Physics 101 Lecture 2 Kinematics: Motion in 1-Dimension


PHYS 101: Lecture 2 Slide 1 of 27

## FAQs

- How can I register my clicker for course?

A: go through the course web site. Do not go to iclicker.com.
Can I switch discussion/lab sections?
A: sorry, no, unless you can find a section with open seats. We only have a limited number of physical seats in each section

- How do I buy the textbook?

A: First, the textbook is not required for the course, but it may be useful. If you do not want the textbook you can just subscribe to flipit physics for $\$ 40$. If you do want the textbook go to the
bookstore and buy the card for $\$ 60$. You can use the code on the card to register for flipit and the ebook.

- I switched sections. Do I need to re-register my iclicker? No!


## FAQs

- The lecture hall is overcrowded and I can't see.

A: It is pretty crowded. There are lots of empty seats, though, so please come down and muscle your way in.

- I want to go to the other lecture!

A: For the moment you are welcome to do this. If one or the other lecture becomes overcrowded I will turn off this option. Your iclicker points will be counted seamlessly.

- Where and when are office hours?

A: Location is in the TA Commons, room 279 Loomis (NE corner of the second floor). The times are on the web page, and are between 10am and 7 pm on Tu and W

## Kinematics: Velocity

Velocity: the rate of change of position
$» v=\Delta x / \Delta t$.
» average
» instantaneous

PHYS 101: Lecture 2 Slide 5 of 27



## Kinematics: Acceleration

$\Rightarrow$ Acceleration: the rate of change of velocity $» a=\Delta v / \Delta t$
» average
» instantaneous

PHYS 101: Lecture 2 Slide 9 of 27

PHYS 101: Lecture 2
Slide 10 of 27



| Graphical Representation of Acceleration: |
| :---: | :---: |
| Ploting Acceleration and Time |


$\square$

$\square$

## Kinematics: Free Fall—A Special Case

- Free Fall: An object's motion is caused by gravity alone
$\Rightarrow a=g$, the acceleration of gravity
$\Rightarrow g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\Rightarrow$ The 3 kinematic equations become:
$" y=y_{0}+v_{0_{y}} t-1 / 2 g t^{2}$
$» v_{y}=v_{0_{y}}-g t$
$» v_{y}{ }^{2}=v_{0_{y}}{ }^{2}-2 g\left(y-y_{0}\right)$
PHYS 101: Lecture 2 Slide 19 of 27



## A Few Facts About $g$

- For Gravity:
$\Rightarrow$ Acceleration is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ near the surface of the earth.
$\Rightarrow g$ always points downward
$\Rightarrow$ Position may be positive, zero or negative
$\Rightarrow$ Velocity may be positive, zero or negative
- To Calculate position or velocity as a function of time:
$\Rightarrow$ Position: $y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}$
$\Rightarrow$ Velocity: $v_{y}=v_{0 y}-g t$
- To calculate velocity as a function of position:
$\Rightarrow v_{y}^{2}=v_{0 y}^{2}-2 g\left(y-y_{0}\right)$
PHYS 101: Lecture 2

Dropped Ball: Position \& acceleration
A ball is dropped from a height of two meters above the ground.


Tossed Ball, x, v, a relationships
A ball is tossed from the ground up a height of two meters above the ground. And falls back down



Slide 24 of 27


PHYS 101: Lecture 2

## Summary of Concepts

- Kinematic Quantities:
$\Rightarrow$ Position \& Displacement
$\Rightarrow$ Velocity \& Speed
$\Rightarrow$ Acceleration
- Free Fall
$\Rightarrow y=y_{0}+v_{0_{v}} t-1 / 2 g t^{2}$
$\Rightarrow v_{y}=v_{0_{y}}-g t$
$\Rightarrow v_{y}{ }^{2}=v_{0_{y}}{ }^{2}-2 g\left(y-y_{0}\right)$

