Physics 101: Lecture 04

Kinematics + Dynamics

- Uniform acceleration
- Today's lecture will cover Textbook Chapter 4

Physics 101: Lecture 4, Pg 1

Review

- Kinematics : Description of Motion
 - **→**Position
 - → Displacement
 - \rightarrow Velocity $v = \Delta x / \Delta t$
 - » average
 - » instantaneous
 - \rightarrow Acceleration a = $\Delta v / \Delta t$
 - » average
 - » instantaneous
 - ightharpoonup Relative velocity: $v_{ac} = v_{ab} + v_{bc}$ Physics 101: Lecture 4, Pg 2

Preflight 4.1

•Which x vs t plot shows positive acceleration?

Newton's Second Law 2F=ma

Equations for Constant Acceleration (text, page 108)

•
$$x = x_0 + v_0 t + 1/2 at^2$$
 • $\Delta x = v_0 t + 1/2 at^2$

•
$$\Delta x = v_0 t + 1/2 a t^2$$

$$v = v_0 + at$$

$$\bullet$$
 $\Delta v = at$

•
$$v^2 = v_0^2 + 2a(x-x_0)$$
 • $v^2 = v_0^2 + 2a \Delta x$

$$v^2 = v_0^2 + 2a \Delta x$$

Kinematics Example

• A car traveling 30 m/s applies its breaks and stops after a distance of 150 m. How fast was the car going after it had traveled ½ the distance (75 meters)?

A)
$$v = 8 \text{ m/s}$$

B)
$$v = 15 \text{ m/s}$$

C)
$$v = 21 \text{ m/s}$$

Acceleration ACT

A car accelerates uniformly from rest. If it travels a distance D in time t then how far will it travel in a time 2t?

A. D/4

B. D/2

C. D

D. 2D

E. 4D

Follow up question: If the car has speed v at time t then what is the speed at time 2t?

A. v/4

B. v/2

C. v

D. 2v

E. 4v

ACT

• A force F acting on a mass m_1 results in an acceleration a_1 . The same force acting on a different mass m_2 results in an acceleration $a_2 = 2a_1$. What is the mass m_2 ?

Example:

A tractor T (m=300Kg) is pulling a trailer M (m=400Kg). It starts from rest and pulls with constant force such that there is a positive acceleration of 1.5 m/s². Calculate the pulling force of the tractor.

Net Force ACT

Compare $F_{tractor}$ the NET force (ΣF) on the tractor, with $F_{trailer}$ the NET force (ΣF) on the trailer from the previous problem.

- A) $F_{\text{tractor}} > F_{\text{trailor}}$
- \overline{B} $\overline{F}_{tractor} = \overline{F}_{trailor}$
- C) $F_{\text{tractor}} < F_{\text{trailor}}$

Pulley Example

- Two boxes are connected by a string over a frictionless pulley. Box 1 has mass 1.5 kg, box 2 has a mass of 2.5 kg. Box 2 starts from rest 0.8 meters above the table, how long does it take to hit the table.
- •Compare the acceleration of boxes 1 and 2

A)
$$|a_1| > |a_2|$$
 B) $|a_1| = |a_2|$

B)
$$|a_1| = |a_2|$$

C)
$$|a_1| < |a_2|$$

Summary of Concepts

Constant Acceleration

>
$$x = x_0 + v_0 t + 1/2 at^2$$

> $v = v_0 + at$
> $v^2 = v_0^2 + 2a(x-x_0)$

- F = m a
 - Draw Free Body Diagram
 - Write down equations
 - Solve