

Overview of Semester

- Kinematics: 3 Eqns describing motion under cst a
- Newton's Laws
$\Rightarrow \mathrm{F}_{\text {Net }}=\mathbf{m} \boldsymbol{a}=\Delta(\mathrm{mv}) / \Delta \mathrm{t}=\Delta \mathrm{p} / \Delta \mathrm{t}$
- Work-Energy
$\Rightarrow \mathrm{F}_{\text {Net }}=\mathrm{m} a \quad$ multiply both sides by d
$\Rightarrow W_{\text {Net }}=\Delta K \quad$ Work-Kinetic Energy Theorem
$\Rightarrow W_{n c}=\Delta E=\Delta(K+U)$ Work by NC forces is ΔE
\Rightarrow Useful when know Work done by forces
- Momentum
$\Rightarrow \mathrm{F}_{\mathrm{Net}} \Delta \mathrm{t}=\Delta \mathrm{p} \quad$ If and only if $\mathrm{F}_{\text {Net }} \Delta \mathrm{t}=\mathrm{I}=0$ the next line holds
$\Rightarrow \mathrm{F}_{\text {Net }} \Delta \mathrm{t}=\mathrm{I}=0 \Rightarrow \Delta \mathrm{p}=0$ Momentum is "conserved"
\Rightarrow Both ideas apply in each direction independently

Page 2

Elastic Collisions with Gliders

- If one cart is moving and the other cart is stationary, and the two have an elastic collision where both momentum and kinetic energy are conserved, then from the prelecture you learned that:
$V_{A, \text { Final }}=V_{A, \text { Initial }}\left(\frac{\mathrm{M}_{A}-\mathrm{M}_{B}}{\mathrm{M}_{A}+\mathrm{M}_{B}}\right)$
- $V_{B, \text { Final }}=V_{A, \text { Initial }}\left(\frac{2 \mathrm{M}_{A}}{\mathrm{M}_{A}+\mathrm{M}_{B}}\right)$
- Demo

Center of Mass

$\vec{r}_{c m}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{\sum m_{i}}$ Center of Mass = Balance point
In practice do the above in x and y directions separately
$x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2+\ldots}}{\sum m_{i}} \quad y_{c m}=\frac{m_{1} y_{1}+m_{2} y_{2+\ldots}}{\sum m_{i}}$

Shown is a yummy doughnut. Where would you expect the center of mass of this breakfast of champions to be located?

Center of Mass

$P_{\text {tot }}=M_{\text {tot }} V_{c m}$
$\left(P_{\text {tot }}\right) / M_{\text {tot }}=V_{c m} \quad F_{\text {ext }} \Delta t=\Delta P_{\text {tot }}=M_{\text {tot }} \Delta V_{c m}$
So if $\mathrm{F}_{\text {ext }}=0$ then $\mathrm{V}_{\text {cm }}$ is constant
Also: $F_{\text {ext }}=M_{\text {tot }} a_{c m}$

[^0]

Summary

- Collisions and Explosions
- Draw "before", "after"
-Define system so that $\mathrm{F}_{\mathrm{ext}}=0$
-Set up axes
-Compute $\mathrm{P}_{\text {total }}$ "before"
-Compute $\mathrm{P}_{\text {total }}$ "after"
-Set them equal to each other
- If external force results in impulse, then $I=\Delta P$
- Center of Mass (Balance Point)

$$
\vec{r}_{c m}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{\sum m_{i}}
$$

- V_{cm} does not change in collisions

[^0]: Center of Mass of a system behaves in a SIMPLE way - moves like a point particle!

 - velocity of CM is unaffected by collision if $F_{\text {ext }}=0$
 (pork chop demo)

