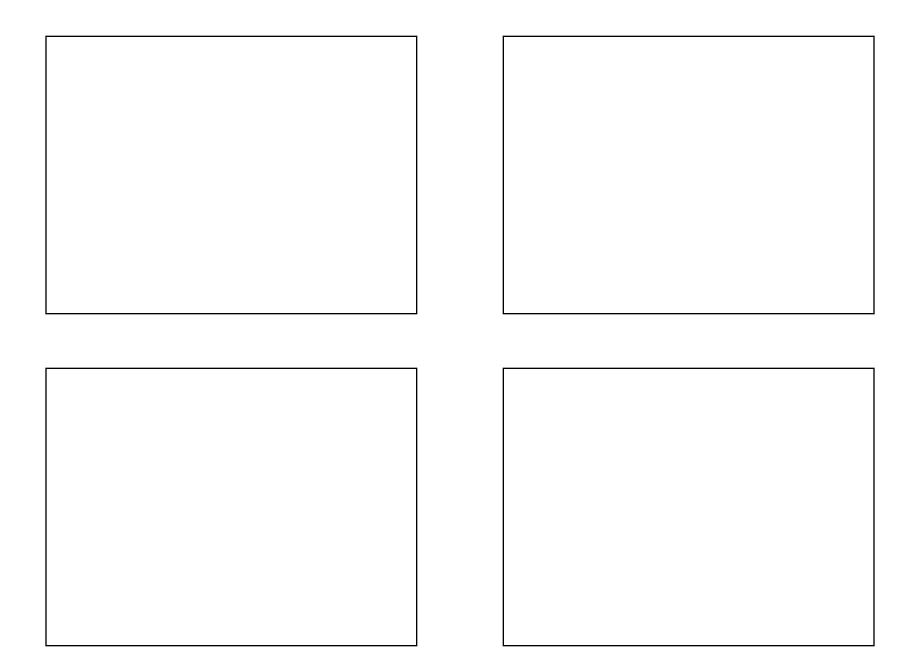
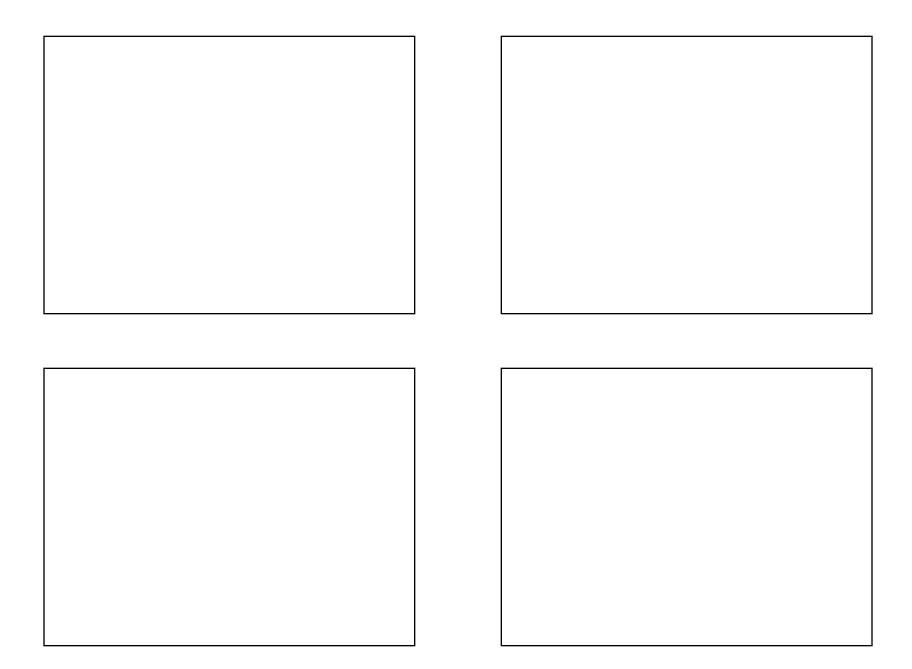
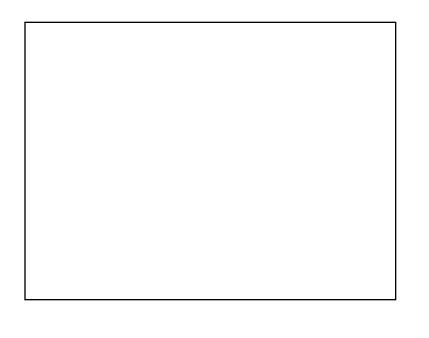
Physics 101: Lecture 11 Momentum and Impulse

Key Ideas


- Previous lectures: Work-Energy
 - ightharpoonupF_{Net} = m a multiply both sides by d
 - $\Rightarrow F_{\text{Net}} d= \text{m } a \text{ d} \quad (\text{note: } ad = \frac{1}{2} \Delta v^2 \text{ from } v^2 = v_o^2 + 2ad)$
 - ightharpoonupF_{Net} d= ½ m Δv^2
 - →Work-Kinetic Energy Thm:


»
$$W_{Net} = \Delta K$$
 OR $W_{non-cons} = \Delta E = \Delta (K + U)$


- This Time: Impulse-Momentum
 - ightharpoonupF_{Net} = m a
 - $ightharpoonup F_{\text{Net}} = m \Delta v / \Delta t \text{ (note: } a = \Delta v / \Delta t \text{)}$
 - ightharpoonupF_{Net} = Δ (mv)/ Δ t = Δ p/ Δ t
 - ightharpoonupF_{Net} $\Delta t = I_{Net} = \Delta p$ Define Impulse and Momentum

Momentum and Impulse

- \rightarrow Momentum $\mathbf{p} = \mathbf{m}\mathbf{v}$
 - » Momentum is a VECTOR
- →Impulse-Momentum Thm: $\mathbf{I} = \mathbf{F}\Delta \mathbf{t} = \Delta \mathbf{m} \mathbf{v}$
 - » Impulse is = change in momentum: $I = \Delta p$
 - » Impulse is also a vector because F is a vector
 - » If there is no impulse, momentum does not change (i.e., it is conserved)
- *How to determine when momentum conserved? When no external forces cause an Impulse

Momentum is Conserved!

- Momentum is "Conserved" when there is no external impulse, meaning it cannot be created nor destroyed
 - →Momentum can be transferred but if it is conserved, then $P_{tot,i} = P_{tot,f}$. Thus P_{tot} does not change with time *absent external forces*.
- Recall: Mech. Energy, E=K+U, conserved when there is **no external work** done on system).

These are 2 BIG IDEAS in physics

Impulse and Momentum Summary

 $F_{\text{Net}}\Delta t = \Delta p$

- For single object....
 - $ightharpoonup F_{Net} = 0 \Rightarrow$ momentum conserved ($\Delta p = 0$)
- For collection of objects ...
 - ightharpoonup $F_{Net} = 0 \Rightarrow \text{total momentum conserved } (\Delta P_{\text{tot}} = 0)$
 - → If there is F_{Net} then there is impulse, and momentum is NOT conserved—it changes.

Example

A mother and a daughter are ice skating. The mother (mass M=70 kg) is skating at 5 m/s toward her stationary daughter (mass m=40 kg). When she reaches her daughter she bear-hugs her daughter and both slide off together. What is the common speed of the mother and daughter right after the collision?

Big Idea: Conservation of momentum

Justification: Force between mother-daughter are internal forces. Thus no external impulse so momentum is conserved.

Plan: 1) Conserve momentum by setting P_{tot.i} equal to P_{tot.f}

2) Find the common speed of both after collision

Execution of plan:

1) $P_{i,tot} = P_{f,tot}$

What would change if the daughter had

1) $P_{i,tot} = P_{f,tot}$ what would charge if the daughter 2) $MV + m(0) = (M+m)V_{final}$ been initially moving toward mom

 $(70 \text{ kg})(5 \text{ m/s}) + 0 = (70 \text{ kg} + 40 \text{ kg}) \text{ V}_{\text{final}}$

Solve for V_{final}: $V_{\text{final}} = 3.18 \text{ m/s}$

Summary

- →Impulse $I = F\Delta t$
 - » Gives change in momentum $I = \Delta p$
- \rightarrow Momentum p = mv
 - » Momentum is VECTOR
 - » Momentum is conserved (when $F_{Net} = 0$, since there is no impulse to change momentum)
 - $\Sigma mv_{initial} = \Sigma mv_{final}$