Physics 101: Lecture 20
Oscillations: Simple Harmonic Motion

Overview

- Springs
\Rightarrow Force is proportional to displacement
$\Rightarrow \mathrm{F}=-\mathrm{k} \mathrm{x}$ (- means if you pull in +x direction
spring pulls back in -x direction)
$\Rightarrow U=1 / 2 \mathrm{k} \mathrm{x}^{2}$ (potential energy stored in spring;
spring forces are conservative)
- Today
\Rightarrow Simple Harmonic Motion
\Rightarrow Springs Revisited
- Note: In the prelecture for Wed, we will not cover "the physical pendulum", "damped oscillators", and "driven oscillators".

Springs

- Hooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.
$F=-k x$ Where x is the displacement from
the relaxed position and k is the
constant of proportionality.

Potential Energy in Spring

-Hooke's Law force is Conservative: Work done by springs does not depend on path
$\Rightarrow \mathrm{F}=-\mathrm{kx}$
$\Rightarrow W=-1 / 2 \mathrm{k} \mathrm{x}^{2}$

\Rightarrow Work done only depends on initial and final position
\Rightarrow Define Potential Energy $\mathrm{U}_{\text {spring }}=1 / 2 \mathrm{k} \mathrm{x}^{2}$

Springs

- Hooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.
$F=-k x \quad$ Where x is the displacement from
the relaxed position and k is the
constant of proportionality.
If compressed, force points in positive x direction

Simple Harmonic Motion

- Vibrations
\Rightarrow Vocal cords when singing/speaking
\Rightarrow String/rubber band
- Simple Harmonic Motion
\Rightarrow Restoring force proportional to displacement
\Rightarrow Springs $F=-k x$

Springs and Simple Harmonic Motion

$$
\begin{aligned}
& X=A ; v=0 ; a=-a_{\max } \\
& X=0 ; v=-v_{\max } ; a=0 \\
& X=-A ; v=0 ; a=a_{\max } \\
& X=0 ; v=v_{\text {max }} ; a=0 \\
& X=A ; v=0 ; a=-a_{\max }
\end{aligned}
$$

Simple Harmonic Motion:

Energy

- A mass is attached to a spring and set to motion. The maximum displacement is $x=A$
\Rightarrow Apply Work-Kinetic Energy Thm: $\mathrm{W}_{\mathrm{nc}}=\Delta \mathrm{E}=\Delta(\mathrm{K}+\mathrm{U})$
$\Rightarrow \quad 0=\Delta(\mathrm{K}+\mathrm{U})$ or Energy, $\mathrm{U}+\mathrm{K}$, is constant!
Energy $=1 / 2 m v^{2}+1 / 2 k x^{2}$
\Rightarrow At maximum displacement $\mathrm{x}=A, \mathrm{v}=0$ Energy $=1 / 2 \mathrm{k} \mathrm{A}^{2}+0$
\Rightarrow At zero displacement $x=0$

$$
\text { Energy }=0+1 / 2 \operatorname{mv}_{\max }^{2}
$$

Since Total Energy is same

$$
1 / 2 \mathrm{kA}^{2}=1 / 2 \mathrm{mv}_{\max }^{2}
$$

$$
\mathrm{v}_{\max }=\mathrm{A} \operatorname{sqrt}(\mathrm{k} / \mathrm{m})=\mathrm{A} \omega
$$

Same as in last slide

Page 4

Page 5

