Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium

Strike (Day 10)

- Prelectures, checkpoints, lectures continue with no change.
- Take-home quizzes this week. See Elaine Schulte's email.
- HW deadlines now re-set. HW6 DUE TOMORROW! HW7 & 8 DUE NEXT THURSDAY!
- Labs & pre-labs continue.
- Help Room is 204 Loomis. Open 9am-6pm, M-F.

Exam 2: Mar. 28-30 covers Lectures 9-15 Sign up for exam ASAP!

Linear and Angular Motion

	Linear	Angular	
Displacement	X	θ	x = <i>R</i> θ
Velocity	V	ω	$v = \omega R$
Acceleration	a	α	$a_t = \alpha F$
Inertia	m	Ι	
KE	$^{1}/_{2}mv^{2}$	$\frac{1}{2}I\omega^2$	
Force	F	τ (torque)	
Newton's 2 nd	F=ma	τ=Ια	today
Momentum	p = mv	coming	

Torque Definition

- A TORQUE is a *force x distance* that causes rotation. It tells how effective a force is at twisting or rotating an object.
- τ = r F_{perpendicular} = r F sin θ
 Units N m
 Sign: CCW rotation is positive CW rotation is negative

Two ways to compute torque: 1. Put r and F vectors tail-to-tail and compute $\tau = rFsin\theta$.

2. Decompose F into components parallel and perpendicular to r, and take:

$\tau = rF_{\perp}$

If rotation is clockwise, torque is negative, and if rotation is counterclockwise torque is positive.

Note: If F and r are parallel or antiparallel, the torque is 0. (e.g., can't open a door if pushing or pulling toward the hinges)

Equilibrium

Conditions for Equilibrium

 \Rightarrow F_{Net} = ma = 0 Translational *a* of CM must be 0

 $\Rightarrow \tau_{\text{Net}} = I\alpha = 0$ Rotational α about any axis must be 0

» Choose axis of rotation wisely to make problems easier!

» But as long as you're consistent everything will be OK!

A meter stick is suspended at the center. If a 1 kg weight is placed at x=0. Where do you need to place a 2 kg weight to balance it?
A) x = 25 B) x=50 C) x=75 D) x=100
E) 1 kg can't balance a 2 kg weight.

Equilibrium: $a = 0, \alpha = 0$

• A rod is lying on a table and has two equal but opposite forces acting on it. The net force on the rod is:

Y direction: $F_{net y} = ma_y$

$$+F - F = 0 = ma_{x}$$

The rod has no *a* in linear direction, so it won't translate. However, the rod will have a non-zero torque, hence a non-zero α and will rotate.

Static Equilibrium and Center of Mass

- Gravitational Force Weight = mg
 - Acts as force at center of mass
 - Torque about pivot due to gravity $\tau = mgd$
 - Object not in static equilibrium

Static Equilibrium

Rotational Newton's 2nd Law

•
$$\tau_{\rm Net} = I \alpha$$

Torque is amount of twist provided by a force » Signs: positive = CCW

 \gg negative = CW

Moment of Inertia = rotational mass. Large I means hard to start or stop rotation.

Problems Solved Like Newton's 2nd
 Draw FBD

Write Newton's 2nd Law in linear and/or rotational form, then use algebra.

Falling weight & pulley example

- A mass *m* is hung by a string that is wrapped around a disk of radius *R* and mass M. The moment of inertia of the disk is *I*=1/2 *MR*². The string does not slip on the disk.
- What is the acceleration, a, of the hanging mass, m?
- What method should we use to solve this problem?

Either can be applied here in the sense that physics allows it, but Cons. of E gives you speed, and Newton's Second in angular form and linear form lets you solve for a, so we will use B.

Falling weight & pulley... (need to find a) **F**_{pivot} **Big Idea:** N#2 in linear form for m and angular form for disk. a **Justification**: N#2 good for finding a and t. **Plan:** 1. Draw a Free-Body Diagram 2. For the hanging mass apply $F_{Net} = ma$ Mg and for disk apply $\tau = I\alpha$ m 3. Relate a and α using $a = \alpha R$ mq (see slide 2) 4. Use algebra to solve 3 equations in 3 unknowns, T, a, α .

Falling weight & pulley... (need to find a)

a

2:
$$T - mg = -ma$$

 $TR \sin(90) = I\alpha$ (I=1/2 MR²
3: $a = \alpha R$

4: Use algebra to solve for a

Rolling

An object with mass *M*, radius *R*, and moment of inertia *I* rolls without slipping down a plane inclined at an angle θ with respect to horizontal. What is its acceleration?

 Consider CM motion and rotation about the CM separately when solving this problem

Rolling...

- Static friction *f* causes rolling. It is an unknown, so we must solve for it.
- First consider the free body diagram of the object and use $F_{NET} = Ma_{cm}$: In the *x* direction: $-Mg \sin \theta + f = -Ma_{cm}$

M

θ

θ

 \boldsymbol{R}

Mq

• Now consider rotation about the CM and use $\tau_{\text{Net}} = I\alpha$ realizing that $\tau = Rf \sin 90 = Rf$ and $a = \alpha R$

Rolling...

- We have 3 equations in 3 unknowns, a, α and f: From F=ma applied to CM: $-Mg \sin \theta + f = -Ma$ From $\tau = I\alpha$ applied about CM: $fRsin90 = fR = I\alpha$ From relationship between a and α : $R\alpha = a$
- Use algebra to combine these to eliminate *f*, and solve for *a*:

$$a = g \left(\frac{MR^2 \sin \theta}{MR^2 + I}\right)$$

For a sphere:

$$a = g \left(\frac{MR^2 \sin \theta}{MR^2 + \frac{2}{5}MR^2} \right) = \frac{5}{7}g \sin \theta$$

Work Done by Torque

• Recall W = F d $\cos \theta$

• For a wheel • Work: $W = F_{tangential} s$ $= F_{tangential} r \theta$ (s = r θ , θ in radians) $= \tau \theta$

Summary

• Torque = Force that causes rotation

- $\Rightarrow \tau = F r \sin \theta$
- →F=m*a* for rotation: τ =Iα.
- •Work done by torque $W = \tau \theta$
- Use F=ma, τ =I α to solve for *a*, α , tension, time. Use conservation of energy to solve for speed.
- Equilibrium
 - $\blacktriangleright \Sigma F = 0$
 - $\Rightarrow \Sigma \tau = 0$
 - » Can choose any axis or pivot around which to compute torques. Trick of the trade: If there is a force on the pivot, the torque it produces is 0!