Physics 101: Lecture 13 Rotational Kinetic Energy and Inertia

Today's lecture will cover Textbook Section 8.1

Linear and Angular

	Linear	Angular
Displacement	X	θ
Velocity	V	ω
Acceleration	a	α
Inertia	m	I
KE	$\frac{1}{2}$ m v ²	Today!
N2L	F = ma	
Momentum	p = mv	

Energy ACT

- When the bucket reaches the bottom, its potential energy has decreased by an amount mgh. Where has this energy gone?
- A) Kinetic Energy of bucket
- B) Kinetic Energy of flywheel
- C) Both 1 and 2.

Physics 101: Lecture 13, Pg 3

Rotational Inertia, I

Tells how much "work" is required to get object spinning. Just like mass tells you how much "work" is required to get object moving.

$$\rightarrow$$
K_{tran} = $\frac{1}{2}$ m v² Linear Motion

$$\rightarrow$$
 K_{rot} = $\frac{1}{2}$ I ω^2 Rotational Motion

•
$$I = \sum m_i r_i^2$$
 (units kg m²)

Note! Rotational Inertia depends on what you are spinning about (basically the r_i in the equation).

Rotational Inertia Table

For objects with finite number of masses, use $I = \sum m r^2$. For "continuous" objects, use table below.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.									
Table 8.1									
Rotational Inertia for Uniform Objects with Various Geometrical Shapes									
Shape		Axis of Rotation	Rotational Inertia	Shape		Axis of Rotation	Rotational Inertia		
Thin hollow cylindrical shell (or hoop)	R	Central axis of cylinder	MR^2	Solid sphere	-R-	Through center	$\frac{2}{5}MR^2$		
Solid cylinder (or disk)	R	Central axis of cylinder	$\frac{1}{2}MR^2$	Thin hollow spherical shell	R	Through center	$\frac{2}{3}MR^2$		
Hollow cylindrical shell or disk	Top view	Central axis of cylinder	$\frac{1}{2}M(a^2+b^2)$	Thin rod		Perpendicular to rod through end	$\frac{1}{3}ML^2$		
				Rectangular plate	a d	Perpendicular to plate through center	$\frac{1}{12}M(a^2+b^2)$		

Merry Go Round

Four kids (mass m) are riding on a (light) merry-go-round rotating with angular velocity $\omega=3$ rad/s. In case A the kids are near the center (r=1.5 m), in case B they are near the edge (r=3 m). Compare the kinetic energy of the kids on the two rides.

Contest!

Physics 101: Lecture 13, Pg 7

Inertia Rods

Two batons have equal mass and length. Which will be "easier" to spin

- A) Mass on ends
- B) Same
- C) Mass in center

Rolling Race (Hoop vs Cylinder)

A hoop and a cylinder of equal mass roll down a ramp with height h. Which has greater KE at bottom?

C) Cylinder

Preflight Rolling Race (Hoop vs Cylinder)

A hoop and a cylinder of equal mass roll down a ramp with height h. Which gets to the bottom of the ramp first?

Main Ideas

Rotating objects have kinetic energy

$$\rightarrow$$
KE = $\frac{1}{2}$ I ω^2

- Moment of Inertia $I = \Sigma \text{ mr}^2$
 - Depends on Mass
 - Depends on axis of rotation
- Energy is conserved but need to include rotational energy too $K_{rot} = \frac{1}{2} I \omega^2$

Massless Pulley Example

Consider the two masses connected by a pulley as shown. Use conservation of energy to calculate the speed of the blocks after m₂ has dropped a distance h. Assume the pulley is massless.

Consider the two masses connected by a copyright © The McCaraw

Consider the two masses connected by a pulley as shown. If the pulley is massive, after m2 drops a distance h, the blocks will be moving

- A) faster than
- B) the same speed as
- C) slower than

if it was a massless pulley

Summary

Rotational Kinetic Energy $K_{rot} = \frac{1}{2} I \omega^2$

Rotational Inertia $I = \sum m_i r_i^2$

Energy Still Conserved!