =

1.3 × 10−3 m. This implies ∆T = 1.3 × 10−3/(2 × 19 × 10−6 + 23 × 10−6) =

1.3 × 10−3/61 × 10−6 = 21.31 (in K).

Q3. It is said that the initial temperature is 80◦F. We must change the unit to ◦C. Perform

this unit conversion and finish the problem.

80 ◦F= Tc
◦C = (5/9)(80 − 32) = 26.67 ◦C. The final temperature must be

26.7 + 21.3 = 48.0 ◦C.
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2. longer rail

Q4. What is the relation between ∆L and L?

They are proportional. Therefore, the answer to this question is obvious: Longer.

D14-2 Expanding block

Q0. What is the relation between the volume change due to thermal expansion of a hollow

box and that of a solid block of the same shape (that is, you cannot see any difference in

their appearances) made from the same material ?

They are exactly the same, because the very thin surface of the block must

accommodate the thermally expanded block without any wrinkle nor tear.

Q1. Let us work out the general relation between the linear thermal expansion coefficient

α and the (volume) thermal expansion coefficient β: β = 3α, where 3 is the spatial dimen-

sionality.

Consider a block of size Lx × Ly × Lz. The volume is initially V (T ) = LxLyLz.

If the temperature is raised by ∆T , the linear dimension, say, in the x-direction

becomes Lx+∆L = Lx(1+α∆T ). Therefore, the volume at temperature T +∆T

is

V (T + ∆T ) = LxLyLz(1 + α∆T )3 = V (T )(1 + 3α∆T ) + very small terms.1

Therefore, by definition, β = 3α.

1. ∆V

Q2. Using this result, get ∆V .

T = 30 ◦C and ∆T = 70 ◦C. Therefore, ∆V = V (T )× 3α∆T = 1.5× 0.9× 0.7×
(3 × 16 × 10−6 × 70) = 0.945 × 3.36 × 10−3 = 3.175 × 10−3 m3.

2. slot

1As you know, (1+x)3 = 1+3x+3x2 +x3. Consider, for example, x = 1/100. x2 = 10−4, and x3 = 10−6.
Thus, we may ignore higher order terms: (1 + x)3 ≅ 1 + 3x, and 1.013 ≅ 1.03.
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The similarity is maintained, because for this material thermal expansion is uni-

form and isotropic. No change.

D14-3 Neon tank

Q0. This Discussion concerns the ideal gas law and the concept of the atomic (molecular)

mass.

(i) What is the significance of the ideal gas law?

(i’) What is the ideal gas?

(ii) What does the atomic or molecular mass MA mean?

(i) The ideal gas law implies PV = NkBT = nRT , where

kB is the Boltzmann constant and R is the gas constant: kB = R/NA;

P is the pressure,

V is the volume,

N = nNA is the number of particles in the volume V (n is the amount of

particles in moles), and

T is the absolute temperature.

(i’) The ‘ideal gas’ implies a collection of non-interacting atoms (or molecules). As

a mechanical system, it has only the kinetic energy, whose magnitude is indicated

by T . The ideal gas law holds for every system consisting of N non-interacting

particles.2

Thus, if we know P , V , and T of an ideal gas, we can count the number of

particles in the volume.

(ii) The weight of NA = 6.02× 1023 (Avogadro’s constant3) atoms (or molecules)

in grams is called the atomic (molecular) mass of the pure substance.

If a substance’s atomic or molecular mass is MA, it implies that MA g (NOT kg)

of the substance contains exactly NA = 6.02×1023 atoms or molecules, or 1 mole

of the substance has a mass MA (g).

1. n

In this case P , V and T are given, so we can immediately obtain n.

Since R = 8.31 J/mol·K, n = PV/RT = 5 × 105 × 2/(8.31 × 220) = 547 moles.

2to TA: of course, we need a sufficiently high temperature.
3It is the number of atoms contained in 12 g of 12C.
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It is worth remembering that 1 mole of a gas occupies roughly 20 ℓ (liters) under 1 atm

at around the room temperature (roughly 300 K). 1 atm ≅ 100 kPa, so 1 mole roughly

corresponds to 4 ℓ at 500 kPa. 2000/4 = 500 moles is a reasonable answer. (1 m3 = 1000 ℓ.)

2. M

Q1. What is the mass of 1 mole of Ne?

Since its atomic mass is 20.2, the mass of 1 mole Ne = 20.2 g.

So, the answer to the question is · · ·

20.2 × 547 = 11, 049 g (NOT in kg). That is, about 11 kg.

3. K

Q2. What is the relation between the average kinetic energy 〈K〉 of (the translational motion

of) a molecule and the gas temperature T?

〈K〉 =
3

2
kBT.

We cannot exactly derive the above relation, but it is not hard to see T ∝ 〈v2〉 ∝ 〈K〉.
(i) P is due to the impulse given by a particle bouncing back from the container wall.

(ii) A particle with speed v contributes the impulse proportional to v.

(iii) P also depends on how many particles bounce back from the wall per unit time, but

(iv) the number of particles hitting the wall per unit time is also proportional to v, so

(v) the contribution of particles with speed v to P must be proportional to v2 ∝ K.

Thus, P ∝ 〈K〉.

So, you can calculate 〈K〉 easily as · · ·

〈K〉 = (3/2)kBT = (3/2) × 1.38 × 10−23 × 220 = 4.554 × 10−21 J.

4. average speed

Q3. What is the relation between the average kinetic energy 〈K〉 and the root-mean-square

velocity vrms of a molecule? What do you need to know?

〈K〉 =
3

2
kBT =

1

2
mv2

rms,

where m is the mass of a single Ne atom.
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Q4. Thus, we need the mass m of a single atom/molecule. Assuming that you know m, get

the formula for vave as a function of T .

vrms =

√
3kBT

m
=

√
2〈K〉
m

.

Q5. What is the mass m of a single neon atom?

Since a collection of NA atoms has mass 20.2 g, m = 20.2 × 10−3/6.02 × 1023

kg (notice that we have converted the unit from g to kg); the mass m of a neon

atom is 0.020/6.022 × 1023 = 3.32 × 10−26 kg.

Q6. Use the formula obtained in Q4 and finish the question 4.

vrms =
√

2 × 4.554 × 10−21/3.32 × 10−26 ≅ 520m/s.

Q7 [extra]. Why is this speed rather close to the sound speed in the neon gas (at least you

can use it to estimate the order of the sound speed in Ne)?

For a sound wave to propagate, energy must be transported actually, but it is

carried by molecules (because the space between molecules is much larger than

their diameter), so the sound propagation speed is not very different from the

actual running speed of molecules.

5. heat

Q8. Suppose you wish to compute the energy needed to raise the temperature of a certain

quantity of a substance by ∆T , what do you need?

You need the heat capacity C of the substance of the required quantity.

Q9. To obtain the heat capacity C of the substance of the given quantity, what materials

constant (a quantity specific to each substance) do you need?

The specific heat (under a desired condition, say, under constant volume).

Q10. What is the specific heat of a monatomic gas under constant volume?
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The constant volume specific heat is 3R/2 per mole (as can be seen from the

formula for KEave = (3/2)RT ).

Q11. What is the heat capacity of the neon gas in the tank?

We have 547 moles, so the heat capacity of the gas is 547 × (3/2) × 8.31 = 6818

J/K.

Q12. What is the question you have been considering? Give the answer.

You are asked to calculate the needed thermal energy to raise the temperature:

Q = C∆T = 6818 × (660 − 220) = 3.0 × 106 J.

6. P2

Q13. Write down the equation connecting P2 and T2.

P2 = nRT2/V.

Never calculate P2 directly. Be (creatively) lazy.

Q14. Find P2/P1 in terms of the ratio of temperatures, and then finish the problem.

Obviously, P2/P1 = T2/T1, because the volume and the quantity of the neon gas

do not change. Therefore, P2 = (T2/T1)P1 = (660/220)5 × 105 = 1.5 × 106 Pa

(1.5 MPa).

7. energy ratio

Q15. What is the relation between 〈K〉 and T?

As we already discussed (derived) 〈K〉 ∝ T , which is worth remembering.

Q16. What is the ratio in terms of temperatures? Then, finish the solution.

〈K〉2/〈K〉1 = T2/T1, so the ratio is 3.

8. speed ratio

Q17. What is the relation between the root-mean-square velocity vrms and T?
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Since vrms ∝
√
〈K〉, vrms ∝

√
T .

Q18. What is the ratio in terms of temperatures? Then, finish the solution.

vrms2/vrms1 =
√

T2/T1, so the ratio is
√

3.

D14-4 Heat Capacity

This is a problem to calculate the final temperature Tf (◦C) reached by a compound system

whose components have different temperatures initially.

Q0. In this case, thermal energy is not converted into any other form of energy, so you may

think the total thermal energy is conserved. What do you need to relate the temperature

changes and the required thermal energies for the changes?

Heat capacities. (You must be able to tell its definition for a given system.)

Q1. What does the conservation of thermal energy imply? Or, what is the consequence of

the conservation of thermal energy?

If one part of the system loses energy, that energy must go to some other part

of the system. Energy cannot vanish. The total energy of the system remains

constant because it is isolated from the rest of the world.

Q2. We wish to calculate the gain of thermal energy by 18 cans of soda initially at T = 1
◦C. What is their total heat capacity?

18 × 0.35 × 3800 = 23940 J/K.

Q3. What is the gain of thermal energy by the soda cans (notice that ‘change’ is always

‘after’ − ‘before’)? Pretend you know Tf (◦C).

23940(Tf − 1).

Q4. Following a logic parallel to the above, calculate the gain of thermal energy by the

watermelon.
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Its heat capacity is 6.5×4186 = 27209 J/K. Therefore, the gain of thermal energy

by the watermelon is 27209(Tf −30). As you will see (and expect) this is actually

negative.

Q5. Now, apply the conservation of thermal energy to write down the formula for Tf , and

finish the problem.

thermal energy gain of soda cans + thermal energy gain of water melon = 0.

That is,

23940(Tf − 1) + 27209(Tf − 30) = 0.

Therefore, (23940 + 27209)Tf = 23940 × 1 + 27290 × 30. You might be able to

guess this relation immediately. Thus, Tf = 16.5 ◦C.

Before HE3 we will stop here.

D14-5 Conductivity

Q0. Suppose that heat flows through a long rod, and that the temperature at any point on

the rod is constant with time (different points on the rod may have different temperatures).

You choose a cross section at an arbitrary point along the rod, and study heat flow through

it. What is the relation between the flow coming from the left and that leaving to the right

(or vice versa)?

If, for example, more heat enters the point on the rod from the left than leaves

that point on the rod to the right, then thermal energy will begin to build up at

that point and the temperature there will have to go up. But if we know that

the temperature at that point is constant, then thermal energy cannot build up

at any point and the heat coming in must be equal to the heat going out.

1. T at P

Q1. This is a heat conduction problem. What is the general relation between the tempera-

ture difference ∆T and the heat flow (rate of heat transfer Q/t)?

The formula sheet tells us that Q/t = kA∆T/L, where A is the cross section and

L the length of the heat conducting rod.

That is, rate of heat transfer is proportional to the slope (gradient) of the tem-

perature.
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Q2. This is a stationary heat conduction problem, so the observation we made in Q0 must

apply. To apply this, we must compute the heat flow coming from the A side and that leaving

to the B side. To do this with the aid of the formula in Q1 we need the temperature TP
◦C

at P, which is unknown. But our strategy is always to pretend that we know everything we

need. What is the heat flow along A, assuming TP ?

k = 120 J/s·m·K, and ∆T = 100 − TP , so Q/t = 120(100 − TP )A/L (though A

and L are given, we do not need them for (1), so let us not write their numerical

values explicitly).

Q3. Do a similar thing on the B side, and then apply our conclusion at the beginning of

this problem.

The flow through B is, since k = 85 J/s·m·K and ∆T = TP , Q/t = 85TP A/L.

The two obtained heat flows must be identical for TP not to change:

120(100 − TP )A/L = 85TP A/L

or 120(100 − TP ) = 85TP . That is, TP = 12000/205 = 58.5 ◦C.

2. melting ice

Q4. To melt ice at 0 ◦C, what do you need?

Latent heat.

It is required to loosen the water molecules firmly registered in a crystal lat-

tice. This heat energy is consumed to increase the ‘potential energy’ of water

molecules. Since the temperature is solely determined by the kinetic energy,4

latent heat cannot change temperature.

Q5. What is the total energy required to melt 1 kg of ice to make 0 ◦C liquid water?

The latent heat of melting of water per 1 kg (under 1 atm at 0 ◦C) is on the

formula sheet: Lf,water = 33.5 × 104 J/kg. Thus, we need 33.5 × 104J.

Q6. Now, we need the absolute value of the heat flow Q/t along the rod. What is it?

4to TAs: Do not quibble. This is definitely OK for T > 100 K under the ordinary number density.
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You can use rod A or rod B, because we know both have identical heat flow rates,

but the B side is easier

Q/t = 85TP A/L = 85 × 58.5
0.05

1.2
= 207 J/s.

Find the needed time; finish the problem.

33.5 × 104/207 = 1618 s (27 min).

3. moved P

B conducts heat poorly, so it would take longer.

D14-6 Radiation

Q0. What is the formula we need?

eσT 4A.

This must be the thermal energy lost per second (i.e., the power loss).

Q1. The temperature of the filament must be constant. Then, what can you conclude about

the relation between the power supply and the power loss?

They must be identical.

Q3. Now, write down the power balance condition and finish the problem.

eσT 4A must agree with 100 W.

Since e = 1, 5.67 × 10−8 × 31004A = 100 or 5.236 × 106A = 100. That is,

A = 1.9 × 10−5m2.
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