Physics 101 Lecture 17 Universal Gravitation

HW 7&8 due this Thurs.!

Exam 2: Mar 28-30.
Covers Lects 9-15
No lab on week of exam.
Sign up for a slot!
Contact Dr. Schulte w Qs about signup.

Gammie Review session for Exam 2 Monday 3/26 7:00 PM+ in Loomis 144

What concepts did you find most difficult, or what would you like to be sure we discuss in lecture?

• List of comments from flipit

.....

There will only be two types of forces we will study in PHYS 101

Recall this slide from lecture 5:

- <u>Type 2: Non-contact forces</u>: action at a distance forces.
 - →In PHYS 101 we study the gravitational force (weight)
 - → Near the earth's surface, $W=m_{object}g$
 - →Note: Any two masses will exert an attractive gravitational force on each other—more on that at a later lecture

There is a more general form for the force between two masses

• Any two masses, m and M, exert an **attractive** gravitational force on each other given by:

$$F = \frac{GmM}{R^2}$$

Where $G = 6.7 \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$

- → Near the earth's surface, $W=m_{object}g$
- ⇒So, notice that g must be equal to: $g = \frac{GM_{earth}}{R_{earth}^2}$

Let's check that this gives us value we recognize as g

• Let's substitute values: $g = \frac{GM_{earth}}{R_{earth}^2}$

$$G = 6.7 \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$$

Earth: Mass = 6×10^{24} kg Radius = 6.4×10^6 m.

Substituting we get:

$$g = \frac{GM_{earth}}{R_{earth}^2} = \frac{\left(6.7 \times 10^{-11}\right)\left(6 \times 10^{24}\right)}{\left(6.4 \times 10^6\right)^2} = 9.81$$
 Bingo!

Example: Weight of Object

• Calculate the gravitational force (i.e. weight) on a 3 kg book held 1 meter above the surface of the earth.

$$F_g = W = G \frac{M_{Earth} m_{object}}{r_{Earth}^2}$$

$$= \frac{\left(6.7 \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}\right) (6 \times 10^{24} \text{ kg}) (3 \text{ kg})}{(6.4 \times 10^6 + 1)^2 \text{ m}^2}$$

$$= 29.4 \frac{\text{kg m}}{\text{s}^2} = 29.4 \text{ Newtons (N)} \left[\left(1 \frac{\text{kg m}}{\text{s}^2} = 1 \text{ N}\right) \right]$$

=
$$29.4 \frac{\text{kg m}}{\text{s}^2}$$
 = 29.4 Newtons (N)

$$\left(1 \frac{\text{kg m}}{\text{s}^2} = 1 \text{ N}\right)$$

Note: Since
$$g = 9.81 \frac{m}{s^2}$$

 $W = mg = (3 kg) (9.81 \frac{m}{s^2})$
 $= 29.4 N$

Recall that gravitational force is conservative, so there must be a potential energy expression

The gravitational potential energy between two masses, M and m, separated by a distance R is:

$$U = -\frac{GMm}{R}$$

When you solve for v_f you get:

$$v_f = \sqrt{v_i^2 + 2\left(\frac{9}{10}\right)\frac{GM_E}{R_E}}$$

And when you substitute values for v_i , G, M_E and R_E you get:

$$v_f = 10,634 \ m/s = 23,788 \ \text{mph}$$

Fun facts:

An asteroid, 6 miles across, hit the earth year the Yucatan peninsula 65 million years ago and wiped out the dinosaurs, along with $\frac{3}{4}$ of all species living on earth.

Another asteroid, 23 miles across, hit the earth 3.26 billion years ago. It shook the earth for $\frac{1}{2}$ hour and caused the oceans to boil.

Example

A meteor of mass 10⁵ kg a distance of 10 earth radii from the center of the earth is moving toward earth at 250 m/s. How fast will it be moving when it strikes the surface of the earth?

Big Idea: Gravity is a conservative force so mechanical energy is conserved:

Plan: 1. Set initial and final mechanical energies equal:

$$E_i = E_f$$

$$K_i + U_i = K_f + U_f$$

2. Solve for final velocity