

Summary

• Collisions and Explosions

•Draw "before", "after"

•Define system so that $F_{ext} = 0$

•Set up axes

- •Compute P_{total} "before"
- •Compute P_{total} "after"
- •Set them equal to each other
- If external force results in impulse, then $I=\Delta P$
- Center of Mass (Balance Point)

$$\vec{r}_{cm} = \frac{m_1 r_1 + m_2 r_2}{\sum m_i}$$

• V_{cm} does not change in collisions