

## **Strike**

## Reminders:

- Prelectures, checkpoints, lectures continue with no change.
- Please come to your discussion section. No quiz, no participation points.
- HW deadlines extended beyond strike (exactly how far beyond TBA). Continue to do HW so you don't get behind!
- Labs & pre-labs continue.
- Help Room has been set up in 204 Loomis. Open 9am-6pm.























## **Angular Acceleration** • Angular acceleration is the change in angular velocity $\omega$ divided by the change in time. $\overline{\alpha} = \frac{\omega_f - \omega_0}{\Delta t}$ • Example: If the speed of a roller coaster car is 15 m/s at the top of a 20 m loop, and 25 m/s at the bottom. What is the car's average angular acceleration if it takes 1.6 seconds to go from the top to the bottom? $\omega = \frac{V}{R}$ $\omega_f = \frac{25}{10} = 2.5$ $\omega_0 = \frac{15}{10} = 1.5$ $\overline{\alpha} = \frac{2.5 - 1.5}{1.6} = 0.64 \text{ rad/s}^2$

| Angular ki<br>(with compari                                   | inematic equations<br>son to 1-D kinematics            | )                                        |
|---------------------------------------------------------------|--------------------------------------------------------|------------------------------------------|
| Angular                                                       | Linear                                                 |                                          |
| α=constant                                                    | a=constant                                             | $\mathbf{X} \rightarrow \mathbf{\Theta}$ |
| $\omega = \omega_{o} + \alpha t$                              | $v = v_o + at$                                         | $v \rightarrow \omega$                   |
| $\theta = \theta_{o} + \omega_{o}t + \frac{1}{2}\alpha t^{2}$ | $x = x_0 + v_0 t + \frac{1}{2}at^2$                    |                                          |
|                                                               |                                                        | $a_t \rightarrow \alpha$                 |
| $\omega^2 = \omega_0^2 + 2\alpha \Delta\theta$                | $\mathbf{v}^2 = \mathbf{v_o}^2 + 2a \Delta \mathbf{x}$ |                                          |
| $x = R\theta$ $v = \omega R$                                  | $a_t = \alpha R$ $a_c = v^2/F$                         | 2                                        |

## **Linear and Angular Motion**

|                          | Linear              | Angular                          |
|--------------------------|---------------------|----------------------------------|
| Displacement             | Х                   | θ                                |
| Velocity                 | v                   | ω                                |
| Acceleration             | а                   | α                                |
| Inertia                  | m                   | I Today                          |
| KE                       | $\frac{1}{2} m v^2$ | $^{1}\!\!/_{2}I\omega^{2}$ Today |
| Newton's 2 <sup>nd</sup> | F=ma                | coming                           |
| Momentum                 | p = mv              | coming                           |









• Tells how "hard" it is to get an object rotating. Just like mass tells you how much "hard" it is to get an object moving.

 $\begin{array}{l} \bigstar K_{tran} = \frac{1}{2} \text{ m } v^2 \quad \text{Linear Motion} \\ \bigstar K_{rot} = \frac{1}{2} I \omega^2 \quad \text{Rotational Motion} \end{array}$ 

- $I = \sum m_i r_i^2$  (units kg m<sup>2</sup>; I plays role of mass in rotational motion)
- Note! Rotational Inertia (or "Moment of Inertia") depends on what axis you are rotating about (basically the r<sub>i</sub> in the equation).







