Physics 101: Lecture 15 Torque, $\mathbf{F}=$ =ma for rotation, and Equilibrium

Strike (Day 10)

- Prelectures, checkpoints, lectures continue with no change.
- Take-home quizzes this week. See Elaine Schulte's email.
- HW deadlines now re-set. HW6 DUE TOMORROW! HW7 \& 8 DUE NEXT THURSDAY!
- Labs \& pre-labs continue.
- Help Room is 204 Loomis. Open 9am-6pm, M-F.

Exam 2: Mar. 28-30
covers Lectures 9-15
Sign up for exam ASAP!

Linear and Angular Motion

	Linear	Angular	$\begin{aligned} & x=R \theta \\ & v=\omega R \\ & a_{t}=\alpha R \end{aligned}$ today
Displacement	X	θ	
Velocity	v	ω	
Acceleration	a	α	
Inertia	m	I	
KE	$1 / 2 m v^{2}$	1/2I ω^{2}	
Force	F	τ (torque)	
Newton's $2^{\text {nd }}$	F=ma	$\tau=\mathbf{I} \alpha$	
Momentum	$\mathrm{p}=\mathrm{mv}$	coming	

Torque Definition

- A TORQUE is a force x distance that causes rotation. It tells how effective a force is at twisting or rotating an object.
- $\tau=r F_{\text {perpendicular }}=r \mathrm{~F} \sin \theta$ \Rightarrow Units Nm
\Rightarrow Sign: CCW rotation is positive

Two ways to compute torque:

1. Put r and F vectors tail-to-tail and compute

$$
\tau=\mathrm{rFsin} \theta
$$

2. Decompose F into components parallel and perpendicular to r , and take:

$$
\tau=\mathrm{rF}_{\perp}
$$

If rotation is clockwise, torque is negative, and if rotation is counterclockwise torque is positive.

Note: If F and r are parallel or antiparallel, the torque is 0 . (e.g., can't open a door if pushing or pulling toward the hinges)

Equillibibrium

- Conditions for Equilibrium
$\Rightarrow \mathrm{F}_{\text {Net }}=\mathrm{ma}=0 \quad$ Translational a of CM must be 0
$\Rightarrow \tau_{\text {Net }}=\mathrm{I} \alpha=0 \quad$ Rotational α about any axis must be 0
» Choose axis of rotation wisely to make problems easier!
» But as long as you're consistent everything will be OK!
- A meter stick is suspended at the center. If a 1 kg weight is placed at $x=0$. Where do you need to place a 2 kg weight to balance it?
A) $x=25$
B) $x=50$
C) $x=75$
D) $x=100$
E) 1 kg can't balance a 2 kg weight.

Compute torque about axis and set $=0$:

Equilibrium: $a=0, \alpha=0$

- A rod is lying on a table and has two equal but opposite forces acting on it. The net force on the rod is:

$$
\begin{aligned}
Y \text { direction: } F_{\text {net } y} & =m a_{y} \\
+F-F=0 & =m a_{y}
\end{aligned}
$$

- The rod has no a in linear direction, so it won't translate. However, the rod will have a nonzero torque, hence a non-zero α and will rotate.

Static Equililibrium and Center of Mass

- Gravitational Force Weight = mg
\Rightarrow Acts as force at center of mass
\Rightarrow Torque about pivot due to giavity $\tau=\mathrm{mgd}$
\Rightarrow Object not in static equilibrilum

Static Equilibrium

Torque about pivot $\neq 0$

Torque about pivot $=0$

A method to find center of mass of an irregular object

Rotational Newton's $2^{\text {nd }}$ Law

- $\tau_{\mathrm{Net}}=\mathrm{I} \alpha$
\Rightarrow Torque is amount of twist provided by a force » Signs: positive $=$ CCW » negative $=\mathrm{CW}$ \checkmark
\Rightarrow Moment of Inertia = rotational mass. Large I means hard to start or stop rotation.
- Problems Solved Like Newton's 2nd
\Rightarrow Draw FBD
\Rightarrow Write Newton's $2^{\text {nd }}$ Law in linear and/or rotational form, then use algebra.

Falling weight \& pulley example

- A mass m is hung by a string that is wrapped around a disk of radius R and mass M . The moment of inertia of the disk is $I=1 / 2 M R^{2}$. The string does not slip on the disk.
What is the acceleration, a, of the hanging mass, m ?
What method should we use to solve this problem?
A) Conservation of Energy (including rotational)
B) $\tau_{\text {Net }}=I a$ and $F=m a$

Either can be applied here in the sense that physics allows it, but
 Cons. of E gives you speed, and Newton's Second in angular form and linear form lets you solve for a, so we will use B.

Falling weight \& pullley... (need to filmd $\mid a)$

Big Idea: $\mathrm{N} \# 2$ in linear form for m and angular form for disk.
Justification: N\#2 good for finding a and t .
Plan: 1. Draw a Free-Body Diagram
2. For the hanging mass apply $F_{\text {Net }}=m a$ and for disk apply $\tau=\mathrm{I} \alpha$
3. Relate a and α using $a=\alpha R$
(see slide 2)
4. Use algebra to solve 3 equations in 3 unknowns, T, a, α.

Falling weight \& pulley... (need to find a)

Rolling

- An object with mass M, radius R, and moment of inertia I rolls without slipping down a plane inclined at an angle θ with respect to horizontal. What is its acceleration?
- Consider CM motion and rotation about the CM separately when solving this problem

Rolling...

- Static friction f causes rolling. It is an unknown, so we must solve for it.
- First consider the free body diagram of the object and use $F_{N E T}=M a_{c m}$:
In the x direction: $-M g \sin \theta+f=\mathbf{-} M a_{c m}$
- Now consider rotation about the CM and use $\tau_{\text {Net }}=I \alpha$ realizing that

$$
\tau=R f \sin 90=R f \quad \text { and } a=\alpha R
$$

Rolliing...

- We have 3 equations in 3 unknowns, a, α and f :

From $\mathrm{F}=\mathrm{ma}$ applied to $\mathrm{CM}:-M g \sin \theta+f=-M a$
From $\tau=\mathrm{I} \alpha$ applied about $\mathrm{CM}: ~ f R \sin 90=f \mathrm{R}=\mathrm{I} \alpha$
From relationship between a and $\alpha: R \alpha=a$

- Use algebra to combine these to eliminate f, and solve for a :

$$
a=g\left(\frac{M R^{2} \sin \theta}{M R^{2}+I}\right)
$$

For a sphere:

$$
a=g\left(\frac{M R^{2} \sin \theta}{M R^{2}+\frac{2}{5} M R^{2}}\right)=\frac{5}{7} g \sin \theta
$$

Work Done by Torque

- Recall $\mathrm{W}=\mathrm{F} \mathrm{d} \cos \theta$
- For a wheel
\Rightarrow Work: $\mathrm{W}=\mathrm{F}_{\text {tangential }} \mathrm{S}$

$$
\begin{aligned}
& =\mathrm{F}_{\text {tangential }} \mathrm{r} \theta \quad(\mathrm{~s}=\mathrm{r} \theta, \theta \text { in radians }) \\
& =\tau \theta
\end{aligned}
$$

Summary

- Torque $=$ Force that causes rotation
$\Rightarrow \tau=\mathrm{Fr} \sin \theta$
$\rightarrow \mathrm{F}=\mathrm{m} a$ for rotation: $\tau=\mathrm{I} \alpha$.
\Rightarrow Work done by torque $\mathrm{W}=\tau \theta$
- Use $\mathrm{F}=\mathrm{ma}, \tau=\mathrm{I} \alpha$ to solve for a, α, tension, time. Use conservation of energy to solve for speed.
- Equilibrium
$\Rightarrow \Sigma \mathrm{F}=0$
$\Rightarrow \Sigma \tau=0$
» Can choose any axis or pivot around which to compute torques. Trick of the trade: If there is a force on the pivot, the torque it produces is 0 !

