Physics 101: Lecture 20 Oscillations: Simple Harmonic Motion

Overview

- Springs
 - •Force is proportional to displacement
 - F = -k x (- means if you pull in +x direction spring pulls back in -x direction)
 - → $U = \frac{1}{2} k x^2$ (potential energy stored in spring; spring forces are conservative)

Today

- Simple Harmonic Motion
- Springs Revisited
- Note: In the prelecture for Wed, we will not cover "the physical pendulum", "damped oscillators", and "driven oscillators".

Springs

- Hooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.
 - F = -kx Where x is the displacement from the relaxed position and k is the constant of proportionality.

x(t) = [A]cos(ωt)		x(t) = [A]sin(ωt)	
v(†) = -[Aw]sin(w†)		OR	v(†) = [Aw]cos(w†)
$a(t) = -[A\omega^2]cos(\omega t)$			a(t) = -[Aω²]sin(ωt)
$x_{max} = A$ $v_{max} = A\omega$ $a_{max} = A\omega^2$	Period = T (seconds per cycle)		
	Frequency = f = 1/T (cycles per second)		
	Angular frequency = ω = $2\pi f$ = $2\pi/T$		
	For spring: $\omega^2 = k/m$, T = $2\pi\sqrt{m/k}$		

