


## Summary

In Case 1 a mass on a spring oscillates back and forth. In Case 2, the mass is doubled but the spring and the amplitude of the oscillation is the same as in Case 1.

- Both have the same maximum Potential Energy ( $\frac{1}{2} k A^{2}$ is the same for both)num
- Both have the same maximum Kinetic Energy (mechanical energy is conservea so $\mathrm{K}+\mathrm{U}=\frac{1}{2} k A^{2}$ and when $\mathrm{U}=0, \mathrm{~K}_{\max }=\frac{1}{2} k A^{2}$ ) $\square$ MNMN
- Case 1 has larger max speed at $x=0$. $\square$
- Case 1 has larger $\omega$ since $\omega=\sqrt{k / m}$
- Case 2 has a longer Period since
$\mathrm{T}=2 \pi \sqrt{m / k}$
$\mathrm{T}=2 \pi \sqrt{\mathrm{~m} / \mathrm{k}}$


What does moving in a circle have to do with moving back \& forth in a straight line ??


## Spring Oscillations

- Simple Harmonic Oscillator
$\Rightarrow \omega=2 \pi \mathrm{f}=2 \pi / \mathrm{T}$
$\Rightarrow \mathrm{x}(\mathrm{t})=[\mathrm{A}] \cos (\omega \mathrm{t})$
$\Rightarrow \mathrm{v}(\mathrm{t})=-[\mathrm{A} \omega] \sin (\omega \mathrm{t})$
$\Rightarrow \mathrm{a}(\mathrm{t})=-\left[\mathrm{A} \omega^{2}\right] \cos (\omega \mathrm{t})=-\omega^{2} \mathrm{x}(\mathrm{t})$
- Draw FBD write $\mathrm{F}=$ ma

Demos:
$-\mathrm{kx}=\mathrm{m}$ a
A, $m, k$ dependence
$-\mathrm{k} \mathrm{A}=\mathrm{ma}_{\max }$
$-\mathrm{Am} \omega^{2}=\mathrm{m} \mathrm{a}_{\max }$
$\mathrm{a}_{\max }=-\mathrm{A} \omega^{2}$

$$
\omega=\sqrt{\frac{k}{m}} \quad T=2 \pi \sqrt{\frac{m}{k}}
$$

## Vertical Mass and Spring

- If we include gravity, there are two forces acting on mass. With mass, new equilibrium position has spring stretched d
$\Rightarrow \mathrm{F}_{\text {Net, } \mathrm{y}}=0$

$$
\mathrm{kd}-\mathrm{mg}=0
$$

$$
\mathrm{d}=\mathrm{mg} / \mathrm{k}
$$

- Now what happens when we compress spring a distance y ?
$\Rightarrow \mathrm{F}_{\text {net }}=\mathrm{k}(\mathrm{d}-\mathrm{y})-\mathrm{mg}$

$$
=\mathrm{kd}-\mathrm{ky}-\mathrm{mg}
$$

$\Rightarrow$ Still Hook's Law! SHO
$\Rightarrow$ New equilibrium position



Page 4


## Application

Imagine you have been kidnapped by space invaders and are being held prisoner in a room with no windows. All you have is a cheap digital wristwatch and a pair of shoes (including shoelaces of known length). Explain how you might figure out whether this room is on the earth or on the moon

make a pendulum with the shoelace and shoes and use the wristwatch to determine the length of each period.


## Summary

- Simple Harmonic Motion
$\Rightarrow$ Occurs when have linear restoring force $\mathrm{F}=-\mathrm{kx}$
$\Rightarrow \mathrm{x}(\mathrm{t})=[\mathrm{A}] \cos (\omega \mathrm{t})$
$\Rightarrow \mathrm{v}(\mathrm{t})=-[\mathrm{A} \omega] \sin (\omega \mathrm{t})$
$\Rightarrow a(t)=-\left[A \omega^{2}\right] \cos (\omega t)$
- Springs
$\Rightarrow \mathrm{F}=-\mathrm{kx}$
$\Rightarrow \mathrm{U}=1 / 2 \mathrm{k} \mathrm{x}^{2}$
$\Rightarrow \omega=\operatorname{sqrt}(\mathrm{k} / \mathrm{m})$
- Pendulum (Small oscillations)
$\Rightarrow \omega=\operatorname{sqrt}(\mathrm{L} / \mathrm{g})$

